1,297 research outputs found

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines

    Speed Ripple Reduction of Direct-Drive PMSM Servo System at Low-Speed Operation Using Virtual Cogging Torque Control Method

    Get PDF
    This paper presents a virtual cogging torque (VCT) control method to reduce the speed ripple of direct-drive permanent magnet synchronous machine (DD-PMSM) servo system under low-speed conditions. Compared with other factors, at low speeds, the cogging torque is the main factor that deteriorates the drive performance, even induces speed oscillations. Especially in this paper, due to volume limitation, the cogging torque is designed larger than normal one in order to remove the need of brake. Based on the model of PMSM, the cause and effect of the cogging torque are analyzed. Inspired by the characteristic of cogging torque, the VCT control method is proposed and investigated to significantly reduce the speed ripple at low speeds. The main idea of this proposed control method is to produce a proper virtual cogging torque and continuously move the corresponding virtual stable equilibrium point to drive the rotor smoothly. In addition to the principle of this control method, its analysis and implementation are studied as well. Simulation and experimental results from the prototype demonstrate that the proposed control method is correct and valid, and it is simple and effective to smooth the speed at low-speed operations

    Advanced wind energy convertors using electronic power conversion.

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN013000 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Advances in the Field of Electrical Machines and Drives

    Get PDF
    Electrical machines and drives dominate our everyday lives. This is due to their numerous applications in industry, power production, home appliances, and transportation systems such as electric and hybrid electric vehicles, ships, and aircrafts. Their development follows rapid advances in science, engineering, and technology. Researchers around the world are extensively investigating electrical machines and drives because of their reliability, efficiency, performance, and fault-tolerant structure. In particular, there is a focus on the importance of utilizing these new trends in technology for energy saving and reducing greenhouse gas emissions. This Special Issue will provide the platform for researchers to present their recent work on advances in the field of electrical machines and drives, including special machines and their applications; new materials, including the insulation of electrical machines; new trends in diagnostics and condition monitoring; power electronics, control schemes, and algorithms for electrical drives; new topologies; and innovative applications

    The application of advanced signal processing techniques to the condition monitoring of electrical machine drive systems

    Get PDF
    Includes bibliographical references (leaves 128-129).The thesis examines the use of two time-frequency domain signal processing tools in its application to condition monitoring of electrical machine drive systems. The mathematical and signal processing tools which are explored are wavelet analysis and a non-stationary adaptive signal processing algorithm. Four specific applications are identified for the research. These applications were specifically chosen to encapsulate important issues in condition monitoring of variable speed drive systems. The main aim of the project is to highlight the need for fault detection during machine transients and to illustrate the effectiveness of incorporating and adapting these new class of algorithms to detect faults in electrical machine drive systems during non-stationary conditions

    Applications of Power Electronics:Volume 1

    Get PDF

    Critical Aspects of Electric Motor Drive Controllers and Mitigation of Torque Ripple - Review

    Get PDF
    Electric vehicles (EVs) are playing a vital role in sustainable transportation. It is estimated that by 2030, Battery EVs will become mainstream for passenger car transportation. Even though EVs are gaining interest in sustainable transportation, the future of EV power transmission is facing vital concerns and open research challenges. Considering the case of torque ripple mitigation and improved reliability control techniques in motors, many motor drive control algorithms fail to provide efficient control. To efficiently address this issue, control techniques such as Field Orientation Control (FOC), Direct Torque Control (DTC), Model Predictive Control (MPC), Sliding Mode Control (SMC), and Intelligent Control (IC) techniques are used in the motor drive control algorithms. This literature survey exclusively compares the various advanced control techniques for conventionally used EV motors such as Permanent Magnet Synchronous Motor (PMSM), Brushless Direct Current Motor (BLDC), Switched Reluctance Motor (SRM), and Induction Motors (IM). Furthermore, this paper discusses the EV-motors history, types of EVmotors, EV-motor drives powertrain mathematical modelling, and design procedure of EV-motors. The hardware results have also been compared with different control techniques for BLDC and SRM hub motors. Future direction towards the design of EV by critical selection of motors and their control techniques to minimize the torque ripple and other research opportunities to enhance the performance of EVs are also presented.publishedVersio

    Nonlinear Time-Frequency Control of Permanent Magnet Electrical Machines

    Get PDF
    Permanent magnet (PM) electrical machines have been widely adopted in industrial applications due to their advantages such as easy to control, compact in size, low in power loss, and fast in response, to name only a few. Contemporary control methods specifically designed for the control of PM electrical machines only focus on controlling their time-domain behaviors while completely ignored their frequency-domain characteristics. Hence, when a PM electrical machine is highly nonlinear, none of them performs well. To make up for the drawback and hence improve the performance of PM electrical machines under high nonlinearity, the novel nonlinear time-frequency control concept is adopted to develop viable nonlinear control schemes for PM electrical machines. In this research, three nonlinear time-frequency control schemes are developed for the speed and position control of PM brushed DC motors, speed and position control of PM synchronous motors, and chaos suppression of PM synchronous motors, respectively. The most significant feature of the demonstrated control schemes are their ability in generating a proper control effort that controls the system response in both the time and frequency domains. Simulation and experiment results have verified the effectiveness and superiority of the presented control schemes. The nonlinear time-frequency control scheme is therefore believed to be suitable for PM electrical machine control and is expected to have a positive impact on the broader application of PM electrical machines

    Disturbance/uncertainty estimation and attenuation techniques in PMSM drivesā€“a survey

    Get PDF
    This paper gives a comprehensive overview on disturbance/uncertainty estimation and attenuation (DUEA) techniques in permanent magnet synchronous motor (PMSM) drives. Various disturbances and uncertainties in PMSM and also other alternating current (AC) motor drives are first reviewed which shows they have different behaviors and appear in different control loops of the system. The existing DUEA and other relevant control methods in handling disturbances and uncertainties widely used in PMSM drives, and their latest developments are then discussed and summarized. It also provides in-depth analysis of the relationship between these advanced control methods in the context of PMSM systems. When dealing with uncertainties,it is shown that DUEA has a different but complementary mechanism to widely used robust control and adaptive control. The similarities and differences in disturbance attenuation of DUEA and other promising methods such as internal model control and output regulation theory have been analyzed in detail. The wide applications of these methods in different AC motor drives (in particular in PMSM drives) are categorized and summarized. Finally the paper ends with the discussion on future directions in this area
    • ā€¦
    corecore