16,282 research outputs found

    Adaptive Nonlocal Filtering: A Fast Alternative to Anisotropic Diffusion for Image Enhancement

    Full text link
    The goal of many early visual filtering processes is to remove noise while at the same time sharpening contrast. An historical succession of approaches to this problem, starting with the use of simple derivative and smoothing operators, and the subsequent realization of the relationship between scale-space and the isotropic dfffusion equation, has recently resulted in the development of "geometry-driven" dfffusion. Nonlinear and anisotropic diffusion methods, as well as image-driven nonlinear filtering, have provided improved performance relative to the older isotropic and linear diffusion techniques. These techniques, which either explicitly or implicitly make use of kernels whose shape and center are functions of local image structure are too computationally expensive for use in real-time vision applications. In this paper, we show that results which are largely equivalent to those obtained from geometry-driven diffusion can be achieved by a process which is conceptually separated info two very different functions. The first involves the construction of a vector~field of "offsets", defined on a subset of the original image, at which to apply a filter. The offsets are used to displace filters away from boundaries to prevent edge blurring and destruction. The second is the (straightforward) application of the filter itself. The former function is a kind generalized image skeletonization; the latter is conventional image filtering. This formulation leads to results which are qualitatively similar to contemporary nonlinear diffusion methods, but at computation times that are roughly two orders of magnitude faster; allowing applications of this technique to real-time imaging. An additional advantage of this formulation is that it allows existing filter hardware and software implementations to be applied with no modification, since the offset step reduces to an image pixel permutation, or look-up table operation, after application of the filter

    Seismic Fault Preserving Diffusion

    Full text link
    This paper focuses on the denoising and enhancing of 3-D reflection seismic data. We propose a pre-processing step based on a non linear diffusion filtering leading to a better detection of seismic faults. The non linear diffusion approaches are based on the definition of a partial differential equation that allows us to simplify the images without blurring relevant details or discontinuities. Computing the structure tensor which provides information on the local orientation of the geological layers, we propose to drive the diffusion along these layers using a new approach called SFPD (Seismic Fault Preserving Diffusion). In SFPD, the eigenvalues of the tensor are fixed according to a confidence measure that takes into account the regularity of the local seismic structure. Results on both synthesized and real 3-D blocks show the efficiency of the proposed approach.Comment: 10 page

    Directional Bilateral Filters

    Full text link
    We propose a bilateral filter with a locally controlled domain kernel for directional edge-preserving smoothing. Traditional bilateral filters use a range kernel, which is responsible for edge preservation, and a fixed domain kernel that performs smoothing. Our intuition is that orientation and anisotropy of image structures should be incorporated into the domain kernel while smoothing. For this purpose, we employ an oriented Gaussian domain kernel locally controlled by a structure tensor. The oriented domain kernel combined with a range kernel forms the directional bilateral filter. The two kernels assist each other in effectively suppressing the influence of the outliers while smoothing. To find the optimal parameters of the directional bilateral filter, we propose the use of Stein's unbiased risk estimate (SURE). We test the capabilities of the kernels separately as well as together, first on synthetic images, and then on real endoscopic images. The directional bilateral filter has better denoising performance than the Gaussian bilateral filter at various noise levels in terms of peak signal-to-noise ratio (PSNR)

    Image Segmentation with Eigenfunctions of an Anisotropic Diffusion Operator

    Full text link
    We propose the eigenvalue problem of an anisotropic diffusion operator for image segmentation. The diffusion matrix is defined based on the input image. The eigenfunctions and the projection of the input image in some eigenspace capture key features of the input image. An important property of the model is that for many input images, the first few eigenfunctions are close to being piecewise constant, which makes them useful as the basis for a variety of applications such as image segmentation and edge detection. The eigenvalue problem is shown to be related to the algebraic eigenvalue problems resulting from several commonly used discrete spectral clustering models. The relation provides a better understanding and helps developing more efficient numerical implementation and rigorous numerical analysis for discrete spectral segmentation methods. The new continuous model is also different from energy-minimization methods such as geodesic active contour in that no initial guess is required for in the current model. The multi-scale feature is a natural consequence of the anisotropic diffusion operator so there is no need to solve the eigenvalue problem at multiple levels. A numerical implementation based on a finite element method with an anisotropic mesh adaptation strategy is presented. It is shown that the numerical scheme gives much more accurate results on eigenfunctions than uniform meshes. Several interesting features of the model are examined in numerical examples and possible applications are discussed
    corecore