489 research outputs found

    A Survey on Multisensor Fusion and Consensus Filtering for Sensor Networks

    Get PDF
    Multisensor fusion and consensus filtering are two fascinating subjects in the research of sensor networks. In this survey, we will cover both classic results and recent advances developed in these two topics. First, we recall some important results in the development ofmultisensor fusion technology. Particularly, we pay great attention to the fusion with unknown correlations, which ubiquitously exist in most of distributed filtering problems. Next, we give a systematic review on several widely used consensus filtering approaches. Furthermore, some latest progress on multisensor fusion and consensus filtering is also presented. Finally, conclusions are drawn and several potential future research directions are outlined.the Royal Society of the UK, the National Natural Science Foundation of China under Grants 61329301, 61374039, 61304010, 11301118, and 61573246, the Hujiang Foundation of China under Grants C14002 and D15009, the Alexander von Humboldt Foundation of Germany, and the Innovation Fund Project for Graduate Student of Shanghai under Grant JWCXSL140

    An annotated bibligraphy of multisensor integration

    Get PDF
    technical reportIn this paper we give an annotated bibliography of the multisensor integration literature

    Data Mining Applications to Fault Diagnosis in Power Electronic Systems: A Systematic Review

    Get PDF

    LPV methods for fault-tolerant vehicle dynamic control

    No full text
    International audienceThis paper aims at presenting the interest of the Linear Parameter Varying methods for vehicle dynamics control, in particular when some actuators may be in failure. The cases of the semi-active suspension control problem and the yaw control using braking, steering and suspension actuators will be presented. In the first part, we will consider the semi-active suspension control problem, where some sensors or actuator (damper leakage) faults are considered. From a quarter-car vehicle model including a non linear semi-active damper model, an LPV model will be described, accounting for some actuator fault represented as some varying parameters. A single LPV fault-tolerant control approach is then developed to manage the system performances and constraints. In the second part the synthesis of a robust gain-scheduled H1 MIMO vehicle dynamic stability controller (VDSC), involving front steering, rear braking, and four active suspension actuators, is proposed to improve the yaw stability and lateral performances. An original LPV method for actuator coordination is proposed, when the actuator limitations and eventually failures, are taken into account. Some simulations on a complex full vehicle model (which has been validated on a real car), subject to critical driving situations (in particular a loss of some actuator), show the efficiency and robustness of the proposed solution

    Recent advances on recursive filtering and sliding mode design for networked nonlinear stochastic systems: A survey

    Get PDF
    Copyright © 2013 Jun Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Some recent advances on the recursive filtering and sliding mode design problems for nonlinear stochastic systems with network-induced phenomena are surveyed. The network-induced phenomena under consideration mainly include missing measurements, fading measurements, signal quantization, probabilistic sensor delays, sensor saturations, randomly occurring nonlinearities, and randomly occurring uncertainties. With respect to these network-induced phenomena, the developments on filtering and sliding mode design problems are systematically reviewed. In particular, concerning the network-induced phenomena, some recent results on the recursive filtering for time-varying nonlinear stochastic systems and sliding mode design for time-invariant nonlinear stochastic systems are given, respectively. Finally, conclusions are proposed and some potential future research works are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61329301, 61333012, 61374127 and 11301118, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant no. GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Novel Framework for Navigation using Enhanced Fuzzy Approach with Sliding Mode Controller

    Get PDF
    The reliability of any embedded navigator in advanced vehicular system depends upon correct and precise information of navigational data captured and processed to offer trustworthy path. After reviewing the existing system, a significant trade-off is explored between the existing navigational system and present state of controller design on various case studies and applications. The existing design of controller system for navigation using error-prone GPS/INS data doesn‟t emphasize on sliding mode controller. Although, there has been good number of studies in sliding mode controller, it is less attempted to optimize the navigational performance of a vehicle. Therefore, this paper presents a novel optimized design of a sliding mode controller that can be effectively deployed on advanced navigational system. The study outcome was found to offer higher speed, optimal control signal, and lower error occurances to prove that proposed system offers reliable and optimized navigational services in contrast to existing system

    Multiple chaotic central pattern generators with learning for legged locomotion and malfunction compensation

    Full text link
    An originally chaotic system can be controlled into various periodic dynamics. When it is implemented into a legged robot's locomotion control as a central pattern generator (CPG), sophisticated gait patterns arise so that the robot can perform various walking behaviors. However, such a single chaotic CPG controller has difficulties dealing with leg malfunction. Specifically, in the scenarios presented here, its movement permanently deviates from the desired trajectory. To address this problem, we extend the single chaotic CPG to multiple CPGs with learning. The learning mechanism is based on a simulated annealing algorithm. In a normal situation, the CPGs synchronize and their dynamics are identical. With leg malfunction or disability, the CPGs lose synchronization leading to independent dynamics. In this case, the learning mechanism is applied to automatically adjust the remaining legs' oscillation frequencies so that the robot adapts its locomotion to deal with the malfunction. As a consequence, the trajectory produced by the multiple chaotic CPGs resembles the original trajectory far better than the one produced by only a single CPG. The performance of the system is evaluated first in a physical simulation of a quadruped as well as a hexapod robot and finally in a real six-legged walking machine called AMOSII. The experimental results presented here reveal that using multiple CPGs with learning is an effective approach for adaptive locomotion generation where, for instance, different body parts have to perform independent movements for malfunction compensation.Comment: 48 pages, 16 figures, Information Sciences 201

    Adaptive Estimation and Detection Techniques with Applications

    Get PDF
    Hybrid systems have been identified as one of the main directions in control theory and attracted increasing attention in recent years due to their huge diversity of engineering applications. Multiplemodel (MM) estimation is the state-of-the-art approach to many hybrid estimation problems. Existing MM methods with fixed structure usually perform well for problems that can be handled by a small set of models. However, their performance is limited when the required number of models to achieve a satisfactory accuracy is large due to time evolution of the true mode over a large continuous space. In this research, variable-structure multiple model (VSMM) estimation was investigated, further developed and evaluated. A fundamental solution for on-line adaptation of model sets was developed as well as several VSMM algorithms. These algorithms have been successfully applied to the fields of fault detection and identification as well as target tracking in this thesis. In particular, an integrated framework to detect, identify and estimate failures is developed based on the VSMM. It can handle sequential failures and multiple failures by sensors or actuators. Fault detection and target maneuver detection can be formulated as change-point detection problems in statistics. It is of great importance to have the quickest detection of such mode changes in a hybrid system. Traditional maneuver detectors based on simplistic models are not optimal and are computationally demanding due to the requirement of batch processing. In this presentation, a general sequential testing procedure is proposed for maneuver detection based on advanced sequential tests. It uses a likelihood marginalization technique to cope with the difficulty that the target accelerations are unknown. The approach essentially utilizes a priori information about the accelerations in typical tracking engagements and thus allows improved detection performance. The proposed approach is applicable to change-point detection problems under similar formulation, such as fault detection

    Adaptive Estimation and Detection Techniques with Applications

    Get PDF
    Hybrid systems have been identified as one of the main directions in control theory and attracted increasing attention in recent years due to their huge diversity of engineering applications. Multiplemodel (MM) estimation is the state-of-the-art approach to many hybrid estimation problems. Existing MM methods with fixed structure usually perform well for problems that can be handled by a small set of models. However, their performance is limited when the required number of models to achieve a satisfactory accuracy is large due to time evolution of the true mode over a large continuous space. In this research, variable-structure multiple model (VSMM) estimation was investigated, further developed and evaluated. A fundamental solution for on-line adaptation of model sets was developed as well as several VSMM algorithms. These algorithms have been successfully applied to the fields of fault detection and identification as well as target tracking in this thesis. In particular, an integrated framework to detect, identify and estimate failures is developed based on the VSMM. It can handle sequential failures and multiple failures by sensors or actuators. Fault detection and target maneuver detection can be formulated as change-point detection problems in statistics. It is of great importance to have the quickest detection of such mode changes in a hybrid system. Traditional maneuver detectors based on simplistic models are not optimal and are computationally demanding due to the requirement of batch processing. In this presentation, a general sequential testing procedure is proposed for maneuver detection based on advanced sequential tests. It uses a likelihood marginalization technique to cope with the difficulty that the target accelerations are unknown. The approach essentially utilizes a priori information about the accelerations in typical tracking engagements and thus allows improved detection performance. The proposed approach is applicable to change-point detection problems under similar formulation, such as fault detection

    Diagnosis and fault-tolerant control using set-based methods

    Get PDF
    [EN]: The fault-tolerant capability is an important performance specification for technical systems. Examples showing its importance are some catastrophes in civil aviation. According to official investigations, some air accidents due to failures are technically avoidable if the pilots can take right measures. But, relying on the skill and experience of the pilots, it cannot be guaranteed that reliable flight decisions are always made. Instead, if fault-tolerant strategies can be included in the decision-making procedure, it will be very useful for safer flight. Fault-tolerant control is generally classified into passive and active fault-tolerant control. Passive fault-tolerant control relies on the robustness of the controller, which can only provide limited fault-tolerant ability, while active fault-tolerant control turns to a fault detection and isolation module to obtain fault information and then to actively take actions to tolerate the effect of faults. Generally, active fault-tolerant control has more powerful fault-tolerant ability than passive fault-tolerant control. In this dissertation, one focuses on active fault-tolerant control, which for this case considers model predictive control and set-based fault detection and isolation. Model predictive control is a successful advanced control strategy in process industry and has been widely used for processes such as chemistry and water treatment, because of its ability to deal with multivariable constrained systems. However, the performance of model predictive control has deep dependence on model accuracy. Realistically, it is impossible to avoid the effect of modelling errors, disturbances, noises and faults, which always result in model mismatch. Comparatively, model mismatch induced by faults is possible to be effectively handled by suitable fault-tolerant strategies. The objective of this dissertation is to endow model predictive control with faulttolerant ability to improve its effectiveness. In order to reach this objective, set-based fault detection and isolation methods are used in the proposed fault-tolerant schemes. The important advantage of set-based fault detection and isolation is that it can make robust fault detection and isolation decisions, which is the key for taking right fault-tolerant measures. This dissertation includes four parts. The first part introduces this research, presents the state of the art and gives an introduction of used research tools. The second part proposes setbased fault detection and isolation for actuator and sensor faults, which is involved in interval observers and invariant sets. In the second part, the relationship between interval observers and invariant sets is firstly investigated. Then, actuator and sensor faults are separately coped with depending on their own features. The third part focuses on actuator and sensor fault-tolerant model predictive control, where the control strategy is robust model predictive control. The last part draws some conclusions, summarizes this research and gives clues for the future work.[ES]: La capacidad de los sistemas para tolerar fallos es una importante especificación de desempeño para la mayoría de sistemas. Ejemplos que muestran su importancia son algunas catástrofes en aviación civil. De acuerdo a investigaciones oficiales, algunos incidentes aéreos son técnicamente evitables si los pilotos pudiesen tomar las medidas adecuadas. Aun así, basándose en las habilidades y experiencia de los pilotos, no se puede garantizar que decisiones de vuelo confiables serán siempre posible de tomar. En cambio, si estrategias de tolerancia a fallos se pudieran incluir en el proceso de toma de decisión, los vuelos serían mucho más seguros. El control tolerante a fallos es generalmente clasificado en control pasivo y activo. El control pasivo se basa en la robustez del controlador, el cual sólo provee una habilidad limitada de tolerancia a fallos, mientras que el control tolerante a fallos de tipo activo se convierte en un modulo de detección y aislamiento de fallos que permite obtener información de éstos, y luego, activamente, tomar acciones para tolerar el efecto de dichos fallos. Así pues, el control activo generalmente tiene habilidades más fuertes de tolerancia a fallos. Esta tesis se enfoca en control tolerante a fallos activo, para lo cual considera el control predictivo basado en modelos y la detección y aislamiento de fallos basados en conjuntos. El control predictivo basado en modelos es una estrategia de control exitosa en la industria de procesos y ha sido ampliamente utilizada para procesos químicos y tratamiento de aguas, debido a su habilidad de tratar con sistemas multivariables con restricciones. A pesar de esto, el desempeño del control predictivo basado en modelos tiene una profunda dependencia de la precisión del modelo del sistema. Siendo realistas, es imposible evitar el efecto de errores de modelado, perturbaciones, ruidos y fallos, que siempre llevan a diferencias entre el modelo y el sistema real. Comparativamente, el error de modelo inducido por los fallos es posible de ser manejado efectivamente por estrategias adecuadas de control tolerante a fallos. Con el fin de alcanzar este objetivo, métodos de detección y aislamiento de fallos basados en conjuntos son utilizados en los esquemas de tolerancia a fallos propuestos en esta tesis. La ventaja importante de estas técnicas de detección y aislamiento de fallos basadas en conjuntos es que puede tomar decisiones robustas de detección y aislamiento, lo cual es clave para tomar medidas acertadas de tolerancia a fallos. Esta tesis esta dividida en cuatro partes. La primera parte es introductoria, presenta el estado del arte y hace una introducción a las herramientas de investigación utilizadas. La segunda parte expone la detección y aislamiento de fallos en actuadores y/o sensores, basándose en teoría de conjuntos, a partir de observadores de intervalo, y conjuntos invariantes. La tercera parte se enfoca en el control predictivo robusto (con enfoques basados tanto en tubos robustos como en min-max) con tolerancia a fallos en actuadores y/o sensores. La cuarta parte presenta algunas conclusiones, hace un resume de esta investigación y da algunas ideas para trabajos futuros.I want to thank the projects/grants that partially finance my research. They are the Spanish research projects CICYT SHERECS DPI-2011-26243 and WATMAN (DPI2009-13744) of the Science and Technology Ministry, the DGR of Generalitat de Catalunya (SAC group Ref. 2009/SGR/1491) and the contract i-Sense (FP7-ICT-2009-6-270428) by the European Commission.Peer Reviewe
    • …
    corecore