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Abstract

Hybrid systems have been identified as one of the main directions in control theory

and attracted increasing attention in recent years due to their huge diversity of engineering

applications. Multiple-model (MM) estimation is the state-of-the-art approach to many

hybrid estimation problems. Existing MM methods with fixed structure usually perform

well for problems that can be handled by a small set of models. However, their performance

is limited when the required number of models to achieve a satisfactory accuracy is large

due to time evolution of the true mode over a large continuous space. In this research,

variable-structure multiple model (VSMM) estimation was investigated, further developed

and evaluated. A fundamental solution for on-line adaptation of model sets was developed

as well as several VSMM algorithms. These algorithms have been successfully applied to

the fields of fault detection and identification as well as target tracking in this thesis. In

particular, an integrated framework to detect, identify and estimate failures is developed

based on the VSMM. It can handle sequential failures and multiple failures by sensors or

actuators.

Fault detection and target maneuver detection can be formulated as change-point detec-

tion problems in statistics. It is of great importance to have the quickest detection of such

mode changes in a hybrid system. Traditional maneuver detectors based on simplistic models

are not optimal and are computationally demanding due to the requirement of batch pro-

cessing. In this presentation, a general sequential testing procedure is proposed for maneuver

detection based on advanced sequential tests. It uses a likelihood marginalization technique

to cope with the difficulty that the target accelerations are unknown. The approach essen-

xii



tially utilizes a priori information about the accelerations in typical tracking engagements

and thus allows improved detection performance. The proposed approach is applicable to

change-point detection problems under similar formulation, such as fault detection.
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Chapter 1

Introduction

1.1 Background

Hybrid systems are complex systems whose states exhibit both continuous and discrete

dynamics. This combination and interaction of the discrete and continuous nature make

this emerging area a particularly challenging field of research. Hybrid systems have been

identified as one of the main directions in control theory and attracted increasing attention

in recent years due to their huge diversity in engineering applications, including system fault

detection, air traffic control, industrial process control, target tracking and communication

networks, etc.

Estimation of the states in a hybrid system subject to structure or parametric uncertainty

is known as hybrid estimation. The conventional solutions to hybrid estimation are decision-

based, where the states are estimated after a decision is made. Specifically, a hypothesis

test is first performed to determine the structure currently in effect and then estimation

techniques are applied as if the selected structure were the true one. The decision-based

1



estimation has been extensively studied in many areas, and an excellent review of the existing

approaches in the area of target tracking can be found in [50]. Even though the decision-based

approaches have been successfully applied in various applications of hybrid estimation, this

type of solution has clear drawbacks. Since estimation is employed based on a decision, any

possible decision errors on the models are not accounted for in the estimation. Moreover, a

hard decision is taken irrevocably before estimation even though estimation results are often

beneficial to decision making [52].

In recent years, the multiple model approach has become the mainstream approach for

hybrid estimation. In theory, there are certain advantages to use the multiple model ap-

proach. First, for complex systems such as flight control systems, it is often impractical to

represent the whole system using a single model. Second, multiple model representations

provide an easy way to incorporate system information from different sources [91].

The basic idea of the multiple model (MM) estimation is to assume a set of models

describing a hybrid system. It consists of a bank of elemental filters running in parallel, each

based on a particular model representing a possible system behavior or structure, to obtain

model-conditional estimates; the overall estimate is a certain combination of these model-

conditional estimates; the jumps in the system modes can be modeled as switches/transitions

between the assumed models. Due to these unique features, the MM estimation fits well in

the framework of hybrid estimation and has great success in various fields including target

tracking, air traffic control, fault detection and diagnosis, and communications, etc. [42, 52].

The MM method was initiated in [62] and is now the state-of-the-art approach for many

estimation problems. It has been developed through three generations as identified in [43].

According to the structure of the model set used in the MM estimation, three generations

2



first two generations, the same set of models is used at all times and thus referred to as a

fixed structure-based MM (FSMM) estimation. The third generation allows a variable set of

models adapting to data, leading to a variable structure-based MM (VSMM) estimation.

The existing MM methods with fixed structure usually perform well for problems that

can be handled with a small set of models. Consequently, these methods have a great success

in solving many estimation problems involving structural as well as parametric uncertainty,

particularly in target tracking. However, due to the fact that the true system mode is

often unknown and/or time varying over a large space, an algorithm using a fixed set of a

small number of models cannot yield accurate results. Apart from the dramatic increase in

computation, the research in [43, 48] shows that use of more models in a fixed structure does

not guarantee a performance improvement. To find a way to overcome this dilemma, the

concept and structure of the variable structure MM estimation were introduced in [43, 44,

48, 49, 54], particularly for target tracking, fault detection and identification.

The VSMM is potentially much more advanced than the fixed-structure MM estimation:

besides inheriting the first two generations’ superior processing capabilities, it adapts to the

real environment by augmenting new models or eliminating some existing models according

to applications. This built-in learning mechanism for the model set in the VSMM leads to

an improved performance over the FSMM estimator. The VSMM estimation is especially

powerful for the case when the model set used does not match the possible set of the true

system mode. Due to its open structure and successful applications, the VSMM is gaining

momentum rapidly [42, 43, 44, 55, 59, 86, 87].

Fault detection and diagnosis (FDD) and maneuvering target tracking (MTT) are two

3



typical applications of hybrid estimation due to their common features: both applications

involve continuous-valued parameter estimation such as system states, and discrete hypothe-

ses decision (e.g., possible sensor or actuator failures in FDD, and different target motions

such as constant velocity or constant accelerations in MTT). Thus, it is natural to pose such

problems as one of hybrid estimation.

FDD has been a major issue for modern engineering systems which requires reliability,

availability and security with increasing complexity. In the last two decades, many FDD

techniques have been developed that include hardware redundancy and analytical redun-

dancy based approaches, as surveyed in [9, 23, 26, 29, 99]. However, conventional fault

detection and identification (FDI) algorithms do not deal with failure estimation and state

estimation simultaneously. On the other hand, maneuvering target tracking is a challenging

research topic since target maneuvers are usually unknown. Most of the target tracking

algorithms are hybrid estimation. Therefore, improvement in hybrid estimation, especially

variable-structure based MM estimation, is beneficial to applications of target tracking, fault

detection and identification.

For a hybrid system, since the true system mode jumps due to structure or parametric

change, it is desirable to have a quickest detection, which will provide useful information for

the subsequent state estimation; for example, decision-based approaches for target tracking

or fault tolerant control. Assume that a measurement sequence before and after an unknown

change time has different probability distributions. The objective is to detect the occurrence

of the change as soon as possible under some constraints. This type of problem is usually

formulated as a binary hypothesis testing, known as change point detection in the statistical

literature. Change point detection has been extensively studied in statistics and engineering.

4



According to the sample size, two types of approaches are usually used to detect changes:

fixed-size batch detection including Schewhart’s control chart, geometric moving average,

and cumulative sum control chart; and sequential detection based on sequential probability

ratio test (SPRT) such as Page’s test and Shiryayev SPRT [10, 33, 35, 34]. Due to un-

known maneuver accelerations, target maneuver onset detection can be treated as a typical

application of change point detection.

Many algorithms and techniques have been developed to detect target maneuvers [82],

which can be categorized into two classes: chi-square based and likelihood ratio based tests.

Such detectors are based on simple models and batch processing, and are thus non-optimal

and computationally demanding. Moreover, for tracking applications measurements are

usually available in a sequential manner. As such, it motivates us to investigate the sequential

processing of maneuver detection based on advanced statistical tests. Clearly, this study

could be generalized to other applications under the same formulation such as system fault

detection.

1.2 Research Objectives

The main objective of this research is to formulate problems and develop new algorithms with

regard to hybrid estimation and change point detection for the detection of target maneu-

vers and system faults; more specifically, to develop novel variable-structure algorithms for

multiple model hybrid estimation and apply proposed techniques to target tracking, fault

detection and identification. In essence, a general approach is preferred that adjusts the

model set in real time based on data to cover a large continuous mode space by a relatively
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small number of models with a desired accuracy level. The proposed approach is expected

to overcome the limitations of the fixed-structure MM estimation and facilitates various

applications of hybrid estimation by providing high cost-effective and robust algorithms.

• The first objective is to present a general variable-structure MM scheme referred to

as expected-mode augmentation (EMA), originally proposed in [49], to enhance the

EMA algorithm with its practical implementation, and to evaluate and analyze its

performance via a generic maneuvering target tracking problem.

• The second objective is to develop an integrated framework to detect, identify, and

estimate failures, including abrupt total, partial and multiple failures, in a dynamic

system. Meanwhile, the proposed approach should provide accurate state estimation

even during failures. This proposed framework based on VSMM is to overcome the

limitations of the existing FDD algorithms.

• The third objective is to investigate the existing target maneuver detection algorithms,

to formulate the problem in a sequential hypothesis setting, and to develop new sequen-

tial detection algorithms based on advanced sequential tests to improve the detection

performance, and consequently the tracking performance as well.

1.3 Thesis Outline

This thesis contains seven chapters and five appendices that are organized as below:

Chapter 1 presents the motivation and objectives of this research work.

Chapter 2 reviews several aspects of the hybrid system, such as hybrid estimation, struc-
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ture and development of multiple model estimation, in particular, the interacting multiple

model estimator.

Chapter 3 presents a new class of variable-structure algorithms for multiple-model esti-

mation referred to as the expected-mode augmentation (EMA). In the EMA approach, the

original set of fixed models is augmented by a variable set of models intended to match the

expected value of an unknown true mode. These models are generated adaptively in real

time as (globally or locally) probabilistically weighted sums of modal states over the model

set. General formulation, theoretical analysis and justification of the EMA approach are

presented along with three algorithms for its practical implementation. The performances of

the proposed EMA algorithms are evaluated via simulation of a generic maneuvering target

tracking problem.

Chapter 4 proposes two schemes for failure detection, identification and estimation, in-

cluding abrupt total, partial and multiple failures, in a dynamic system. The proposed

algorithms are based on the variable-structure multiple model estimation, which improves

performance due to online adaptation. Using two aircraft examples, the proposed approaches

are evaluated and compared with a widely used single-model residual based generalized like-

lihood ratio (GLR) approach in terms of detection and estimation performance as well as

robustness in the presence of the uncertain noise statistics. Model set design issues are also

discussed along with conclusions and further discussions.

Chapter 5 introduces background information for the change point detection problem

followed by several key sequential detection algorithms.

Chapter 6 addresses target maneuver onset detection based on sequential statistical tests.

Cumulative sums (CUSUM) test and Shiryayev sequential probability ratio test (SSPRT) are
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developed by using a likelihood marginalization technique to cope with the difficulty of un-

known target maneuver accelerations. The approach essentially utilizes a priori information

about the maneuver accelerations in typical tracking engagements and thus allows improved

detection performance as compared with traditional maneuver detectors. Simulation results

are presented to demonstrate the developed capabilities of the maneuver detectors. The

feasibility of applying proposed sequential algorithms to fault detection is illustrated at the

end.

Chapter 7 draws major conclusions from the research work and provides some further

research directions.
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Chapter 2

Hybrid Estimation

2.1 Hybrid System

A class of simple discrete-time hybrid systems is described by

xk+1 = Fk(sk+1)xk +Gk(sk+1)wk(sk+1) (2.1)

zk+1 = Hk(sk)xk+1 + vk(sk) (2.2)

where x is the base state, s is the mode or modal state, z is the measurement, w and v are

independent process and measurement noise. The state in a hybrid system ξ = [x′, s′]′ is

referred to as a hybrid state. Clearly such a system is not linear since x or z does not depend

on the system state ξ in a linear fashion. The system could be deemed as linear if s is given.

For actual systems s could jump at unknown time instants. Jumps between different modes

are used to model abrupt system changes. System (2.1)-(2.2) is known as a Markov jump

linear system if s is a Markov chain

P{sk+1 = sj|sk = si} = pij, ∀i, j, k
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Often s is assumed a homogeneous Markov chain, that is, pij is a constant for all time k.

Base state x is a continuous-valued variable, often referred to as a state variable in a

conventional system, such as position and velocity of a moving object. Mode state s is a

discrete-valued variable for mathematical characterization of a certain behavior pattern or

structure of the system. For example, in the context of fault detection, a normal mode

corresponds to the normal operation of a system. A fault model can be used to represent a

certain failure/degradation in some part of the system. In the context of air traffic control,

the mode of straight and level motion corresponds to the constant velocity motion while

maneuvering modes can be applied to turning or accelerating motions [42]. Different system

modes could be described by different equations with known or unknown parameters.

Such systems (2.1)-(2.2) can be used to model situations whose system behavior pat-

tern undergoes sudden changes, such as system failures and target maneuvers. It provides

a framework particularly suitable for problems with structural as well as parametric uncer-

tainties.

2.2 Hybrid Estimation

In hybrid systems, state estimation subject to structural/parametric uncertainty is called

hybrid estimation in the sense that it combines state estimation and parameter estimation

to deal with simultaneously continuous- and discrete-valued uncertainties. The problem of

hybrid estimation is to estimate the base state and model state based on the sequence of

noisy state measurements along with prior information.

The conventional solution to hybrid estimation is decision-based approaches, where the
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state is estimated after a decision is made. Consequently, the decision errors on models or

possible contributions of estimation to decisions are ignored. Although the limitation is clear

for decision-based approaches, it is still very difficult to come up with effective remedies to

overcome their drawbacks within this framework. Currently, the mainstream approach to

hybrid estimation is the multiple-model (MM) approach, which uses multiple models and

each model represents a possible system behavior or structure. As a result, the multiple

model approach overcomes the difficulty of model uncertainty that conventional decision-

based approaches have to face. The MM approach provides a natural solution for hybrid

estimation.

2.3 Multiple Model Estimation

The basic idea of the multiple model estimation approach is to assume a set of models as

possible candidates of the true mode in the hybrid system. Unique features of MM estimation

include 1) a bank of elemental filters run in parallel to obtain model-conditional estimates;

2) the overall estimate is fused by these model-conditional estimates; 3) transitions between

models are used to model jumps in system mode.

For a Markov jump linear system, the ith model in the MM method is represented by

xk+1 = F i
kxk +Gi

kuk + T i
kw

i
k (2.3)

zk = H i
kxk + vi

k (2.4)

where superscript i denotes quantities pertinent to model mi in model set M , and the jumps
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of the system mode are assumed to have the following transition probabilities

πij = P{mj
k+1|mi

k} (2.5)

where mi
k denotes that the ith model is in effect at k.

2.3.1 Structure of MM Algorithms

The operation of MM estimation for hybrid systems is depicted in Fig. 2.1 with only two

models. In general, the application of MM estimation consists of the following steps:

Fusion

Figure 2.1: General structure of MM estimation algorithms

• Model-set design: A major difficulty in the application of MM estimation. It is in

general application dependent and can be done offline or through online adaptation.

Detailed discussions can be found in [52]. The main task in model set design is to select

or construct a set of models possibly covering the system mode space. The performance

of an MM estimator largely depends on the designed model set, especially for problems

involving a large number of modes.
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• Filter selection: The single-model based filter for each model has to be selected, such as

Kalman filter for a linear problem, an extended Kalman filter for nonlinear estimation,

or a nonlinear filter. Filters based on different models can be of different types. This

step relies on classical estimation theory based on the problem under investigation.

• Cooperation strategy: A main research focus for MM estimation. All possible coop-

erative actions among filters are determined to achieve better performance, such as

pruning of unlikely model sequences, merging of similar model sequences, individual-

ized reconditioning of each filter (e.g., Interacting Multiple Model (IMM) algorithm),

or iterative strategies (like Expectation-Maximization (EM) based algorithms).

• Estimate fusion: This step determines the procedure to combine the individual model-

conditional estimate to yield the overall estimate. It can be achieved either by a

procedure based on a hard decision (i.e., select the estimate from the most likely or at

least not unlikely) or a soft decision (e.g. weighted sum of estimates from every filter).

2.3.2 Development of MM Algorithms

The MM method, state-of-the-art approach for many estimation problems, has been devel-

oped into three generations [52]:

• The first generation, Autonomous MM (AMM) estimation, was initiated in [61, 36, 37]

and widely applied in [65, 66, 67, 72, 96, 22]. In the first generation, each of its

elemental filters operates independently without any interaction with each another. Its

advantage over many non-MM approaches stems from its superior output processing:

the overall estimate is generated by fusing the estimate from elemental filters. Due

13



to the underlying assumption that the mode does not jump, AMM is not suitable for

problems with frequent changes in system behavior. Instead, it is particularly popular

for problems involving unknown parameters.

• The second generation inherits the first generation’s power of output processing, and its

elemental filters work together as a team via effective internal cooperation. Generalized

Pseudo Bayesian of order n (GPBn) and especially Interacting Multiple-Model (IMM)

are popular algorithms in the second generation. Especially, IMM with its further

development has been successfully applied to a significant number of applications [15,

14, 16, 2, 3, 6, 7, 8]. There exist many cooperation techniques, such as reinitialization

in IMM, iterative iterations for performance enhancement in EM based algorithms,

and other hypothesis reduction strategy.

The model groups in the first two generations have a fixed membership over time and

thus have a fixed structure.

• The third generation allows a variable membership, that is, a variable set of models.

This generation has been known as variable-structure MM (VSMM) method. It is

most suitable in the case where the model set used does not match the set of possible

true modes. The third generation was initiated in [41, 45, 47] and advances have been

further continued in [42, 43, 44, 55, 59, 86, 87, 49, 54, 53].

The first two generations mainly differ in the reinitialization of each elemental filer in the

cooperation strategy. Fig. 2.2 illustrates the difference for three typical algorithms. In the

AMM, every elemental filter runs individually without interactions with each another. The
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GPB1 algorithm reinitializes each filter with the previous overall estimate, which carries

information from all filters and thus is the “best possible” common single quasi-sufficient

statistic. In the IMM, each filter has its own reinitialization x̄i
k−1|k−1 (and P̄ i

k−1|k−1), which

forms the best quasi-sufficient statistic of all old information and the knowledge/assumption

that model mi
k matches the system mode at k. The superiority of mixing processing in

the IMM reinitialization has been evidenced by numerous applications [52]. Details of such

algorithms can be found in [6, 7, 8, 52] and references therein.

2.3.3 Interacting Multiple Model Algorithm

The IMM algorithm, originally proposed in [62], has been the main-stream MM algorithm

due to its cost-effective performance and simple scheme demonstrated by a significant number

of successful applications for hybrid estimation. An IMM estimator consists of a bank of

filters, each based on a model matching a particular mode of system; information is utilized

via interaction among filters. The main feature of this algorithm relies on its nature that

different system behavior modes can switch from one to another. This improves its ability to

estimate the state of a dynamic system. The IMM algorithm has three desirable properties:

it is recursive, model conditioned, and has fixed computational load for each cycle [70]. As

aforementioned, compared with other MM algorithms, the superiority of the IMM stems

from the smart individualized reinitialization scheme, which leads to improved performance.

The structure of the IMM estimation algorithm is illustrated in Fig. 2.3 with three mod-

els [52]. It comprises four major steps in each recursive cycle:

15



)(
1|1ˆ
ix )(

2|2ˆ ix )(
3|3ˆ ix )(

4|4ˆ ix

(a) AMM

(b) GPB1

(c) IMM

Figure 2.2: Filter initializations for AMM, GPB1 and IMM algorithms
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Figure 2.3: The structure of the IMM estimation algorithm with three models

1. Model-conditional re-initialization: A filter input matching the corresponding mode

is obtained through a mixture of all filter estimates at the previous time, assuming that this

particular mode is in effect at the present time. This step is unique for the IMM estimator

compared with other MM algorithms.

Predicted model probability µi
k|k−1 =

∑
mj∈Mk−1

πjiµ
j
k−1

Mixing weight µj|i = πjiµ
j
k−1/µ̂

i
k|k−1

Mixing estimate x̄i =
∑

mj∈Mk−1

x̂j
k−1|k−1µ̂

j|i
k−1

Mixing covariance P̄ i =
∑

mj∈Mk−1

[P j
k−1|k−1+(x̄i

k−1|k−1− x̂j
k−1|k−1)(x̄

i
k−1|k−1− x̂j

k−1|k−1)
′
]µ

j|i
k−1

2. Model-conditional filtering: This step performs regular filtering including estimation

prediction and update, in a parallel structure for each filter.

Predicted state x̂i
k|k−1 = F i

k−1x̄
i
k−1|k−1 +Gi

k−1w̄
i
k−1

Predicted covariance P i
k|k−1 = F i

k−1P̄
i
k−1|k−1(F

i
k−1)

′
+Gi

k−1Q
i
k−1(G

i
k−1)

′

Measurement residual z̃i
k = zk −H i

k−1x̂
i
k|k−1 − v̄i

k−1
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Residual covariance Si
k = H i

kP
i
k|k−1(H

i
k)

′
+Ri

k

Filter gain K i
k = P i

k|k−1(H
i
k)

′
(Si

k)
−1

Updated state x̂i
k|k = x̂i

k|k−1 +K i
kz̃

i
k

Updated covariance P i
k|k = P i

k|k−1 −K i
kS

i
k(K

i
k)

′

3. Mode probability update based on the model-conditional likelihood functions. The

model probability plays a key role in the weighting of the state mixing and the fusion.

Model likelihood Li
k = p[z̃i

k | mi
k, z

k] =
exp(−(1/2)(z̃i

k)
′
(Si

k)−1(z̃i
k))

|2πSi
k|1/2

Model probability µi
k = p[mi

k | zk] =
µi

k|k−1
Li

k∑
j

µj
k|k−1

Li
k

4. Estimate combination: This yields a total state estimate as the probabilistically

weighted sum of the updated state estimates of all filters.

Overall estimate x̂k|k = E[xk | zk] =
∑
i

x̂i
k|kµ

i
k

Overall covariance Pk|k =
∑
i

[P i
k|k + (x̂k|k − x̂i

k|k)(x̂k|k − x̂i
k|k)

′
]µi

k

2.4 Variable-Structure Multiple Model Method

The existing MM methods with the fixed structure cannot handel the system well if its true

mode varies over a large space with time or changes frequently. The major reason for the poor

performance of the existing FSMM estimators with a large model set is that many models

in the set are very different from the true system mode in effect at a particular time, thus

the unnecessary “competition” among models degrades the performance [42]. Due to the

nature of the FSMM, it is hard to expect great improvement although further development

is certainly possible, such as the design of a better set of models or the development of better

implementable versions of the optimal FSMM estimator. The variable-structure based MM
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estimation was initiated in [41, 48] to overcome the fundamental limitations of the fixed

structure MM. The continued research in [42, 43, 44, 55, 59, 86, 87, 49, 54, 53] lays down

the theoretical foundation for hybrid estimation with a variable structure.

The basic idea of the VSMM is to adapt the model set online based on all available

information, in particular, the sequence of the measurements. The real-time measurements

carry valuable information about the system mode being in effect, and thus provide useful

information about the model set.

2.4.1 Structure of VSMM

In VSMM a set of possible models varies with time by online adaptation. In general, each

VSMM algorithm has two tasks:

• Model set adaptation determines at each time the model set to use for the MM

estimation, utilizing posterior information as well as prior knowledge. This is unique

and the most important topic in VSMM estimation. Existing approaches in model

set adaptation can be classified as model-set reduction and model-set augmentation.

It has been shown that combined model-set reduction and augmentation has signif-

icant advantages over model-set switching in terms of tractability, performance, and

generality.

• Model set sequence conditioned estimation intends to provide best possible es-

timates given a model-set sequence, including filter initialization to new models and

cooperation strategies and conditional filtering. The second step is similar to the

FSMM.
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Depending on whether the designed total model set can be specified in advance [52],

existing model-set adaptation algorithms for the VSMM can be grouped into two broad

families: active model-sets and model-set generation. In the active model-set family, the

total model set is determined in advance, and a subset is activated adaptively at any given

time. Clearly, the main task for this class of structures is the design of the model subsets,

determination of the candidate subsets, and the decision procedure for switching. Model-

group switching (MGS) is one of the classes with this structure, where the active set is

determined by switching among a number of predetermined subsets of the total model set

[59]. The switching can be done through a soft or hard decision. The likely-model set

(LMS) is another simple class of active model-set structure, where the active set is formed

by deleting the models unlikely to match the true mode at a given time [55]. Another class

is based on a hierarchical structure, where the active set consists of hierarchical levels of

models [18, 86]. The model subset at a lower level is activated under the guidance of the

higher level.

In the model set generation, new models are generated in real time and thus the model

set cannot be specified in advance. Estimated-mode augmentation is a class for model-set

generation, where the original set is augmented by one or more models that matches an

estimate of the true mode at a given time. The augmented mode can be estimated under

different optimality criteria in principle. Another class is called adaptive grid structure,

where the mode space is quantized unevenly and adaptively based on data as well as prior

information [25, 48, 68]. More details of existing algorithms with adaptive structure can be

found in [52].
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Chapter 3

Variable-Structure MM Estimation

with Application in Maneuvering

Target Tracking

3.1 Introduction

In the past, considerable research on multiple model estimation has been undertaken in the

field of hybrid estimation. It is of interest in both military and civilian applications. The

advantage of MM estimation is rooted in the fact that the behavior of a hybrid system cannot

be characterized by a single model for all time, instead a finite number of models may be

adequate to describe the system. Based on the model set, a bank of filters is run in parallel to

obtain model-conditioned estimates, which is used to generate the overall estimates through

certain fusion techniques.

As is known, the performance of an MM algorithm depends highly on the model set
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used. Naturally, if the models in the model set are closer to the true mode of the system,

the performance would be better. In many MM applications, the set of possible values of

uncertain system parameters, known as mode space, is continuous. However in reality only

a limited number of models can be used. The common practice is to design a finite set of

models to approximate this mode space. Loosely speaking, the major objective here is to

achieve the best modeling accuracy with a minimum number of models, which is still an open

problem in a general setting, although significant progress has been reported in [45, 58].

To capture various possible unknown mode jumps and in the meantime to have at least

one model close to the true mode, a natural idea is to augment the original model set M

by one or more adaptive models that follow closely the true mode, leading to the so-called

estimated-mode augmentation. Obtaining good candidates for the augmenting models is the

basic idea of estimated-mode augmentation structure. A good candidate for the augmenting

models is the expected value of the true mode since it is statistically closest to the true

mode. This expected mode can be approximated by a sum of modal states weighted by the

corresponding model probabilities, readily available from the underlying MM algorithm. This

expected-mode augmentation (EMA) approach, introduced originally in [49] and furthered

in [54], is systematic and general for all problems with a continuous mode space.

Several researchers have considered similar problems and proposed their solution tech-

niques. For a static MM algorithm, [25] used an initial coarse grid and a subsequent fine

grid while [68] presented a filter bank that moves over a predefined fixed grid according to

a decision logic. It was proposed in [73] to use a moving set of acceleration models cen-

tered around a model whose acceleration is determined by an additional Kalman filter. In

[48], it was suggested to employ the expected mode as the center of an adaptive grid for
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an example of nonstationary noise identification. In [38], an adaptive IMM algorithm for

maneuvering target tracking was proposed that uses an acceleration model determined by

a separate Kalman filter on top of a fixed set of models. Compared with these existing

techniques, not only is the EMA approach much more general and systematic, but it is also

highly cost-effective and easy to implement.

This chapter is organized as follows. In Section 1, the EMA approach is formulated

in a general setting with its theoretical analysis and justification. Three practical baseline

EMA algorithms are proposed in Section 2. Section 3 develops several EMA designs for

maneuvering target tracking. Performance evaluation and comparison of the proposed EMA

algorithms are presented in Section 4 via simulation of a generic maneuvering target tracking

problem. Section 5 provides a conclusion.

3.2 Expected-Mode Augmentation (EMA)

3.2.1 Benefit of Model-Set Augmentation

Denote by s the true mode and by S the mode space (i.e., the set of possible values of

s). Consider the problem of adding a model set C to the original model set M (hence

C ∩M = ∅). Assume (M ∪ C) ⊂ S. Let

x̂M = E[x|s ∈M, z], x̂C = E[x|s ∈ C, z]

µM = P{s ∈M |s ∈ (M ∪ C), z}, µC = P{s ∈ C|s ∈ (M ∪ C), z}
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where z stands for measurements. Then according to the total probability theorem, the

estimator of x based on the union of model sets M and C is

x̂ = E[x|s ∈ (M ∪ C), z] = µM x̂M + µC x̂C

which is a convex combination of x̂M and x̂C . Then, following the derivation in Appendix

A, we have

Lemma If x̂M and x̂C are unbiased with uncorrelated estimation errors, which can be

assumed in most cases, use of the union of M and C is better than use of M alone if and

only if

µC <
2mse(x̂M)

mse(x̂M) + mse(x̂C)

where mse(x̂M) and mse(x̂c) stand for the mean-square error of x̂M and x̂C , respectively.

This inequality is always satisfied if x̂C is better than x̂M . Even if x̂C is worse than

x̂M , x̂ is still better than x̂M provided µC satisfies the above inequality. If x̂M and x̂C have

correlated estimation errors (i.e., E[x̃′M x̃C ] 6= 0), x̂ is still better than x̂M if and only if

E[x̃′M x̃C ] < E[x̃′M x̃M ] = mse(x̂M), where x̃ = x− x̂ is the estimation error.

Note that this result, which holds when M ∪ C ⊂ S, does not contradict the finding

presented in [48] that the optimal use of more models is not necessarily better, because

the above result would not necessarily be correct if C ⊂ S were not true. Since here we

focus on problems with a continuous mode space, M ∪ C ⊂ S holds in general and thus

x̂α = (1 − α)x̂M + αx̂C with some α will be better than x̂M . As a consequence, optimal

use of more models for such problems does improve performance because its estimate x̂

cannot be worse than x̂α. Of course, this holds true only under the simplifying assumption

s ∈ (M ∪ C), which is not necessarily true in general.
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3.2.2 Estimated-Mode Augmentation

In principle, the augmented model can be estimated under any optimality criterion, such as

• expected-mode augmentation: the augmented model is the one based on the condition

mean

m̂MMSE
k = E[sk|sk ∈Mk, z

k]

where Mk and zk stand for the model set and measurements sequence at time k, respec-

tively.

• maximum-likelihood model augmentation: the augmented model is the one with the

largest likelihood

m̂ML
k = arg max

m
f(zk|sk = m)

• maximum posterior model augmentation: the augmented model is the one with the

maximum model probability

m̂MAP
k = arg max

m
P (sk = m|zk)

A promising alternative is to augment the model set also by the predicted modes, such as

m̂MMSE
k+1|k = E[sk+1|sk ∈ M,Mk−1, zk] =

∑
mj∈M mjµ

(j)
k|k, m̂

ML
k+1|k = arg maxm f(zk|sk+1 = m),

m̂MAP
k+1|k = arg maxm P (sk+1 = m|zk), to anticipate the next mode transition, leading to what

can be called predicted-mode augmentation.

3.2.3 Expected-Mode Augmentation

An expected-mode augmentation (EMA) to the VSMM was originally proposed in [49]. Its

general formulation as well as its theoretical analysis and justification have been done in
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[53, 54]. The expected mode is the expected value of the true mode. It is a good model

candidate since it is statistically closest to the true mode. This expected mode (conditional

mean) can be approximated by a sum of modal states weighted by the corresponding model

probabilities, readily available from the underlying MM algorithm

m̂MMSE
k = E[sk|sk ∈Mk, z

k] =
∑

mj∈M

mjµj
k|k (3.1)

where µj
k|k denotes the updated probabilities of model j being the correct one, and mj is the

parameter value that characterizes model j.

3.2.4 Practical EMA Algorithms

We now describe practical EMA algorithms. For simplicity of presentation, we assume that

the IMM mechanism is used for model-conditioned reinitialization [52].

The proposed EMA algorithms involve the following main functional modules

• EMA Mk := M+(M1, . . . ,Mq): expected mode augmentation procedure;

• VSIMM[Mk,Mk−1]: recursion for variable structure IMM estimation that uses model

sets Mk−1 and Mk at time k − 1 and k, respectively;

• EF[M ′
k,M

′′
k ;Mk−1]: procedure for estimation fusion of two estimates resulting from

VSIMM[M ′
k,Mk−1] and VSIMM[M ′′

k ,Mk−1] recursions, respectively, where M ′
k and M ′′

k

are discussed later.

The VSIMM and EF functions have been developed, utilized, and documented in several

publications on VSMM estimation [43, 59, 57, 55]. For the EMA procedure, a more detailed

discussion is given next. We outline three EMA algorithms as follows.
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Consider a generic cycle from time k− 1 to k. Suppose that the model set Mk−1 used at

k−1 is given. Three basic EMA algorithms are given in Tables 1, 2, and 3, respectively, using

different schemes for determination of the model set M needed to obtain the expected-mode

set Ek = E(M ;M1, . . . ,Mq) at time k. Choices of M1, . . . ,Mq are discussed later. The main

difference among the three algorithms lies in how the expected-mode set Ek is determined.

Algorithm A (Step 1) uses Mk−1 (including Ek−1) but not the current measurement zk to

determine Ek. On the contrary, Algorithm B (Step 2) uses zk but not Ek−1 to determine

Ek. Algorithm C (Step 3) uses both zk and Ek−1 to determine Ek. In general, Algorithm

B should outperform Algorithm A at the time instant of a system mode jump (e.g., with a

faster response and hence a smaller peak error) because of the timely information included in

zk, while Algorithm A should have a better steady-state performance due to the more direct

utilization of the old expected modes. Algorithm C provides a trade off between steady-state

performance and fast response.

Algorithm A is the simplest, while Algorithm C is the most sophisticated. Thanks to

the optimal estimation fusion formulas described in [43], the computational complexities of

Algorithms B and C increased by the use of the current measurement zk to determine Ek

are quite limited.

The above algorithms can be integrated to yield more sophisticated algorithms with

improved performance. For example, we can use Ek = EA
k ∪ EB

k as the set of expected

modes, where EA
k and EB

k are the sets of (predicted and updated) expected modes obtained

by Algorithms A (Step 1) and B (Step 2), respectively; or more preferably, we may use

Ek = EA
k ∪ EC

k as the set of expected modes, where EA
k and EC

k are the sets of (predicted

and updated) expected modes obtained by Algorithm A (or C) in Step 1 and Algorithm C
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in Step 3, respectively, which is equivalent to replacing Step 5 of Algorithm C by running

EF[M ′
k, Ek;Mk−1].

In Step 1 of Algorithm A, use of the predicted model probabilities at the current time

step {µ(i)
k|k−1}mi∈Mk−1

amounts to m̄k = m̄k|k−1 and should be superior to use of the updated

model probabilities at the previous time step {µ(i)
k−1|k−1}mi∈Mk−1

, which amounts to assuming

m̄k = m̄k−1|k−1. The same is true for Algorithm C. Both sets of model probabilities are readily

available from an MM estimator.

Table 1. One cycle of EMA Algorithm A

S1. Obtain Ek = E(Mk−1;M1, . . . ,Mq) using the predicted model probabilities

{µ(i)
k|k−1}mi∈Mk−1

S2. For Mk = Ek ∪ (Mk−1 −Ek−1), run VSIMM[Mk,Mk−1] to obtain the overall estimates,

error covariances, and model probabilities
{
x̂

(i)
k|k, P

(i)
k|k, µ

(i)
k|k

}
mi∈Mk

Table 2. One cycle of EMA Algorithm B

S1. For Mf = Mk−1 − Ek−1, run VSIMM[Mf ,Mk−1] to obtain
{
x̂

(i)
k|k, P

(i)
k|k, µ

(i)
k|k

}
mi∈Mf

S2. Obtain Ek = E(Mf ;M1, . . . ,Mq) using the current updated model probabilities

{µ(i)
k|k}mi∈Mf

S3. Run VSIMM[Ek,Mk−1] to obtain
{
x̂

(i)
k|k, P

(i)
k|k, µ

(i)
k|k

}
mi∈Ek
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S4. Run EF[Mf , Ek;Mk−1] to obtain overall estimates, error covariances, and model prob-

abilities
{
x̂

(i)
k|k, P

(i)
k|k, µ

(i)
k|k

}
mi∈Mk

in the set Mk = Mf ∪ Ek

Table 3. One cycle of EMA Algorithm C

S1. Obtain E ′
k = E(Mk−1;M1, . . . ,Mq) using the predicted model probabilities

{µ(i)
k|k−1}mi∈Mk−1

S2. For M ′
k = E ′

k ∪ (Mk−1 − Ek−1), run VSIMM[M ′
k,Mk−1]

S3. Obtain Ek = E(M ′
k;M1, . . . ,Mq) using the current updated model probabilities

{µ(i)
k|k}mi∈M ′

k

S4. Run VSIMM[Ek,Mk−1]

S5. For Mf = Mk−1 − Ek−1, run EF[Mf , Ek;Mk−1] to obtain overall estimates, error co-

variances, and model probabilities
{
x̂

(i)
k|k, P

(i)
k|k, µ

(i)
k|k

}
mi∈Mk

in the set Mk = Mf ∪ Ek
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3.3 EMA-IMM Algorithms for Maneuvering Target

Tracking

3.3.1 Maneuvering Target Tracking

Tracking is the estimation of the state of a moving target based on measurements. The target

state usually consists of kinematic components (position, velocity, acceleration, etc.) and

other parameters [5]. The target motion uncertainty is one of the major challenges of target

tracking, i.e., a target may undergo a known or unknown maneuver during an unknown time

period. Clearly, this problem involves both the estimation of continuous-valued parameters

such as target states and the detection of target motions. Thus, it is natural to pose target

tracking as a hybrid estimation problem involving both continuous and discrete uncertainties.

In general, a nonmaneuver motion and different maneuvers can be described only in

different motion models. The use of an incorrect model often leads to unacceptable results.

When tracking a maneuvering target, it is thus crucial to determine reliably and timely the

right model to use [43]. Currently the multiple model method is a major approach to target

tracking.
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3.3.2 Tracking Problem

The target motion-measurement model is

xk+1 = Fxk +G [a (k) + wk]

zk+1 = Hxk+1 + vk+1, k = 0, 1, 2, . . .

where x , (x, ẋ, y, ẏ)′ denotes the target state, a , (ax, ay)
′ is the acceleration, wk ∼ N [0, Q]

is the acceleration process noise, z = (zx, zy)
′ is the measurement, vk ∼ N [0, R] is the

random measurement error, and F = diag[F2, F2] and G = diag[G2, G2] with

F2 =




1 T

0 1


 , G2 =



T 2/2

T


 , H =




1 0 0 0

0 0 1 0




The unknown true acceleration is assumed piecewise constant, varying over a given con-

tinuous planar region Ac. In the MM framework, we consider a generic finite set (grid) of

acceleration values:

Ar , {ai ∈ Ac : i = 1, 2, . . . , r} (3.2)

which defines the total model set. We approximate the evolution of the true acceleration over

the quantized set Ar via a Markov chain model, that is, a(k) ∈ Ar with given P {a(0) = ai} =

Pi and P {a(k) = aj|a(k − 1) = ai} = πij for i, j = 1, 2, . . . , r.

3.3.3 Designs of EMA Algorithms

Consider the following well-known example of [1], [46], [60], [73], [41], [57], [55]. The mode

space is defined as

Ac , {(ax, ay) : |ax| + |ay| ≤ 40}
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i.e., the maximum acceleration in any coordinate direction is about 4g(g = 9.8m2/s). It

is, however, more appropriate that the target acceleration model be independent of the

orientation of the observer’s coordinate system. That is why we consider

Ac
0 ,

{
(ax, ay) :

√
a2

x + a2
y ≤ 40

}

IMM13

The basic 13-model set design A13, obtained after quantization of Ac, is





a1 = ρ[0, 0]′ a2 = ρ[1, 0]′ a3 = ρ[0, 1]′

a4 = ρ[−1, 0]′ a5 = ρ[0,−1]′ a6 = ρ[1, 1]′

a7 = ρ[−1, 1]′ a8 = ρ[−1,−1]′ a9 = ρ[1,−1]′

a10 = ρ[2, 0]′ a11 = ρ[0, 2]′ a12 = ρ[−2, 0]′

a13 = ρ[0,−2]′





with ρ = 20 ≈ 2g.

The transition relations among models are easily understood in terms of the directed

graph (i.e., digraph) representation of an MM, introduced in [41]. The topology of model set

A13 is depicted in Figure 3.1. Each model is viewed as a point in the mode (acceleration)

space. An arrow from one model to another indicates a legitimate model switch (self-loops

are omitted) with nonzero probability. All details can be found in [41], [57]. Note that for

simplicity in A13 a model is allowed to switch to its nearest neighbor(s) only. Better results

could be obtained if other types of model switching are allowed, such as those between second

nearest neighbors (e.g., a2 and a3, and a6 and a10) (see [55]). The values of the transition

probability matrix used in our implementation are the same as given by (7) of [57].
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Figure 3.1: Diagraph representation for 13-model set

Fixed Models
Expected Mode

Fixed Models
Expected Mode

Fixed Models
Expected Mode

Figure 3.2: EMA for 13-, 9- and 7-Model Set Designs

EMA{13+1}

As illustrated in Figure 3.2 (a), the expected-mode augmented (EMA) set of the fixed-grid

model A13 is A13+1 (k) ,
{
A13, âk|k−1

}
, where âk|k−1 =

∑
aj∈A13+1(k−1) µ

(j)
k|k−1aj and µ

(j)
k|k−1

are the predicted model probabilities available from the IMM estimator. Note that âk|k−1, as

a convex combination of the points of A13, covers the entire continuous acceleration region

Ac, i.e. âk|k−1 can be any point in Ac, depending on µ
(j)
k|k−1. The values of the transition

probability matrix (TPM) Π = [πij] in the simulation were chosen based on the TPM
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P = [pij] of A13 as follows:

π1,14 = 0.01, πi,14 = 0.05, i = 2, 3, . . . , 13

πjj = pjj − πj,14, π14,j = 0.01, j = 1, 2, . . . , 13

and all other elements remain unchanged (i.e., πij = pij).

The implementation of the corresponding IMM estimator with EMA-Algorithm A as

given in Table 1 is straightforward with A13+1 (k). This implementation is referred to as the

EMA-A{13+1}.

EMA{9+1}

This model, illustrated in Figure 3.2 (b), is obtained from EMA{13+1} by deleting its

internal nonzero models (vertices) a2, a3, a4, a5.
1 Its TPM used in the simulation was




.96 .001 .001 .001 .001 .001 .001 .001 .001 .032

.01 .75 .0 .0 .0 .01 .0 .0 .01 .22

.01 .0 .75 .0 .0 .01 .01 .0 .0 .22

.01 .0 .0 .75 .0 .0 .01 .01 .0 .22

.01 .0 .0 .0 .75 .0 .0 .01 .01 .22

.01 .01 .01 .0 .0 .75 .0 .0 .0 .22

.01 .0 .01 .01 .0 .0 .75 .0 .0 .22

.01 .0 .0 .01 .01 .0 .0 .75 .0 .22

.01 .01 .0 .0 .01 .0 .0 .0 .75 .22

.002 .002 .002 .002 .002 .002 .002 .002 .002 .982




1The variant with deleting a6, a7, a8, a9 was also examined, but the one presented here showed better

performance.
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The implementation of the corresponding IMM estimator with EMA-Algorithm A for this

design is referred to as the EMA-A{9+1}.

EMA{7+1} & EMA{7+2}

In order to cover more efficiently the true acceleration set Ac
0 defined above we also considered

the diamond fixed model set design A7 [45], illustrated in Figure 3.2 (c):





a1 = ρ [0, 0]′ a2 = ρ [2, 0]′ a3 = ρ
[
1,
√

3
]′

a4 = ρ
[
−1,

√
3
]′

a5 = ρ [−2, 0]′ a6 = ρ
[
−1,−

√
3
]′

a7 = ρ
[
1,−

√
3
]′





with ρ = 20. Two types of EMA designs based on A7 were considered—single-model augmen-

tation, denoted by A7+1(k) , {A7, â8(k)} (Fig. 3.2) and two-model augmentation, denoted

by A7+2(k) , {A7, â8(k), â9(k)}. All Algorithms A, B, and C presented above were imple-

mented for both A7+1 and A7+2. The corresponding algorithms are denoted as EMA-A{7+i},

EMA-B{7+i}, EMA-C{7+i}, i = 1, 2, respectively. The EMA{7+1} and EMA{7+2} algo-

rithms always use â8(k) = m̄1 as computed by (3.1). The EMA{7+2} algorithms also

compute â9(k) as the probabilistically weighted sum of the accelerations of the three most

probable models in the respective model set.

The following transition probability matrices for the Markov chains over A7+1 and A7+2,
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respectively were used in the simulation




.894 .001 .001 .001 .001 .001 .001 0.1

.05 .65 .05 .0 .0 .0 .05 0.2

.05 .05 .65 .05 .0 .0 .0 0.2

.05 .0 .05 .65 .05 .0 .0 0.2

.05 .0 .0 .05 .65 .05 .0 0.2

.05 .0 .0 .0 .05 .65 .05 0.2

.05 .05 .0 .0 .0 .05 .65 0.2

.001 .001 .001 .001 .001 .001 .001 0.993




and 


.964 .001 .001 .001 .001 .001 .001 .015 .015

.05 .65 .05 .0 .0 .0 .05 .1 .1

.05 .05 .65 .05 .0 .0 .0 .1 .1

.05 .0 .05 .65 .05 .0 .0 .1 .1

.05 .0 .0 .05 .65 .05 .0 .1 .1

.05 .0 .0 .0 .05 .65 .05 .1 .1

.05 .05 .0 .0 .0 .05 .65 .1 .1

.01 .01 .01 .01 .01 .01 .01 .9 .03

.01 .01 .01 .01 .01 .01 .01 .03 .9




All other parameters of the IMM algorithms implemented in the simulation were the

same as given in [57], e.g., T = 1s, Q1 = (0.003)2I, Qj = (0.008)2I, j 6= 1, R = 1250I.
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3.4 Performance Evaluation

3.4.1 Test Scenarios

The performances of all nine MM tracking algorithms (viz., IMM13, EMA-A{13+1}, EMA-

A{9+1} and EMA-A{7+i}, EMA-B{7+i}, EMA-C{7+i}, i = 1, 2) were investigated first

over a large number of deterministic maneuver scenarios with fixed acceleration sequences.

Deterministic scenarios serve to evaluate algorithms’ peak errors, steady-state errors and

response times. We present two of them, referred to as DS1 and DS2, in the sequel. Their

acceleration values are given in Table 3.1. The other parameters for both scenarios are

T = 1s, Q = 0, R = 1250I, x0 = [8000, 25, 8000, 200]′.

Note that while the acceleration values in DS1 are relatively close to the fixed grid points

of IMM13, in DS2 they are deliberately chosen far apart from the grid points. As such, for

the fixed structure estimator IMM13 the scenario DS2 is more difficult than DS1.

To provide performance comparison as fair as possible performance comparison over

an ensemble of maneuver trajectories, the algorithms were tested on a random scenario,

developed in [57], [55]. With such a scenario, it is difficult, if not virtually impossible, to

design an MM estimator with subtle tricks that are effective only for certain scenarios. In

the random scenario the acceleration vector a(t) = a(t)∠θ(t) is a 2-dimensional semi-Markov

process which undergoes sudden jumps from a state with a magnitude a and phase θ to

another one after staying in it for a random period of time. Briefly, the model assumes: the

sojourn time τk of the state and variance σ2; the acceleration magnitude ak+1 has probability

masses P0 and PM to be zero and maximum, respectively, and uniform in between; the angle

θk+1 of acceleration is uniform over 2π if ak = 0 and Gaussian with mean θk and variance
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Table 3.1: Deterministic Scenarios’ Parameters

Scenario DS1 DS2

k ax(k) ay(k) ax(k) ay(k)

1 − 30 0 0 0 0

31 − 45 18 22 8 22

46 − 55 2 37 12 27

56 − 80 0 0 0 0

81 − 98 25 2 15 2

99 − 119 -2 19 -2 9

120 − 139 0 -1 0 -1

140 − 150 38 -1 28 -1

151 − 160 0 0 0 0

σ2
θ otherwise. All details and discussions were given in [57]. In the simulation we used the

following parameters:

τ̄ = τ̄M + amax−a
amax

(τ̄0 − τ̄M), στ = 1
12
τ̄a

τ̄M = 10, τ̄0 = 30, PM = 0.1, amax = 37

σθ = π/12, P0 = 0.8, ak = amax

3.4.2 Simulation Results

Two main tasks were of interest in the simulation:

a) Evaluate the performance of a particular EMA algorithm (viz., EMA-A) with different
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designs (viz., EMA-A{13+1}, EMA-A{9+1} and EMA-A{7+1}) and compare with

the fixed structure algorithm (IMM3).

b) Evaluate and compare the performances of the different EMA algorithms (EMA-A,

EMA-B, EMA-C) with different number of models within a particular design (viz.,

A{7+i}).

EMA-A{13+1}, EMA-A{9+1} and EMA-A{7+1} vs. IMM

Results over 100 Monte Carlo runs of DS1 and DS2 are plotted in Figure 3.3. It is seen

first that EMA-A{13+1} in both scenarios (and in all other simulated scenarios as well, not

shown) outperforms the remaining algorithms, in particular the fixed-grid IMM13. The com-

parative results between IMM13 on the one hand and EMA-A{9+1} (EMA-A{7+1}) on the

other are scenario dependent. While IMM13 provides less biased steady-state errors in DS1,

EMA-A{9+1} and EMA-A{7+1} give better accuracy for almost all jumps in DS2. This

is due to the fact (mentioned before) that for IMM13, DS1 and DS2 represent respectively

easy and difficult scenarios, regarding the closeness of the true acceleration to the fixed-grid

values. The EMA algorithms are less scenario-dependent.

Results over 500 runs of the random scenario are given in Figure 3.4. Clearly all EMA

designs provide better “overall accuracy”. What is somewhat surprising is the negligible

difference between EMA-A{13+1} and the two other EMA designs, which have fewer models.

A possible explanation is that the modal estimate provides a good “coverage” of the whole

continuous region of possible (simulated) accelerations, even when the number of the fixed

models is small (7 and 9 respectively).
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Figure 3.3: Estimation Errors (DS1 & DS2)
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Figure 3.4: Estimation Errors (Random Scenario)

EMA-A{7+i}, EMA-B{7+i} and EMA-C{7+i}, i = 1, 2

Accuracy comparison results over 100 Monte Carlo runs for DS1 are plotted in Fig. 3.5 for

the EMA{7+1} algorithms versus the EMA{7+2} algorithms. It is seen that for all three

algorithms A, B, and C, two-expected-mode augmentation in the EMA{7+2} algorithms

has substantially reduced peak errors compared with the EMA{7+1} counterpart. During

the steady-state regimes (no-jumps present) the errors of the respective algorithms A, B, and

C are virtually indistinguishable. The results for the other deterministic scenario DS2 (not

presented here) are very similar. As shown in Fig. 3.6 over 500 runs of the random scenario,

the EMA{7+2} algorithms have a smaller overall error reduction relative to the EMA{7+1}

algorithms. Also plotted in this figure are the results of the standard fixed-structure IMM

algorithm with 13 models (denoted as IMM13) [57]. It is seen that the EMA algorithms,

which are of a variable structure, have a substantially better accuracy than the fixed-structure

IMM algorithm. As evidenced by Table 3.2, this performance superiority is achieved by the

EMA algorithms at a computational complexity only about half of that of the IMM13. The
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reason for this performance improvement is clear from Fig. 3.7—the augmenting model (i.e.,

the expected mode â8) is on average much better than every other model in the set.

Fig. 3.8 depicts comparative results between the three algorithms A, B, and C over DS2.

Although the accuracy differences are not significant, a visible tendency is that Algorithm

B appears to provide a faster response (and hence smaller peak errors) than the other two

algorithms. As explained before, this is due to the fact that its set of the expected modes

relies more on the current measurement information than Algorithms A and C. However,

this results in larger steady-state errors.

Computational load

The computational loads of the algorithms evaluated in terms of relative floating point op-

erations (FLOP) ratios with respect to the standard IMM13 are summarized in Table 3.2.

Table 3.2: Computational Load

IMM13 EMA{13 + 1} EMA{9 + 1} EMA{7 + 2} EMA{7 + 1}

A A A B C A B C

1 1.138 0.677 0.598 0.592 0.669 0.507 0.500 0.543

3.5 Summary

A new approach — Expected-Mode Augmentation — for MM estimation has been proposed

and examined. Practical algorithms of expected-mode augmentation, which have a variable

structure, for MM state estimation over a continuous mode space have been developed and

investigated. Extensive simulations of maneuvering target tracking have been conducted that
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have demonstrated the capabilities of the proposed algorithms for performance enhancement

and computation reduction.

The EMA approach is generally applicable, wherever the mode space is continuous. It

can be applied to fixed- and variable-structure MM algorithms and supplements the existing

methods of variable-structure MM estimation and facilitates the design of more efficient

practical MM estimators.
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Figure 3.5: RMS Position Errors (DS1): 7 + 1 vs. 7 + 2
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Figure 3.6: RMS Errors (RS): 7 + 1, 7 + 2, IMM
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Figure 3.7: Average Model Probabilities
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Chapter 4

Adaptive MM approach to Fault

Detection, Identification, and

Estimation

4.1 Introduction and Related Research

With increasing complexity of modern engineering systems, the requirement for reliability,

availability and security is growing significantly. Fault detection and diagnosis (FDD) is

becoming a major issue in safety critical systems such as modern flight control systems. In

the last two decades many techniques have been developed for FDD. Different methods are

surveyed in [9, 23, 26, 29, 99, 78].

In the FDD literature, two types of failures are usually studied:

• Sensor failures are discrepancies between the measured system variable and its actual
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value

• Actuator failures are discrepancies between the input of an actuator and its actual

output

and the goal is to accomplish the following tasks:

• Fault detection: Determine the presence of a fault and detection time

• Fault identification: Determine the type of a fault. Follows fault detection

• Fault estimation: Determine the extent of a fault. Follows fault identification

• Fault accommodation: Reconfigurate the system using healthy components

The following performance measures are often used

• False alarm: A fault is declared when the system is normal

• Miss detection: No fault is indicated when a fault is occurred in the system

• Detection delay: The time delay when a fault is correctly detected under the fixed

false alarm rate

4.1.1 Conventional Approaches to FDI

Conventional approaches to fault detection and identification (FDI) in dynamic systems can

be classified into two categories: hardware (physical) redundancy and analytical redundancy.

An approach relying on hardware redundancy uses multiple sensors and actuators. It has

been applied in the control of safety-critical systems such as aircraft space vehicles and
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nuclear power plants. However, this approach is of limited effectiveness due to its extra cost

and space. In the analytical redundancy approach, most methods are model-based and detect

faults based on a residual signal, which is the difference generated by observations and the

system mathematical model. In normal operation, the residuals should be small. Otherwise

they are indicative of failures. There are various approaches to residual generation, such as

diagnostic observers, parity relation, detection filters and parameter estimation, which are

briefly introduced as follows. More details and discussions can be found in [9, 23, 26, 29, 99,

78, 19, 79].

Voting schemes Voting techniques are often used in systems that possess high degrees

of parallel hardware redundancy [99]. The basic idea is to compare measurements of the

same variable from different sensors. Any serious discrepancy is an indication of a fault.

For example, if one of the three signals differs markedly from the other two, the differing

signal is identified as faulty. Voting schemes are in general relatively easy to implement and

are quick to identify mechanical faults in instruments. However, based on the assumption

of independent faults, voting procedure requires the use of dissimilar redundancy, which

is obtained by another system with the same function as the first but built according to

different principles and technologies. This presents a difficulty for voting schemes, not to

mention the extra cost. In addition, voting techniques can have difficulties in detecting “soft

failures” such as a small bias shift.

Diagnostic observers The observer is to reconstruct the system outputs from the mea-

surements using state estimation errors as a residual for the detection and identification of

the faults. The main concern of observer-based FDI is the generation of a set of residuals

which detect and uniquely identify different faults. To make fault identification possible,
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the method develops a set of observers, each of which is sensitive by design to an individual

fault but insensitive to the remaining faults and the unmodelled disturbances. Once there is

a fault, observers which are sensitive to the fault will deviate from the process significantly

and result in large residuals. [23] provided a detailed discussion on the design of general

diagnosis observers. Generation of diagnostic observers for nonlinear systems has also been

investigated in the literature.

Parity relations Parity equations are rearranged input-output or state-space system

models, subjected to a linear dynamic transformation. Parity equations only contain the

transformed residuals due to faults, which serve for detection and identification. The basic

idea of this approach is to check the parity (consistency) of the mathematical equations of

the system (analytical relations) by using measurements. Under normal operation, the value

of the parity equations is zero. When the value is larger than a preset threshold, a fault is

declared. [23, 26, 79] showed that once the desired residual properties have been selected,

parity equation and observer based design lead to equivalent residual generators.

The above techniques are well known in the automatic control community. However,

they are basically for deterministic systems.

Fault detection filter This approach is to monitor the innovation process in a stochastic

dynamic system. It usually involves the use of a Kalman filter, which is designed according

to the system model under normal operation. Under the linear Gaussian assumption, the

innovation sequence of the Kalman filter is a zero-mean white noise process with known

covariance. Its mean becomes nonzero in the presence of faults. However, using a single

filter is hard for fault identification. In general a bank of Kalman filters is designed for fault

identification, each filter of which is designed for a possible failure. The innovations from
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different filters are used to compute the conditional probability of each model being true. In

this manner, one can perform simultaneous fault identification and state estimation.

Parameter estimation Parameter estimation provides a natural solution when para-

metric faults are not measurable directly. It makes use of the fact that system faults are

reflected in physical parameters such as mass, resistance, friction, inductance, etc. This

approach usually needs accurate parametric models of the process as a reference model,

which can be first identified in a fault-free situation. Then the parameters are repeatedly

re-identified online. Differences from the reference model serve as a basis for detection and

identification. The most important issue in the use of the parameter estimation approach

for FDI is one of complexity arising from the process model. For example, if the system

model is a complicated nonlinear model, the parameter estimation problem turns out to be

a nonlinear optimization problem, which is usually hard and could be a bottleneck in the

application of this approach.

The FDI procedure based on analytical redundancy consists of two steps: residual gen-

eration and decision making. In the literature, there are several statistical tests used to

evaluate the residuals, which are briefly presented here and will be discussed with more

details in Chapter 6. Simply put, decisions are made on error signals, or innovations or

likelihood functions generated from the detection filters. They are designed to maximize the

detection probability with a given false alarm rate.

Threshold decision The magnitude of the error signal is simply compared with a thresh-

old according to the desired performance. This approach could give a fast detection of hard

faults. However, for soft faults the threshold has to be designed carefully.
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Innovation testing There are a number of possible statistical tests that can be per-

formed on the innovation. One of these is a chi-square test. The constructed test statistic by

innovations is a chi-square random variable and is used to evaluate residuals by the chi-square

test. This method is simple but cannot provide fault identification.

Multiple hypothesis test This detection scheme involves the use of a bank of filters

based on different hypotheses. Then innovations from different filters are used to compute

the conditional model probabilities. The posterior model probabilities, as an indicator of

faults, are tested by Bayesian decision theory.

Generalized likelihood ratio test The generalized likelihood ratio (GLR) is used to

test different hypotheses depending on unknown parameters. It involves a double maximiza-

tion with high computational cost.

Other approaches have also been explored for FDI including those combining hardware

and analytical redundancy and knowledge-based approaches (expert systems). Readers are

referred to reviews [9, 23, 26, 29, 99, 78, 19, 79] for details.

4.1.2 Multiple Model Approaches for FDI

Recently multiple model techniques have been applied to fault detection and identification.

A bank of elemental filters runs in parallel, each based on a model matching a particular

mode of the system. In theory, there are advantages in using a multiple model approach. As

for fault diagnosis problems, multiple model approaches make it more effective to provide

fault detection, identification and even estimation by using all available information, which

is desirable for the reconfigurable control to keep systems running safely.
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MM algorithms for FDI have been successfully applied to a number of particular problems

under other names, such as multiple hypothesis testing [99], multiple adaptive estimate

algorithm (MMAE) [65, 69, 72] and multiple dedicated observers [23]. All these algorithms

are based on autonomous (or “noninteracting”) multiple filters, which do not fit well into

the framework of FDI in a dynamic system because the structure or parameter of such a

system does change as its components or subsystems change. To make MM algorithms

more suitable for the current problem, new IMM-FDI algorithms have been proposed [21,

71, 80, 81, 86, 103, 104]. The difference between IMM and the autonomous MM (AMM)

algorithms lies in that elemental filters in the IMM interact with each other which leads to

improved performance. [104] provides meaningful discussions among MM-based approaches,

conventional single-model-based approaches such as generalized likelihood ratio (GLR), and

observer-based approaches. Theoretical analysis and research results demonstrate that the

IMM-FDI approach significantly improves the FDD performance in terms of fast detection

and proper identification.

4.1.3 Motivation of VSMM for FDI

Prior studies of the IMM-FDI show good performance when the designed failure model

matches the truth. However, in practice faults often occur with different magnitudes, such

as total failures and partial failures, or occur concurrently, known as multiple failures. To

have reliable identification and good state estimation under the failure condition, it is very

important to estimate the severity of a failure. Most of these existing approaches do not deal

with state estimation and fault estimation in dynamic systems. The focus of this chapter
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is on the development of an adaptive approach to fast detection and accurate estimation of

partial failures as well as multiple failures.

In the case of partial or multiple failures, one disadvantage of the previous MM approach

based on a fixed model set is that the number of models needed to cover all possible failures

can be quite large, making implementation of a fixed-structure MM estimator infeasible. Fur-

ther, use of more models and filters does not necessarily guarantee performance improvement

[43]. However, nothing really prevents us from using a variable set of models.

In this chapter we propose two FDI schemes based on variable-structure MM estimation,

which leads to better solution for the problems under investigation. The first approach,

naturally based on a hierarchical structure, develops an efficient algorithm with models in

two levels. An IMM estimator at the higher level is used to detect and identify failures while

another IMM estimator at the lower level is used to estimate failures. Although [22] has a

similar structure, it is not actually implemented in a hierarchical way and did not consider

the possible jumps between models in the model set. The second proposed approach, called

IM3L, has the same mechanism as the first one for detection and identification, but it uses a

maximum likelihood estimator to estimate the extent of failures and improve state estima-

tion under failure conditions. This new approach is demonstrated for superior performance

through simulations. Moreover, this scheme can handle more difficult cases such as multiple

failures.

The proposed approaches belong to two different families of the VSMM algorithms, in-

troduced in Sec. 2.4.2. The hierarchical IMM-FDI scheme belongs to the former family

since its total model set is determined in advance and it opens an active subset only at a

given time. The IM3L scheme belongs to the second family, which generates a new model
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based on the failure estimate when a failure is declared, and so it is impossible to specify the

total model set as a finite set beforehand. As shown later, the VSMM saves computation

as well as improves FDI performance. In addition, the IMM-FDI approach can be naturally

extended to fault-tolerant control.

The chapter is organized as follows. An FDD approach based on MM estimation is

formulated in a general setting in section 2. An efficient hierarchical structure based on the

IMM-FDI algorithm is proposed in section 3. The new approach IM3L for FDI is developed

in section 4, specially extended for multiple failures. In section 5, the proposed approaches

are tested on two types of aircraft (vertical takeoff and landing aircraft and Boeing 747),

and compared with a widely used residual-based GLRT technique over various sensor and

actuator failures. Discussions are then presented. Conclusions are given in section 6.

4.2 Fault Detection Using MM

4.2.1 The Dynamic Model for Systems Subject to Failures

In flight control systems, there are several types of possible failures, such as sensor failures,

actuator failures and component failures. Therefore, in the MM-FDI, a set of models (hy-

potheses) are used to represent the possible system structures due to different failures. Each

failure hypothesis corresponds to a specific model with a corresponding set of F, G, H and

covariance matrices Q and R. Let M denote the set of all designed system models and j a
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generic model in it. Then a linear dynamic system can be represented by

xk+1 = F j
kxk +Gj

kuk + T j
kw

j
k (4.1)

zk = Hj
kxk + vj

k (4.2)

where x is the state vector; z is the measurement vector; u is the control input vector;

wk ∼ N (wk, Qk) and vk ∼ N (vk, Rk) are independent process and measurement noises,

respectively. It is assumed that the initial state x0 ∼ N (x0, P0) is independent of wk and

vk. It is also assumed that the system mode sequence is a first order Markov chain with

transition probabilities piij defined in (2.5).

4.2.2 Failure Modeling

Here we consider complex failure situations, including total (hard) failures and partial (soft)

failures of sensors and actuators. Partial sensor failures can be caused by reduced sensor

power. Partial actuator failures can arise from damage to a control surface resulting in only

a portion of control effectiveness delivered [65]. Most of the analytical redundancy based

approaches formulate failures as additive or multiplicative system changes [99, 100]. Here

we use multiplicative change to model possible failures. However, our proposed approaches

are also applicable to additive faults in a straightforward way.

An effectiveness factor, denoted as α (0 ≤ α ≤ 1), is introduced to represent the extent

of a failure. An effectiveness of 0% (α = 0) indicates a “total failure” while an effectiveness

of 100% (α = 1) indicates “no failure”; 0 < α < 1 indicates “partial failures”. That is,

1 − α presents the severeness of a failure. Clearly α is an unknown parameter in the model

of a linear dynamic system. In model-set design, the value of α is quantized to represent
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different magnitudes of failure. As such, sensor failures can be modeled by multiplying the

respective row of the H matrix by α. Soft sensor failures can also be modeled by changing

the measurement noise mean or elements of the R matrix. This type of failure means the

output of the sensor is corrupted by the noise. Similarly actuator failures can be modeled

by multiplying the respective column of the G matrix by α.

4.2.3 IMM Estimator for FDI

As mentioned above, an IMM-FDI runs a bank of Kalman filters, each based on a different

model of the system, where α represents the failure extent.

In the IMM-FDI, model probabilities are used as an indication of a failure because they

provide a meaningful measure of how likely each fault mode is at a given time. The fault

detection decision can be made by:

µj
k = max

i
µi

k > µT ⇒ Hj : fault j occurred

max
i
µi

k < µT ⇒ : no decision

(4.3)

where µT is a preset detection threshold, and µi
k , P{mi

k|zk} is the probability that the ith

model is true based on the measurement sequence zk , 〈zi〉i≤k.

Fig. 4.1 shows the block diagram of the IMM algorithm for FDI. A complete cycle of the

IMM-FDD scheme with Kalman filter as its mode-matched filter is summarized in Table 1

of [104].
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Figure 4.1: The block diagram of the IMM algorithm for FDI

4.3 Hierarchical IMM-FDI

For many applications of flight control systems, it is highly desirable to have reconfigurable

control ability. Reliable fault detection and identification with robust state estimation pro-

vide very useful information for fault-tolerant control subsequent to the occurrence of the

failure. In reality, failures quite often occur with different magnitudes (sizes). In order to get

good state estimation, detection and estimation of partial failures are of major importance.

The following sections will focus on this issue.

In most prior research, the designed model set only considers normal and total failure

models without explicit inclusion of the partial failure models. Although some partial failures

can be covered in principle by combinations of the normal and total failure models, the

quantization level of the failure degree is too crude to produce an accurate estimate of the

extent of failure. A natural idea is to have a finer parameter quantization. This means that

filters for partial failures should be added. There are different ways to implement this. One
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way is to use all filters including additional filters at each time. The computational load

of this approach is obviously heavy. Instead, a hierarchical structure of IMM estimators,

referred to as hierarchical IMM (HIMM), can be used to reduce the computational complexity

[22, 24, 98]. Fig. 4.2 illustrates such a hierarchical structure.
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Figure 4.2: A hierarchical structure

The hierarchical structure consists of layers of multiple models. It has two levels in Fig.

4.2. At the higher level there are M + 1 filters designed for one normal model (α = 1) and

M total sensor/actuator failure models (α = 0). The higher level is used to detect which

sensor or actuator has failed. Once a specific fault is declared at the higher level, the lower

level is brought on line to run instead of the higher level. The lower level is to test how

severe that specific fault is by estimating the effectiveness factor α. The lower level consists

of M model sets, each designed for a specific sensor or actuator failure at the higher level.

In Fig. 4.2, at the lower level each model set consists of one for a total failure (α = 0), one

for a half failure (α = 0.5) and one for the normal operation (α = 1). Including the normal

model at the lower level allows the algorithm to change back to the higher level when there

is no failure in fact. The total expectation theorem is used to fuse the parameter estimates
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αj
k at the lower level as well as the state estimates x̂j

k|k, respectively:

x̂k|k
4
= E[xk|zk] =

n∑

j=1

x̂j
k|kµ

j
k (4.4)

α̂k
4
= E[αk|zk] =

n∑

j=1

αj
kµ

j
k (4.5)

where x̂j
k|k is the state estimate from the jth elemental filter, µj

k is the corresponding model

probability, αj
k is the designed failure effectiveness factor for the model and n is the number

of models in the model set in effect at time k at the lower level. The corresponding error

covariances can be given similarly.

For the hierarchical MM estimators only one level is running at a time. Since the lower

level is in effect only when the corresponding failure is detected at the higher level, it reduces

the number of elemental filters running in parallel at each time. When a specific failure

is declared at the higher level, corresponding filters at the lower level can be initialized

automatically through the VSIMM[Mk, Mk−1] cycle [43]. Here for simplicity the estimate

and covariance of the filters at the lower level are set equal to those of the corresponding

filter at the higher level at the previous time. As such, the lower level filters have the same

initial conditions. Their initial model probabilities are set equal.

4.4 The IM3L Scheme

In the above, a predefined small model set for a failure is opened up to estimate the extent of

failure when the failure is detected at the higher level. Next we develop an adaptive way to

estimate partial failures using the maximum likelihood estimation (MLE) technique and then

generate a new model based on the estimate [86]. Further, we propose techniques to handle
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multiple failures based on the proposed IM3L algorithm. The IM3L approach is systematic

and can be generalized to many practical problems which contain sudden changes.

4.4.1 Benefit of Augmenting Models

For MM estimation with a fixed model set, the number of models needed to cover all pos-

sible failures could be very large. An idea is to augment the original model set by one or

more adaptive models to cover various unknown faults. The augmented model should be

statistically close to the true system mode. In chapter 3, a general approach to VSMM

estimation was proposed by augmenting a variable set of models in the original set. A par-

ticular algorithm, referred to as expected-mode augmentation (EMA), was developed there,

where models are generated adaptively online to match the expected value of the unknown

true mode. Sec. 3.2.1 provides the theoretical justification that augmented models could be

beneficial to MM estimation [53].

As stated in Sec. 3.2.2, in principle the augmented model can be estimated under any

optimality criterion, which is usually problem dependent. Here based on the MLE criterion,

we proposed a new approach to improve the FDI performance by augmenting an adaptive

model with the maximum likelihood. We believe this approach fits the FDI problem well.

It is well known that MLE is popular for parameter estimation, which in general needs

an accurate parametric model. For the problem formulated in this context, the structure of

different fault models is known and the effectiveness factor α is the only unknown parameter.

This naturally leads us to pick MLE as a criterion to determine the type of the augmented

model.
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The proposed IM3L combines the strength of two techniques: the MM estimation is used

for fault detection, where each model has a known structure; the MLE is used for fault

estimation with respect to an unknown parameter. This explains the power of the IM3L

algorithm.

4.4.2 IM3L Algorithm

The IM3L algorithm is described as follows: once a specific fault is determined, we estimate

α by MLE, then a new failure model is generated and added into the model set based on

the estimate α̂ for that specific failure. This model is expected to improve state estimation

if α̂ is accurate so that the new model is statistically close to the truth.

MLE chooses as the estimate the “most likely” value of the true parameter given the

observations by maximizing the likelihood function. Under the assumption of Kalman fil-

tering, it is not difficult to obtain an analytical formula for α̂. Assume at time k, a failure

is detected by the IMM estimator, which is done in the same way as in the HIMM higher

level. The likelihood function of α = [α1, ..., αk]
′ is

f(zk|α) = f(zk|zk−1, αk)
k−1∏

t=1

f(zt|zt−1, αt) (4.6)

Since the fault occurs at time k and estimates of α at all previous times are assumed

available, we only need to estimate αk. As such, we only need to deal with the conditional

likelihood function f(zk|zk−1, αk). Assume

zk ∼ N (ẑ
k|k−1

, Sk)
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where ẑ
k|k−1

= E[zk|zk−1] and Sk is the associated covariance. We have

f(zk|zk−1, αk) =
1

|2πS|1/2
e
− 1

2
( zk−Hkx̂

k|k−1
)′S−1

k (zk−Hkx̂
k|k−1

)
(4.7)

Then the MLE of α

α̂k = arg max
αk

f(zk|zk−1, αk)

can be obtained (see Appendix B).

Both HIMM and IM3L algorithms are based on VSMM. They have the same mechanism

for fault detection. However, they differ in estimating the effectiveness factor α after the

failure is detected. The HIMM uses an additional model set to estimate α, and so the

estimation accuracy depends on the quantization level of that model set. The estimation

of partial failures and state could be improved if more models were included at the lower

level, which would cost more in computation. The IM3L obtains α̂ from MLE directly, which

mainly depends on observations, and updates the state estimate by the new model based on

α̂

x̂k|k
4
= E[xk|zk] =

n∑

j=1

x̂j
k|kµ

j
k

Note that the updated state estimate from the new model based on α̂k replaces the old one

assuming αk = 0 (total failure).

4.4.3 IM3L Algorithm for Multiple Failures

In practice, multiple failures exist in which a second failure occurs during the first failure.

In this case, no model in the model set matches or is close to the truth. To maintain good

performance, a variable structure MM is again applied to generate the “matched” model
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based on the IM3L algorithm. Here only two different failures are considered as an example

since the proposed approach can be extended to cases with more failures straightforwardly.

The key here is to generate new models based on diagnosis of the first failure by IM3L:

once the first failure is detected and α1 (denoted for the first failure effectiveness) is estimated,

the corresponding row of H (or column of G) matrix in all other failure sensor (actuator,

respectively) models are changed to that of the identified failure model. As such, they are

either expected identically to detect the second failure or jump back to the nominal operation

since the normal model remains unchanged. If the second failure is detected, a new model

is created upon α̂2 to update the state estimation. Clearly the detection and estimation for

the second failure are highly dependent on detection and α̂1 of the first failure as well as

initialization of the new filters. Their initial conditions could be set in two ways as follows.

• Set to those of the corresponding filter for the first failure at the previous time. It is

reasonable since the second failure occurs after the first failure.

• Set to mixing estimate/covariance of the corresponding filter for the first failure at the

current time. The IMM algorithm provides these estimates automatically. Simulation

results show that the performance by two different initializations is close.

Although the HIMM scheme could also be extended to multiple failures, as proposed in

[65, 72] where two levels of the AMM estimators are used for dual failures’ detection only,

it is more complicated and less effective to provide an integrated way for failure detection,

identification and estimation. To achieve this goal, the HIMM has to use more models

to cover possible failures, unlike the IM3L which adaptively changes the model set based
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on data. Therefore, only the IM3L scheme was implemented for multiple failures in our

simulations reported later.

4.5 Boeing 747 Aircraft Simulator

A B747 simulator developed in [64] provides a tool to evaluate the performance of our algo-

rithms more practically. It is an enhanced version of two previous programs: Delft University

Aircraft Simulation and Analysis Tool (DASMAT) and Flight Lab747 (FTLAB747), which

were originally developed at Delft University of Technology. A Boeing 747 (B747) is an

intercontinental wide-body transport with four fan jet engines designed to operate from in-

ternational airports. Due to its wide array of characteristics as a commercial airplane, the

B747 is an ideal benchmark to design and test fault detection and identification algorithms

[64]. In this section main menu functions are summarized first. Then how to generate

actuator failures is briefly addressed. This simulator provides a practical base to evaluate

performance of different approaches.

4.5.1 Main Functions of the Simulator

There are four main functions of the simulator: trimming, linearization, simulation and

simulation analysis (see Fig. 4.3).

• Trim the aircraft. This provides an equilibrium point for the aircraft based on a

user-defined initial guess for the aircraft control and states. There are six possible trim

modes: straight-and-level trim, pushover-pullup, level turn, thrust-stabilizer turn, beta

trim and specific power turn.
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Figure 4.3: Boeing747 simulator

• Linearization. The aircraft can be linearized at the equilibrium point to analyze the

aircraft’s modal characteristics. The linearized model is given in the state-space form.

• Nonlinear or linear simulation. It provides open loop or closed loop functions to sim-

ulate the nonlinear or linear aircraft models given initial conditions. The linear sim-

ulation provides a tool to validate a linearized model by a reliable comparison with

nonlinear simulation results.

• Analyze simulation results. It provides output plots of the simulation and visualization

of the flight from different perspectives.

65



Table 4.1: States for linear matrices

pb qb rb V α β φ θ ψ he xe ye

Long. X X X X X X

Lat./Dir. X X X X X X

Total X X X X X X X X X X X X

4.5.2 Linearization of the Boeing 747 model

The linearized model of Boeing 747 can be described by

ẋ(t) = Ax(t) +Bu(t) + ξ(t) (4.8)

z(t) = Cx(t) + v(t) (4.9)

where is x is the state, u is the control input, and A, B, C are system matrices.

In the simulator, there are three types of models based on three different motions available

for users to linearize the aircraft Boeing 747. The symmetric model (6 states) describes lon-

gitudinal motion while the asymmetric model (6 states) describes lateral/directional motion.

The total model including 12 states is the complete nonlinear model. The determination of

models defines the number of rows for the A and B matrices in the state-space model (1).

Table 4.1 shows the states used for each type of motion, where X indicates the state is used.

In addition, the simulator allows the possibility of obtaining linearized models with re-

spect to both types of inputs: pilot and control inputs. There is a transformation between

the two inputs. Once the input signal is selected, the user defines detailed input information,

i.e., specifies input components with non-zero signals. Table 4.2 shows possible inputs for
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Table 4.2: Inputs for linear matrices

Pilot Inputs Control Inputs

Long δcolumn, δstab, Tn1, Tn2, Tn3, Tn4 δeil, δih, Tn1, Tn2, Tn3, Tn4

Lat./Dir. δwheel, δpedal, Tn1 ∼ Tn4 δail, δru, Tn1 ∼ Tn4

Total δcolumn, δwheel, δpedal, δstab, Tn1 ∼ Tn4 δeil, δail, δru, δih, Tn1 ∼ Tn4

these matrices based on the different types of the control inputs and aircraft motion.

After selecting input signals and type of motions, the user defines observations. There

are several observation groups available and users can choose interesting ones for their ap-

plications. The determination of the outputs defines the number of rows for the C and D

matrices in the state-space model (2).

4.5.3 Boeing 747 Aircraft Model

The longitudinal model of the B747 aircraft was chosen for simulations. It was obtained by

linearizing the longitudinal dynamics of the B747 at a straight and level flight condition at

7000 m altitude and 241 m/s velocity [85, 95]. The straight and level flight refers to zero

flight path angle (FPA=0 deg).

States are pitch rate q (rad/s), total velocity V (m/s), angle of attack α (rad), pitch

angle θ (rad) and altitude he (m). Measurements are pitch rate q, total velocity V , angle of

attack α, pitch angle θ, acceleration V̇ (m/s2), and flight path angle γ (rad). Control inputs

are elevator deflection δe (rad) and stabilizer deflection δst (rad). The model matrices are
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A =




−0.7284 −0.0005 −1.2025 0 0

−0.0839 −0.0055 6.0078 −9.7850 0.0001

1.0019 −0.0004 −0.5151 0 0

1 0 0 0 0

0 0 −240.996 240.996 0




C =




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

−0.0839 −0.0055 6.0078 −9.7850 0.0001

0 0 −1 1 0




B =




−1.871 −4.6099

0 0

−0.036 −0.0944

0 0

0 0




4.5.4 VTOL aircraft model

In our study, we also use a longitudinal vertical takeoff and landing (VTOL) aircraft model

[74] for performance evaluation. The state x = [Vh, Vv, q, θ]
′ consists of horizontal velocity

Vh (m/s), vertical velocity Vv (m/s), pitch rate q (rad/s), and pitch angle θ (rad). The

control inputs u = [δc, δl]
′ are collective pitch control δc and longitudinal cyclic pitch control

δl. The system matrices are

A =




−0.0366 0.0271 0.0188 −0.4555

0.0482 −1.01 0.0024 −4.0208

0.1002 0.3681 −0.707 1.420

0.0 0.0 1.0 0.0



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B =




0.4422 0.1761

3.5446 −7.5922

−5.52 4.49

0.0 0.0




C =




1 0 0 0

0 1 0 0

0 0 1 0

0 1 1 1




For two flight models, discretizing (4.8) and (4.9) yields

xk+1 = Fxk +Guk + wk (4.10)

zk = Hxk + vk (4.11)

where F = eAT , G = (
∫ T

0
eATdτ)B, H = C, and T is the sampling period.

4.6 Performance Evaluation

In this section, two types of aircraft were used to demonstrate the performance of our pro-

posed FDI schemes. A longitudinal vertical takeoff and landing (VTOL) aircraft model is

used for detection and diagnosis of sensor failures while a Boeing 747-100/200 is used for

actuator failures. The sampling time T = 0.1s.

4.6.1 Performance Indices

Different approaches are evaluated in terms of detection and estimation performance. The

following detection performance measures are used in this work: false alarm (FA), missed

detection (MD), percentages of correct detection and identification (CDI), incorrect fault

identification (IFI), no mode detection (NM) [104]. A CDI is obtained if the model that
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is closest to the system mode (normal or fault mode) in effect at the given time has a

probability that is largest and exceeds the preset threshold µT . An IFI is obtained if the

model with a probability over µT is not the one closest to the actual false mode at the given

time. An FA is obtained if the model with a probability larger than µT is not the normal

mode in effect at the given time. An MD is obtained if the normal model has the highest

probability larger than µT while the system has a fault. It is indecisive (NM) if no model

has a probability larger than µT . Clearly, for a particular approach, the larger CDI is, the

better the approach performs. Fig 4.4 uses three models to illustrate relationships among

these performance indices.

0 1 2 3

1

2

3

X X

Identified Mode

True Mode
NM

X
0 =
1 =

MD

IFI

CDI

FA
no mode identified
normal

Figure 4.4: Relationship of FDI performance indices

The computational complexity of different algorithms is evaluated by the ratio of CPU

processing time per iteration with respect to the HAMM. The root-mean-square error (RMSE)

of the state and effectiveness factor at time k are used to evaluate estimation performance,
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respectively

RMSE(x̂) =

√√√√ 1

N

N∑

i=1

(xi
k − x̂i

k)
′(xi

k − x̂i
k) (4.12)

RMSE(α̂) =

√√√√ 1

N

N∑

i=1

(αi
k − α̂i

k)
2 (4.13)

where N is the number of Monte Carlo runs, and the superscript i stands for quantities on

run i.

4.6.2 GLRT Detector for FDI

Conventional innovation-based approaches include the generalized likelihood ratio (GLR)

test, the simple chi-square test and the sequential probability ratio test. Among these, the

GLR is the most popular and has been successfully applied to failure detection, especially

for actuator failures modeled by additive changes [99, 100]. Based on a single Kalman filter

under normal operation used for residual generation, the GLR calculates the likelihood ratio

of each failure hypothesis over no failure, which is usually unknown due to unknown failure

size and change time. The key to the GLRT technique is to replace an unknown likelihood

with its most probable likelihood. A full implementation of the GLR requires a linearly

increasing number of parallel filters, and thus is infeasible for real applications. Instead, a

finite window based GLR is widely used [100]. The GLR declares a failure if the test statistic

exceeds a preset threshold determined by the desired decision error rates.

Here for the GLR detector, failures are modeled the same way as described in Sec 4.2.

As a result, for actuator failures the batch (window-based) residuals from a normal filter can

be deemed a linear measurement of α, therefore the MLE of α̂ can be obtained as a least
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squares solution under the linear Gaussian assumption [100]. But for sensor failures, there

is no explicit MLE solution available because of the nonlinear relation. We obtain α̂ based

on the marginal likelihood function as derived in Appendix B for IM3L instead of numerical

algorithms.

After a failure has been detected by the GLR detector, the filter estimate and covariance

are updated [100]. Once the update is performed, the GLR can be used to detect further

failures, i.e., allowing the detection of sequential failures. Since the GLR is based on a single

model, it is difficult to deal with multiple failures. We will compare our approaches with the

GLR only for sequential sensor or actuator failures.

4.6.3 Simulation Results

All results presented here are averages over 100 Monte Carlo runs. HIMM uses a hierarchi-

cal with a numerically robust IMM implementation [56]. HAMM represents a hierarchical

autonomous MM algorithm with a 10−3 lower bound for each model probability. The transi-

tion probability matrices were designed for different scenarios. The detection threshold used

for MM-based approaches is 0.9 while the threshold for the GLR corresponds to a 5% false

alarm rate. The window size was chosen as 5.

Scenario 1. Sequential partial sensor failures of VTOL aircraft

For the HIMM and HAMM, a total of nine models were used (one for the normal, four for

total failures plus four for half failures). For the IM3L, a total of five models were used

(four for total failures plus one for the normal). The following parameters were used: noise

covariances Q = (0.01)2I and R = (0.2)2I, initial state x0 = [250, 50, 10, 8]′, control input
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u = [100, 100]′.

Case 1 tested severe failures (with a small true effectiveness α ≤ 20%). It included a 90%

horizontal velocity Vh failure during [30, 39] (i.e., 90% Vh failure means α = 10% between

k = 30 and k = 39), a 80% vertical velocity Vv failure during [70, 79], and a 80% pitch rate

q failure during [130, 139]. Fig. 4.5 shows the RMS velocity errors (i.e., the RMS errors of

[Vh,Vv]
′) and RMS errors of α̂. In this case all algorithms identified faults correctly, and the

difference for the RMS velocity error is not large. The HIMM and HAMM have the same

RMS α errors, which are larger than those of the GLR and IM3L. The IM3L outperformed

other approaches in terms of both RMS errors. Clearly the α errors in the GLR were caused

by the false alarm. Since the same technique is used to estimate α, it is not surprising that

the GLR achieved almost the same estimation accuracy as the IM3L. Similar comparison

results were observed for pitch rate failure, which are not shown for saving space. Such RMS

failure errors will be omitted later if there are no abnormal results obtained.
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Figure 4.5: Case 1 – sequential sensor failures (severe, total failure models)
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Case 2 included a 70% horizontal velocity failure during [30, 39], a 70% vertical velocity

failure during [50, 59], and a 60% pitch rate failure during [130, 139]. Fig. 4.6 shows the

RMS velocity errors and α̂ errors. Fig. 4.5 and Fig. 4.6 shows that as α increases, the

performance of the HIMM and especially the HAMM deteriorates.
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Figure 4.6: Case 2 – sequential sensor failures (mild, total failure models)

Both Case 1 and 2 used total failure and normal models at the higher level to detect

sensor failures (although the IM3L has only one level). However, it was observed that the

total failure model has a limited detection range (i.e., α < 0.5), outside of which the fault

cannot be detected. Therefore, Case 3 was designed to test how the model set could affect

the detection and estimation performance, where total failure models at the higher level were

replaced with half failure models under a 90% Vh failure during [30, 39] and a 30% q failure

during [80, 89]. Fig. 4.7 shows the performance comparison results. Table 4.3 presents a

comparison of the detection range for the HIMM with different model set design, where

HIMM1 represents the HIMM estimator with total failure models at the higher level and
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Table 4.3: Detection ranges of HIMM with different model set design for sensor failures

α Total Failure Half Failure No Failure

HIMM1 [0, 0.3) [0.3, 0.5) [0.5, 1]

HIMM2 [0, 0.25] (0.25, 0.75) [0.75, 1]

HIMM2 represents one with half failure models instead. Clearly using half failure model has

a greater detection range but the HIMM and especially HAMM perform worse in terms of

the RMS velocity errors, as shown in Fig. 4.7. In this case, the IM3L still has excellent

performance even with different model set designs. Similar detection results were observed

for the HAMM estimators. Since the HIMM and IM3L have the same mechanism for fault

detection, they have the same detection range. A single model based GLR algorithm does

not have such a design issue.
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Figure 4.7: Case 3 – sequential sensor failures (half failure models)
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Case 4 was tested to evaluate the performance impact due to the uncertainties in noise

statistics. It differs from Case 1 in that the noise matrices Q and R used by filters are

20 times the true ones. Fig. 4.8 shows the RMS velocity error and α̂ errors. Cases with

other uncertainties in noise statistics were also simulated. It shows that the HIMM and

IM3L maintain their estimation accuracy while the performance of the GLR and HAMM

deteriorates. Table 4.4 shows the FDI results for all tested cases based on the partial sensor

failures.
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Figure 4.8: Case 4 – sequential sensor failures (robustness)

Scenario 2. Multiple sensor failures of VTOL aircraft

Multiple failures were investigated only by the IM3L, as explained in Sec. 4.2. Fig. 4.9

shows the performance comparison over four tested cases for the RMS velocity errors and

α̂2 errors. The FDI results are shown in Table 4.5. Case 1 tested severe failures. It included

90% horizontal velocity failure during [30, 40] and [80, 90], an 80% vertical velocity failure
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Table 4.4: FDI results for sequential sensor failures (VTOL)

% MD FA CDI NMD IFI

GLR 0 1.03 98.97 0 0

HIMM 0 0 100 0 0

Case 1 HAMM 0 0 100 0 0

IM3L 0 0 100 0 0

GLR 0 1.13 98.87 0 0

HIMM 0 0 100 0 0

Case 2 HAMM 8.33 0 90.56 0 1.11

IM3L 0 0 100 0 0

GLR 0 1.16 98.84 0 0

HIMM 0 0 99.44 0.56 0

Case 3 HAMM 0 0.12 98.17 0.04 2.67

IM3L 0 0 99.44 0.56 0

GLR 0 1.70 98.30 0 0

HIMM 0 0 99.92 0.08 0

Case 4 HAMM 0 0 95.56 0 4.44

IM3L 0 0 99.92 0.08 0

MD=missed detection, FA=False alarm, CDI=correct detection and identification

NMD=no mode detection, IFI=incorrect detection and identification

during [35, 40], and a 60% pitch angle failure during [85, 90]. Case 2 differs from Case 1 in

that total failure models were replaced by half failure models. Both cases were tested for

relatively severe failures. It shows that both model sets have close performance except that

state estimation errors with half failure models are slightly greater during the second failure.
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Table 4.5: FDI results for multiple sensor failures (IM3L, VTOL)

% MD FA CDI NMD IFI

Case1 0 0 100 0 0

Case2 0 0.01 99 0.99 0

Case3 0 0 99 1 0

Case4 0 0.01 98.03 1.96 0

Case 3 tested mild multiple failures with half failure models, a 60% horizontal velocity failure

during [30, 40] and [80, 90], a 30% vertical velocity failure during [35, 40], and a 40% pitch

rate failure during [85, 90]. Case 4 was simulated to evaluate the robustness of the algorithms

as for Case 2. It shows that estimation errors including x̂ and α̂ increase even though the

detection rate is still high.
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Figure 4.9: Multiple sensor failures

78



As observed in the sequential failures, detection ranges for multiple failures become

greater when total failure models are replaced by half failure models, for example, detection

ranges of tested first and second failures both change from [0, 0.5) to [0, 0.75).

Scenario 3. Sequential partial actuator failures of B747 aircraft

There are two hypothesized actuator failures for the selected B747 model (elevator or stabi-

lizer failure). The HIMM and HAMM used a total of five models, respectively (one for the

normal, two for total failures and two for half failures), and the IM3L used three models (two

total failure models plus one for the normal). The following parameters were used: control in-

put u = [25 25]′, Q = (0.01)2I, R = (0.2)2I, and initial state x0 = [0.01 242 0.03 0.03 7001]′.

Case 1 was designed to test serious failures, which included a 90% elevator deflection δe

failure during [30, 39], and an 80% stabilizer deflection δst failure during [70, 79]. Fig. 4.10

shows the RMS velocity errors and the RMS errors of α̂. Case 2 was tested for mild failures,

which included a 70% δe failure during [30, 39] and a 60% δst failure during [70, 79]. Its

estimation results are shown in Fig. 4.11. Case 1 tells that even when actuator failures are

severe, the GLR, HIMM and HAMM failed to detect faults overall correctly while IM3L did.

For the mild failures in Case 2, only the IM3L correctly and timely detected the first failure,

and all the other three detectors incorrectly identified the second δst failure as δe failure.

Therefore, the RMS α errors for second δst failure are misleading since α was estimated

based on an incorrect failure model due to the wrong decision. The high false alarm rate

in the GLR was caused by inaccurate initial state condition for sequential failures. In both

cases, the HAMM has the worst estimation accuracy for the state and α while the IM3L

is the best. The HIMM outperformed the GLR for state estimation. Note the tremendous
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improvement of the IM3L in the α̂ errors over the other three algorithms.

0 1 2 3 4 5 6 7 8 9 10
10−2

10−1

100

101

Time

V
e
lo

ci
ty

 R
M

S
E

HIMM
HAMM
IM3L
GLR

(a) RMS velocity errors

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time
P

a
ra

m
e

te
r(

a
lp

h
a

) 
R

M
S

E

HIMM
HAMM
IM3L
GLR

(b) RMS α̂ errors

Figure 4.10: Case 1 – sequential actuator failures (severe, total failure models)
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Figure 4.11: Case 2 – sequential actuator failures (mild, total failure models)

More simulation results show that for the MM based algorithms with total failure models

at the higher level, the detection range of actuator failures was much smaller than that
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of sensor failures. Further, unlike sensor failures, which have basically the same detection

ranges, different actuator failures have different detection ranges. For example, the detection

range of elevator failure by the IM3L algorithm is [0, 0.5) while that of the stabilizer failure

is [0, 0.3). For the B747 aircraft, stabilizer failures are more difficult to detect than elevator

failures.

Case 3 was to evaluate the performance when total failure models are replaced by half

failure models at the higher level. It included an 80% δe failure during [30, 39] and a 40% δst

failure during [70, 79]. Compared to Case 1 and 2, it shows that there is little improvement

for detection ranges of the HIMM and HAMM. However, the IM3L had a greater detection

range for both failures (δe ∈ [0, 0.7), δst ∈ [0, 0.5)) with actuate estimation, shown in Fig.

4.12. Clearly the IM3L outperforms the other three algorithms significantly.
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Figure 4.12: Case 3 – sequential actuator failures (half failure models)

Case 4 was simulated to evaluate the robustness of the proposed algorithms, which differs

from Case 1 in that the noise matrices Q and R used for the filter are 20 times the true
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ones. Fig. 4.13 presents the RMS velocity errors and α̂ errors. The results show that the

IM3L approach is more robust than the other three algorithms to uncertainties in the noise

statistics in terms of estimation accuracy. Table 4.6 shows the FDI results for all four cases

of partial actuator failures. As the simulation results demonstrated, in general actuator

failures are more difficult to detect than sensor failures, since sensor failures directly affect

measurements while the impact of actuator failures takes time to appear in measurements.
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Figure 4.13: Case 4 – sequential actuator failures (robustness)

Scenario 4. Multiple actuator failures of B747 aircraft

Case 1 was tested for an 80% elevator failure during [30, 40] and a 70% stabilizer failure

during [35, 40] with total failure models. Case 2 differs from Case 1 in that total failure

models were replaced by half failure models. It is interesting to see that, compared with

Case 1, state estimation accuracy in Case 2 deteriorates slightly but α estimation improves.

This is because the half failure δst model of the B747 aircraft has a greater detection range
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Table 4.6: FDI results for sequential actuator failures (B747)

% MD FA CDI NMD IFI

GLR 0 17.19 75.57 0 7.24

HIMM 5.05 0 93.44 1.51 0

Case 1 HAMM 14 5.97 76.02 1.01 3

IM3L 0 0 99 1 0

GLR 0 18.5 74.49 0 7.01

HIMM 11.4 0.04 83.94 1.55 3.07

Case 2 HAMM 14.07 3 76.91 1.02 5

IM3L 0 0 88.99 1.01 10

GLR 0 17.74 75.36 0 6.9

HIMM 8.63 0.21 87.35 1.47 2.34

Case 3 HAMM 13.48 0.72 81.82 1.46 2.52

IM3L 0 0 98.44 1.02 0.54

GLR 0.6 20.07 72.49 0 6.84

HIMM 5.01 0 93.36 1.63 0

Case 4 HAMM 13.93 2 78 1.23 4.84

IM3L 0 0 98.95 1.05 0

than the total failure model, which improves the accuracy of α̂. However, due to its greater

detection range, the half failure model responds slowly, which leads to slightly larger state

estimation errors. Case 3 with half failure models was simulated for mild failures, which

included a 40% δe failure during [30, 40] and a 60% δst failure during [35, 40]. It shows that

the IM3L still has good performance. Case 4 was designed to test the robustness relative

to for Case 2. Fig. 4.14 show the performance comparison. The FDI results are shown in
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Table 4.7: FDI results for multiple actuator failures (IM3L,B747)

% MD FA CDI NMD IFI

Case1 1 0.05 96.14 1.02 1.79

Case2 0 0.04 98.74 1.11 0.11

Case3 1 0 97 1 1

Case4 0 0 97.27 2.73 0

Table 4.7.

More cases were simulated for multiple failures of the VTOL and B747 aircraft. The

simulation results show that in general the IM3L sacrifices the estimation accuracy more in

multiple actuator failures than in sensor failures. The IM3L consistently beats the GLR,

HIMM and HAMM in terms of estimation accuracy and robustness.

0 1 2 3 4 5 6 7 8 9 10
10−2

10−1

100

Time

V
e
lo

ci
ty

 R
M

S
E

Case1
Case2
Case3
Case4

(a) RMS velocity errors

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

Time

M
o

d
e

(a
lp

h
a

) 
R

M
S

E

Case1
Case2
Case3
Case4

(b) RMS α̂ errors

Figure 4.14: Multiple actuator failures
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Table 4.8: Computational complexity of different algorithms

CPUratio HAMM GLR HIMM IM3L

sensor failures 1 0.54 1.30 1.32

actuator failures 1 3.7 1.32 1.42

The computational loads of the algorithms evaluated in terms of relative CPU processing

time ratios per iteration with respect to the HAMM are summarized in Table 4.8.

4.6.4 Discussion

Overall the IM3L outperforms significantly the GLR, HIMM and HAMM in all tested sce-

narios. Through online adaptation, the IM3L provides accurate estimates of the extent of

failure and robust state estimates even during failures. The reason is that the new model

based on α̂ is statistically close to the truth, which is verified by the histogram of measure-

ment residuals (not shown due to space limitation). For the HIMM or HAMM, when the

designed failure models do not match the truth well, they cannot provide good estimates

of the effectiveness factor and thus good state estimates. The detection performance of the

GLR depends on the accuracy of the MLE α̂. As a result, many design issues arise such

as window size, MLE estimator and false alarm rate. The HIMM has a lighter computa-

tional load than the IM3L, and their computational load is slightly more than that of the

HAMM. The standard window-based GLR detector for actuator failures is computationally

intensive while GLR for sensor failures uses marginal likelihood information and thus saves

computation.
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To obtain satisfactory performance, the HAMM has to be tuned carefully for the higher

level models to take advantage of the information from the lower level. The IMM-based

approach (HIMM and IM3L) does not need such heuristic adjustments. Compared with

the GLR whose performance depends highly on detection threshold, the performance of no

MM based algorithms is sensitive to the choice of threshold. Similar to other hypothesis

tests, the GLR is suitable for single failure detection since it is based on a single model

under normal operation. Once a fault occurs, in order to detect sequential failures, the

hypotheses must change or a state update procedure need to be performed in the GLR. This

may result in a large false alarm due to inaccurate initialization after detection, as observed

in actuator failures. The superior interactive structure of the IMM-FDI estimators does not

have difficulty for the more general fault situations, including sequential or multiple failures.

As mentioned before, soft sensor failures can also be modeled by changing the mean of

the measurement noise or R matrix. For failures caused by noise mean shift, some scenarios

were tested on sensor failures of the VTOL. The results show that the IM3L can detect and

estimate increased noise-mean sensor failures when the noise-mean increases within some

range. Model set design for this case is more difficult due to less prior information of the

mean changes. In addition, the proposed IM3L approach is also applicable to the detection of

faults caused by a change in the F matrix (i.e., change in physical components). However, the

application of the IM3L to such failures by changes in the R or F matrix is more complicated

and not addressed in this thesis.

In the HIMM approach, while the higher level is running consecutively, the lower level

is opened to update estimates of α and state only when a fault is detected at the higher

level. An alternative was also implemented: Once the lower level is opened, it remains open
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until the normal model has the highest model probability over the threshold, then the lower

level is closed and estimation goes back to the higher level. The simulations showed that

the performance difference between the two ways of implementation depends on the scenario

and model set design.

The IM3L successfully estimates the failure severity as well as the state when partial

failures occur sequentially or concurrently. This is based on the assumption that abrupt

system failures occur infrequently. Otherwise the MLE α̂ may not be accurate. It should be

emphasized that the idea of the IM3L algorithm could also be applied to a nonlinear system

except that the analytical solution for the unknown parameter may not be available and

instead we may have to resort to numerical solutions such as the EM algorithm. Furthermore,

the research here based on the IM3L focuses on sensor failures or actuator failures separately.

In fact it is applicable to simultaneous sensor and actuator failures by designing a complete

model set containing all failure hypotheses of interest.

The IM3L is particularly good for problems such as FDI, where the system can be modeled

by one or more models and the structure of each model is different but known. It may

not fit other problems well where the space of the true mode is continuous, for example,

the application of target tracking. We implemented IM3L for the same tracking problem

formulated in [53], we found that the IM3L performed worse than the EMA in terms of the

tracking accuracy. As stated in [53], the EMA algorithm proposed is good for applications

with a continuous mode space. In target tracking, there is no structure change between

different models due to similar maneuver structure for target motions. As a result, in practice

we need to analyze the problem well in order to determine the way of augmenting models

adaptively.
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There is a trade-off between the detection range and estimation accuracy obtained by

using different models for model set design. According to our simulation results, generally

speaking, half failure models used in the model set have a greater detection range but

inferior estimation accuracy. In general, for severe sequential and multiple failures, the IM3L

algorithm with total failure models obtains better performance than that with half failure

models, as shown in the above simulations. This makes sense since total failure models are

closer to the truth than half failure models in this case. However, it also should be noticed

that the impact of different model sets on detection and estimation is system dependent.

Compared with sequential failures, multiple failures are more difficult to detect in that

the performance depends on the difference of quantities between multiple failures as well

as diagnosis of the first failure (in dual failure cases). This is particularly true for cases in

which half failure models are in effect. If the first failure is severe and the second is very

mild, there may be longer detection delay, miss detection or larger estimation error, since

the first severe failure may mask the second mild failure. In short, good performance can be

achieved if different failures have comparable severeness based on the designed model sets.

Future work includes the FDI of incipient failures and reconfigurable control.

4.7 Summary

In this chapter we proposed two FDI schemes based on variable-structure multiple model

estimation, where the model set is made adaptively online. This makes it possible to cover

all possible faults with a relatively small number of models at a given accuracy level. In

particular, combining IMM and MLE estimation techniques, the proposed IM3L provides an
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integrated way to detect and estimate partial as well as multiple failures. An efficient IMM-

FDI scheme has been presented, and implementation issues based on hierarchical structure

have also been discussed. The simulation results over various scenarios demonstrate that the

IM3L approach is a powerful technique for FDI. It outperforms the other two hierarchical

MM based approaches (HIMM and HAMM) as well as the conventional GLR approach in

terms of correct detection, accurate estimation of the extent of failure, and robust state

estimation in the presence of partial failures (unmodeled failures) and uncertainties in the

noise statistics.
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Chapter 5

Sequential Detection of Change Points

5.1 Introduction

Over past decades, there has been a significant increase of research in a variety of applications

including fault detection and diagnosis, quality control, safety of complex systems (aircraft,

rockets, chemical technological processes, etc.), segmentation of signals, biomedical signal

processing, finance, and channel monitoring for mobile wireless communication systems.

The common feature across the above problems is to detect an abrupt change in a system

based on stochastic observations of the system. [10] provides a good overview of the existing

methodology in this area. There have been various tests for different problems. They can

be largely classified into two categories: offline and online. The offline tests mean that the

data are collected first and then a decision is made based on the analysis of all data. The

online test makes the decision based on data sequentially obtained. Our work focuses more

on online detection.

To make the problem more precise, assume that there is only one change at each time
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Figure 5.1: A change in the mean of a Gaussian process

instant. Let 〈zk〉 be a measurement sequence. Before the unknown change time n, zk

(k = 1, ..., n−1) are independent and distributed identically with probability density function

f0(zk). After the change, zk (k = n, ..., N) are independent and distributed identically with

probability density function f1(zk). For example, a change occurs in the mean of a Gaussian

process in Fig. 5.1. This problem can be formulated as a binary hypothesis testing

H̄0(no change) : zk ∼ f0(zk) for k = 1, . . . , N

H̄1(there is a change) :





zk ∼ f0(zk) for k = 1, . . . , n− 1

zk ∼ f1(zk) for k = n, . . . , N

where n is unknown and referred to as the change point. This is known as change point

detection in the statistical literature. The goal is to detect the occurrence of the change as

soon as possible under certain constraints, for example, a fixed false alarm rate before n.

The detection is performed by a stopping rule, which usually has the form

n̂ = min{k : gk(z1, ..., zk) ≥ λ}

where λ is the preset threshold, (gk)k≥1 is a function of measurements, and n̂ is the estimated
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time at which the change is detected.

The design of the quickest change detection procedure usually involves optimizing the

tradeoff between two kinds of performance measures: detection delay and false alarm error

rate (i.e., the probability of deciding H̄1 when H̄0 is true). They are a conflicting pair. It

is difficult, if not impossible, to shorten the detection time and reduce the false alarm rate

at the same time. The common practice is to maximize the detection probability (i.e., the

probability of deciding H̄1 when H̄1 is true) subject to a fixed false alarm error rate.

There has been a long history of work on change point detection in statistics and engi-

neering. According to the sample size, there are two approaches to detect changes. One is the

fixed-size batch detection, which is widely used in quality control. Typical algorithms include

Schewhart’s chart, geometric moving average, and finite moving average chart [10]. Basically

the test statistics are calculated based on fixed-size sample and compared to a threshold.

The test will terminate once H̄1 is decided, otherwise, the sampling and test continue. The

other is sequential detection, which monitors the system variables successively. Sequential

change point detection is designed to detect a change as soon as possible after its occurrence.

It is usually preferable to consider decisions in a sequential setting since measurements are

received sequentially by sensors in most practical systems. Moreover, a sequential test does

not need to determine the sample size in advance, unlike the fixed sample size tests. In has

been shown that sequential tests outperform non-sequential tests based on the same decision

error rates [44]. The use of sequential tests for binary hypotheses has been well studied in

the literature. Next we briefly present several sequential test procedures.
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5.2 Sequential Probability Ratio Test (SPRT)

LetH0, H1 denote two simple hypotheses: H0 : a measurement sequence 〈zk〉 with a probabil-

ity density f0(z), and H1 : a measurement sequence 〈zk〉 with a probability density function

f1(z). It is well known that for binary simple hypotheses testing, Wald’s SPRT (SPRT) is

optimal in the sense that it makes the quickest detection for both tests (H0, H1) given any

fixed false alarm and missed detection probabilities. Let

Lk = log
f(zk|H1)

f(zk|H0)
=

k∑

κ=1

log
f (zκ|H1, z

κ−1)

f (zκ|H0, zκ−1)
(5.1)

denote the log-likelihood ratio of two hypotheses H1 and H0 based on the measurements

up to k, where f(zk|Hi) is the likelihood of the hypotheses, f (zκ|Hi, z
κ−1) (i = 0, 1) is the

marginal likelihood. let A and B be two thresholds which are set by A = β
1−α

and B = 1−β
α

for given false alarm rate α and miss detection probability β, where

P (Choose H1|H0) ≤ α, P (Choose H0|H1) ≤ β, 0 < α, β < 1 (5.2)

Then the SPRT decision rule is

Accept H1 if Lk ≥ logB

Accept H0 if Lk ≤ logA

Continue (k 7→ k + 1) otherwise

(5.3)

However, the problem formulation of the standard SPRT does not fit well to the change

point detection. In particular, the SPRT assumes all data relates to one of the two hypotheses

so that it simply chooses that there is a change or that there is no change. Whenever a

decision (H0 or H1) is made, the test will terminate. However, this is not the goal of change

point detection. In fact, we mainly want to know “when the change occurs”. Therefore, the

test should continue to the next cycle with more measurements if H0 is deemed true.
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There are several formulations in the literature regarding change point detection. A non-

Bayesian approach, first proposed by Page in 1954, Cumulative Sums (CUSUM), minimizes

the detection delay given the decision error probabilities. It is one of the most popular

algorithms used to detect a possible change from a given process to another given pro-

cess. Shiryayev sequential probability ratio test (SSPRT), a Bayesian approach proposed by

Shiryayev in the early 1960s, minimizes a risk function at each time step with the assumption

that the change point has a geometric prior distribution. It has been proven to provide the

quickest detection of a change in a sequence of conditionally independent measurements un-

der the given decision error rates. One note to emphasize is that both CUSUM and SSPRT

hold the optimality for simple hypotheses, that is, distributions are completely known before

and after the change, which is not the case for many applications where change magnitude

is usually unknown (e.g., H1 is a composite hypothesis). In order to apply these sequential

tests to such situations, they have to be modified, which is discussed in the next chapter.

5.3 Repeated SPRT-Based Detector: CUSUM

The standard CUSUM algorithm, also called Page’s test, was proposed as a means to detect

sequential changes in distributions of discrete-time random processes. It guarantees the

quickest decision given the decision error rate for simple hypotheses. Page’s test can be

interpreted as a repeated SPRT with the lower threshold logA equal to 0 and the upper

threshold equal to λ decided by error probabilities. The key idea is to restart the SPRT

algorithm as long as H0 is being accepted, which makes it naturally fit to change point

detection problems.
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The CUSUM algorithm [10] can be written in a recursive manner:

Lk = max

{
Lk−1 + log

f
(
zk|H1, z

k−1
)

f (zk|H0, zk−1)
, 0

}
, L0 = 0 (5.4)

and the decision rule is

1) Accept H1 (declare a change) if Lk ≥ λ. Then stopping time n̂ = min{k : Lk ≥ λ} is

the time that a change is detected.

2) Continue the test (k 7→ k + 1) if Lk < λ.

Asymptotic optimality of the CUSUM procedure was proved by Lorden (1971) under a

min–max criterion. It shows that the CUSUM asymptotically minimizes the “worst case”

detection delay subject to a lower bound on the mean time between false alarms. Many

modifications and extensions of the CUSUM-type test have been developed for the online

change-point detection in stochastic control and signal processing, such as fault detection in

complex systems and signal segmentation [35, 34, 76].

5.4 SSPRT-Based Detector

The Shiryayev sequential probability ratio test (SSPRT) focuses on the detection in a series

of conditionally independent measurements by noting the change in the probability density

function of the measurements. Some results have recently been reported for fault detection

using SSPRT [63, 93].

The optimality of SSPRT is to minimize an expected cost at each time step. This cost

includes the measurement cost and the cost due to a terminal decision error by false alarm or
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miss detection. Since a Bayesian framework is used, it is necessary to define prior information.

This includes the a priori probabilities of Hi (i = 0, 1) and the transition probabilities of H0

to H1 from k−1 to k (which can be time variant or invariant). When a binary hypothesis test

is performed, the transition probabilities degenerate into a single number, usually assumed

to be time-invariant for simplicity.

The decision rule of the SSPRT is obtained by defining the posterior probability ratio

Pk. Let pk = P{n ≤ k|zk} denote the posterior probability that a change occurs (at unknown

time n) by time k given the available measurements zk, and

Pk
4
=

pk

1 − pk

, PT
4
=

pT

1 − pT

(5.5)

where the choice of a preset threshold pT is related to the desirable decision error rate. The

SSPRT becomes

1) Accept H1 (declare a change) if Pk ≥ PT . The stopping time is n̂ = min{k : Pk ≥ PT}.

2) Continue the test (k 7→ k + 1) if Pk < PT .

Calculating pk is the key to SSPRT. Fortunately, it can be done recursively. Let pi
0 denote

the prior probability of hypothesis Hi being true, π the transition probability from H0 to

H1, and φi
k

4
= P (n ≤ k + 1|zk) (i = 0, 1). The recursive form of the posterior probability of

Hi is given by

p1
k =

φ1
k−1f

(
zk|H1, z

k−1
)

∑1
i=0 φ

i
k−1f (zk|Hi, zk−1)

, p0
k = 1 − p1

k

φ1
k−1 = p1

k−1 + π
(
1 − p1

k−1

)
, φ0

k−1 = 1 − φ1
k−1
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Then, the test statistic of the SSPRT is

Pk
4
=
p1

k

p0
k

=
f(zk|H1, z

k−1)

f(zk|H0, zk−1)

Pk−1 + π

1 − π
, P0

4
=
p1

0

p0
0

Note that no reset mechanism is necessary for the SSPRT due to the nature of its problem

formulation that determines when a disruption of H1 is true. Further, if π is zero, the SSPRT

becomes the SPRT. This makes sense in that SPRT assumes all data relate to one of the

two hypotheses.

Note that the above SPRT-based procedures assume that measurements are independent.

However, measurements are correlated in many practical problems, such as the target track-

ing problem. In this case the above test still works provided the sequence 〈lk〉 of marginal

likelihood ratios is independent, where

lκ =
f (z̃κ|H1, z

κ−1)

f (z̃κ|H0, zκ−1)

Fortunately, this is approximately the case since the measurement residual sequence is ap-

proximately Gaussian distributed and weakly coupled under some conditions [44]. Thus

measurement residuals, instead of measurements, should be used to compute likelihood ra-

tios.
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Chapter 6

Sequential Detection of Target

Maneuvers

6.1 Introduction and Related Research

Maneuvering target tracking (MTT) is an important problem complicated by the fact that

accelerations are generally unknown and that structural variations may also exist as the

target moves into and out of the maneuvering mode. Neither accelerations nor possible

structural changes are available directly through measurements in practice. In general, the

MTT problem is a hybrid estimation problem since it involves discrete mode or parameter

estimation as well as continuous state estimation. The decision-based techniques for MTT,

which appeared after the decision free adaptive Kalman filter techniques based on a single

model, have become quite popular and have been studied extensively in the literature [6, 8,

12, 50]. In decision-based approaches, the state estimation is based on a hard decision on

the target motion model which is made by the maneuver detector. Therefore making reliable
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and timely decisions is key to these approaches for satisfactory state estimation. Many such

algorithms and techniques have been developed to detect maneuvers [50].

Target maneuvers consist of maneuver onset and termination, which are observable as

changes appearing in the measurements. The problem of detecting maneuvers thus can be

classified as maneuver onset detection and termination detection. Onset detection algorithms

can be categorized based on which test they utilize: the chi-square based test and the

likelihood ratio based test. Techniques based on the chi-square test include measurement

residual based and input estimate based detectors. Those based on likelihood ratio tests

include the generalized likelihood ratio (GLR) based and marginalized likelihood ratio based

(MLR) detectors. These algorithms are widely used in MTT applications but there are no

comprehensive references available for performance comparison to our knowledge. Thus,

this chapter will first focus on the onset detection performance comparison for six existing

maneuvering detection algorithms in various scenarios:

• Measurement residual based chi-square detector (MR)

• Input estimate based chi-square detector (IE)

• Input estimate based Gaussian significance detector (IEG)

• Generalize likelihood ratio test detector (GLR)

• Marginalized likelihood ratio detector (MLR)

• Cumulative sum based detector (CUSUM)

Maneuver termination is in general much harder to detect than maneuver onset detection,
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but is also less important [50]. Up to date maneuver termination is rarely defined by any

rigorous problem formulation and few methods have been presented in the literature.

Besides aforementioned traditional detection algorithms that are based on batch pro-

cessing, another class of statistical tests that can be applied to maneuver detection is the

sequential tests for change point detection, as pointed out in [50, 82]. Sequential detection

procedures have been successfully applied to fault detection (e.g., [63, 93]) but not to target

maneuver detection, to our knowledge, except for a quickest detector in [97]. Some min-max

based solutions have been proposed in [75, 76, 77] with applications to navigation system

integrity monitoring. It optimizes the worst case situation with given decision error rates.

In this chapter, we consider detecting a target’s maneuver as a binary hypothesis testing

problem (H0: no maneuver; H1: with maneuver). Once a target starts maneuvering, it

should be detected as quickly as possible under certain constraints such as decision errors.

Two target maneuver onset detectors based on CUSUM and SSPRT tests are developed by

using a likelihood marginalization technique to cope with the difficulty that target maneuver

accelerations are unknown. The proposed approach essentially utilizes a priori information

about the maneuver accelerations in typical tracking engagements and thus allows improve-

ment of the detection performance, especially for normal accelerations, as compared with

two widely used maneuver detectors.

This chapter is organized as follows. In Section 2, the problem of maneuvering target

detection is formulated as binary composite hypothesis testing. Traditional maneuver detec-

tors are briefly discussed in Section 3 and are compared in Section 4 over various scenarios.

Motivation of sequential detection of target maneuvers is presented in Section 5. Sequential

procedures based on CUSUM and SSPRT are derived by means of likelihood marginalization

100



using two typical prior models of maneuvers in Section 6. The performance of the proposed

maneuver detectors is evaluated by simulations and compared with that of two widely used

detectors in Section 7. A summary is provided in Section 8.

6.2 Problem Formulation

The target-measurement model is given by

xk+1 = Fkxk + uk + wk (6.1)

zk = Hkxk + vk, k = 1, 2, . . . (6.2)

where xk is the target state, uk is the maneuver control input, and zk is the measurement.

wk ∼ N (0, Qk) and vk ∼ N (0, Rk) are independent process and measurement noises, re-

spectively, and the initial state x0 ∼ N (0, P0) is independent of wk and vk.

It is assumed that uk = 0 when the target is not maneuvering at time k and uk 6= 0 when

the target is maneuvering. If the target begins a maneuver at an unknown time n ≤ k then

〈uk〉 = {. . . , 0, . . . , 0, un, un+1, . . . , uk}

In general, it is not necessary for u to remain constant during the maneuver. The focus

of the maneuver onset detection is to decide on a maneuver and estimate the onset time n,

which can be formulated as a binary hypothesis testing problem:

H0 : um = 0 for m = 1, . . . , k

H1 :





um = 0 for m = 1, . . . , n− 1

um 6= 0 for m = n, . . . , k
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where u and n are unknown parameters, and n is referred to as the change point. This

is known as change point detection in the statistical literature. Since both u and n are

usually unknown in practice, hypothesis H1 is clearly composite. This makes the maneuver

detection difficult since in general there is no existing optimal non-Bayesian solution for

composite hypotheses testing problems.

There are two common approaches to solving this problem of unknown u. The first one is

based on the generalized maximum likelihood ratio (GLR) principle, where the unknown u

(treated as nonrandom) is replaced with the maximum likelihood estimate û (see [32, 50, 99]).

The second technique is based on Bayesian framework where u is treated as random, and

likelihood under H1 is determined by an appropriate marginalization—averaging out all pos-

sible values of the unknown u as a nuisance parameter. The a priori probability distribution

f(u) is needed for this technique. In target tracking applications, prior distributions of some

target maneuver motions are available [30], which are usually dependent on class or type of

target. In other cases, a non-informative prior may be assumed. In this chapter, we will

focus on the development of the sequential maneuver detection algorithms with the proper

utilization of prior information.
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6.3 Existing Algorithms for Maneuver Onset Detec-

tion

6.3.1 Measurement Residual Based Chi-Square Detector (MR)

The measurement residual based chi-square test is a very simple tool and has been used as a

standard component in many MTT applications [4, 8, 12, 20, 50]. Under the linear-Gaussian

assumption and H0, measurement residuals of a Kalman filter are zero mean, Gaussian and

white; i.e., z̃k ∼ N (0, Sk) where z̃k = zk − ẑk|k−1 and Sk = cov (z̃k). As such, εk = z̃T
k S

−1
k z̃k

is a χ2
nz

distributed variable with nz = dim (z̃k) . This property allows us to check if z̃k has

the assumed distribution under H0. This leads to a simple test for a maneuver:

εk > χ2
nz

(α) (6.3)

where 1−α is the confidence level of the test. This means H0 will be rejected with confidence

1− a if εk exceeds the corresponding threshold. In practice, the moving sum εsk for a sliding

window of length s is often used, as is the exponentially decaying average ερk,

εsk =
k∑

j=k−s+1

εk (6.4)

ερk =
k∑

j=1

ρk−jεj = ρερk−1 + εk 0 < ρ < 1 (6.5)

where εsk is chi-square distributed as εsk ∼ χ2
snz

, and ερk is only approximately distributed as

1
1+ρ

χ2
nρ

with nρ = nz
1+ρ
1−ρ

. Its effective window length is 1
1−ρ

. For example, ρ = 0.8 corresponds

to s = 5.
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6.3.2 Input Estimate Based Chi-Square Detector (IE)

The basic idea of the IE detector is to explicitly estimate the unknown input ûk and then

make a decision based on chi-square test of ûk. Due to its conceptual simplicity, an IE

detector is used in many algorithms in target tracking [8, 17, 39, 50, 94]. Theoretically under

H0 and the linear-Gaussian assumption, uk is zero and thus the linear unbiased estimate ûk is

zero mean and Gaussian ûk ∼ N (0,Σk) with Σk = cov (ûk). Similarly to the measurement

residual detector, εuk = û′kΣ
−1
k ûk is χ2

nu
distributed with nu = dim (ûk) , which provides a

justification for the chi-square test for maneuver onset detection. Clearly, the key to this

approach is obtaining accurate input estimates.

Under the linear-Gaussian assumption, u can be explicitly estimated using a least-squares

framework [8]. Assume u is constant in the interval [k − s, ..., k − 1], i.e., ui = u, i =

k − s, ...k − 1, . It can be shown that ûk follows from the linear model

z̃ = Ψu+ v (6.6)

where z̃ = [z̃k−s+1, ..., z̃k]
′,Ψ = [Ψk−s+1, ...,Ψk]

′,Ψi = H
i∑

j=k−s

[
i−j−1∏
m=0

Φi−m]G, Φi = F [I −

KiH]. Then the input estimate is given using least-squares batch estimation:

û = (Ψ′S−1Ψ)−1Ψ′S−1z̃ (6.7)

Σ = cov(û) = (Ψ′S−1Ψ)−1 (6.8)

S = diag(Si+1), Si+1 = cov(z̃i+1) (6.9)

The input estimate detector decides H1 if the test statistics εuk > λ, where λ is decided by

the confidence level.

If a maneuver is detected, the state estimates are corrected. The estimated input con-
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tributes to correct the predicted state as well as its associated covariance.

6.3.3 Input Estimate Based Gaussian Significance Detector (IEG)

This detector is also based on an input estimate, but uses a different test statistic [11, 13, 40].

A maneuver will be declared if a component ûi
k of ûk is statistically significant; that is,

max
i

(
|ûi

k|
Σ

1/2
i

)
> λ, i = 1, ..., nu (6.10)

where Σ
1/2
i = var(ûi

k), nu = dim(ûk), and λ is determined from the standard Gaussian

distribution. The absolute value of ûi
k should be used since we are testing the significance of

ûi
k rather than its direction.

The above detectors are used to detect H0 only, regardless of the maneuver model. For

example, input estimate based techniques directly estimate the unknown target maneuver

u from available measurements. The next three detectors are based on the likelihood ratio

test, which is a standard method of hypothesis testing. Let

Lk (u, n) = log
f(zk

s |H1(u, n))

f(zk
s |H0)

(6.11)

denote the log-likelihood ratio of two hypotheses, H0 and H1, based on a set of measurements

zk
s , {zk−s+1, ..., zk}, where f(zk

s |Hi) (i = 0, 1) is the likelihood of the hypothesis.

Since maneuvers are not known, which makes the likelihood ratio in (6.11) unknown,

maneuver onset detection becomes a composite hypothesis testing problem in this case. In

the literature, two types of detectors are available, differing in the assumption of unknown

u.
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6.3.4 Generalized Likelihood Ratio (GLR) Detector

The generalized likelihood ratio (GLR) detector is quite popular and has many forms. The

basic idea is to replace the unknown likelihood with the most probable likelihood. A full

implementation of GLR, requiring a linearly increasing number of parallel filters, is infeasible

for real MTT applications. Instead, a GLR algorithm based upon a finite window is widely

used [32, 90, 50, 99, 100]. Assuming that u is a constant in the interval [k − s, ..., k − 1],

(û, n̂) is used in test statistics given by

Lk(û, n̂) = log
f
(
z̃k

s |H1 (û, n̂)
)

f (z̃k
s |H0)

=
k∑

i=k−s+1

log
f(z̃i|H1(û, n̂))

f(z̃i|H0)
(6.12)

where the joint maximum (û, n̂) = arg max
u,n

f
(
z̃k

s |H1 (u, n)
)

can be found in two steps itera-

tively.

In the first step, û (n) is estimated. Under the linear-Gaussian assumption, the LS

estimate û is equivalent to the MLE, and thus û (n) = ûIE. In the second step, n̂ is computed

as the maneuver starting time that maximizes the likelihood ratio given û (n),

n̂ = arg max
n

k∑

i

log
f (z̃i|H1 (û (n) , n))

f (z̃i|H0)
, i = k − s+ 1, ..., k − 1. (6.13)

The GLR detector declares a maneuver if the test statistic Lk (û, n̂) exceeds a preset threshold

λ, where λ is determined by the desired decision error rates.

6.3.5 Marginalized Likelihood Ratio (MLR) Detector

The marginalized likelihood ratio test is a Bayesian approach which assumes u is a random

variable with a certain prior density. The MLR detector replaces the unknown likelihood
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with the average marginalized likelihood by averaging over all possible values of u :

Lk(n) = log
f
(
z̃k

i |H1 (n)
)

f
(
z̃k

i |H0

) = log
E
[
f
(
z̃k

i |H1 (u, n)
)]

f
(
z̃k

i |H0

) = log

∫
f
(
z̃k

i |H1 (u, n)
)
f (u) du

f
(
z̃k

i |H0

)

(6.14)

The MLR detector declares a maneuver if Lk(n) > 0. This test aims to obtain the marginal

ML estimate n that has the maximum likelihood for an average u, i.e., n̂ = arg max
n

Lk(n).

A major difficulty for the MLR detector is how to calculate the integral in (6.14). An

approximate MLR detector was recently proposed in [27], where a Kalman filter is used in

both the forward filtering and the backward smoothing steps required in likelihood estimation

for computing test statistics. A non-informative prior of the jump magnitude was used in this

approximate MLR detector. The paper [27] further illustrates how to correctly marginalize

noise covariances of the model being used, where it is considered a nuisance parameter.

6.3.6 CUSUM Based Detector (CUSUM)

For simple hypotheses, the CUSUM algorithm has been proven to minimize the worst mean

delay for detection when the mean time between false alarms goes to infinity [10]. However,

since maneuver u is unknown in our problem, then û can be used in the likelihood com-

putation (û can be obtained using the standard input estimation approach). The CUSUM

detector decides H1 if Lk − mink−s+1≤j≤k Lj ≥ λ, where λ is determined by the desired

decision error rates,

Lk =
k∑

i=k−s+1

log
f(z̃i|H1(û, n))

f(z̃i|H0)
(6.15)

n̂ = min{k : Lk − min
k−s+1≤j≤k

Lj ≥ λ} (6.16)
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Since û is used, it is no longer possible to justify the optimality of the CUSUM detector.

Other possible test statistics for the CUSUM test were discussed in the literature, including

a CUSUM maneuver detector in [28].

6.4 Comparison of Existing Detection Algorithms

Four scenarios were designed to highlight different aspects of the detection algorithms. The

first scenario (SM1) represents a relatively simple detection problem with a large sudden

maneuver. The second (SM2) introduces a much smaller acceleration making it more difficult

to detect. The third (CT) uses a mismatched maneuver model to evaluate the robustness

of the detection algorithms in the presence of structural mismatch. The fourth (RM) is a

random scenario, which allows an overall comparison of the algorithms under many different

maneuvering scenarios.

The MR, IEG, GLR and CUSUM represent the detectors discussed in (6.5), (6.10), (6.12)

and (6.15), respectively; the IE represents the detector defined in Sec. 6.3.2; and the MLR

represents an approximate two-filter MLR detector developed in [27]. Unless otherwise

stated, all simulation results are based on 100 Monte Carlo runs using false alarm rate

Pfa = 1% or 5%.

6.4.1 Target Motion Model

The target motion and its observation are described by (6.1)–(6.2) with Fk = FCV =

diag[F2, F2] or Fk=FCT , and Gk = GCV = diag[G2, G2], where wk and vk are independent
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and

E[wk] = 0, E[vk] = 0, cov(wk) = (0.008)2I, cov(vk) = (35)2I

F2 =




1 T

0 1


 G2 =



T 2/2

T


 Hk =




1 0 0 0

0 0 1 0




FCT =




1 sin ωkT
ωk

0 1−cos ωkT
ωk

0 cosωkT 0 − sinωkT

0 1−cos ωkT
ωk

1 sin ωkT
ωk

0 sinωkT 0 cosωkT




Initially the target moves at a nearly constant velocity with initial state x0 = [x, ẋ, y, ẏ]′ =

[0, 0, 0, 120m/s]′, where (x, y) are the Cartesian coordinates. Two-point differencing is used

to initialize the Kalman filter.

6.4.2 Four Scenarios

1. Simple Detection Scenario (SM1)

The target makes a maneuver during the period k = [20, 28] with a magnitude of uk =

[25, 4]′.

2. Difficult Detection Scenario (SM2)

The target makes a maneuver during k = [20, 25] with uk = [1, 1]′ and then increases to

uk = [2, 1.5]′ during k = [26, 35].

3. Constant–Turn Scenario (CT)

In practice it is also possible that an actual change takes place in the structure of the

motion model. This situation is explored by changing the state transition matrix from CV
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to CT for k = [20, 28] with a turn rate of ωk = 3o/ sec.

4. Random Maneuver Scenario (RM)

In order to test the detectors on multiple maneuver scenarios simultaneously, a random

scenario was developed, where 〈uk〉 is assumed to be a semi-Markov random sequence de-

scribed in polar coordinates as uk = ak∠θk with magnitude ak and angle θk. The scenario

always starts from a nonmaneuvering state (u0 = 0). The discrete sojourn time dn that 〈uk〉

stays in state un = an∠θn until it jumps to another state un+1 = an+1∠θn+1 (un 6= un+1) has

a binomial distribution with N = 50 and p = 0.5:

p{dn = x} =
(

N
x

)
px(1 − p)N−x, x = 0, 1, 2, ..., 50

The transition from un to un+1 is governed by

f (an+1|an) = 0.6δ (an+1) + 0.1δ (an+1 − 40) +
0.3

40
U (an+1; (0, 40))

f (θn+1|an = 0) =
1

2π
U (θn+1; (−π, π])

f (θn+1|an 6= 0) = N
(
θn+1; θn,

( π
12

)2
)

where δ is the delta function, U is the uniform distribution.

Performance Indices

The performance of the detectors is compared in terms of average onset detection delay

(n̂ − n), receiver operating characteristics (ROC) curves, and computational load. Since

maneuver onset time in the random scenarios is not predefined and thus is different for

each realization, it is meaningless when computing ROC curves to compare the detection

probability at a specific time point as other deterministic scenarios did.
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6.4.3 Simulation Results

Average Delay of Maneuver Onset Detection

Fig. 6.1 shows the average onset detection delay (n̂−n) under four scenarios for Pfa = 5%. It

was found that all detectors performed considerably worse on the SM2 scenario than on any

other scenarios due to the really small accelerations applied. It is immediately noticeable that

MR and MLR perform worse than all the other detectors in almost all scenarios regardless

of window size. It appears difficult to generalize the relation between detection delay and

window size from the plots. There is a small trend that a larger window size detects a

maneuver more slowly. Intuitively, a larger window requires more data to properly compute

the test statistic. Therefore it shows that larger windows do not necessarily confer better

performance in terms of onset detection delay.

In our specific scenarios, the IE detector had the smallest detection delay when s = 4

in SM1 and CT scenarios. Likewise for GLR in scenarios SM2 and RM. In all scenarios

considered here, the IE and GLR detectors ultimately performed better than the other

techniques. Also, it was noted that detectors using input estimation with a window length

of 4 to 6 generally gave a smaller detection delay.

Scenarios with Pfa = 1% were simulated and results are presented in Fig. 6.2. Longer

detection delays were observed for all the detectors under all the scenarios since a smaller

false alarm rate causes a larger detection threshold, and thus a lower probability of detection.
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Figure 6.1: Onset detection delay for Pfa=5%

ROC Curves

The ROC curves for SM1 at k = 20, ..., 23 with Pfa = 5% are overlaid in Fig. 6.3. The ROC

curves were generated by exhaustively computing the Pd at the time of interest for different

Pfa’s using 250 Monte Carlo runs, each running up to time k = 23. The window size was

chosen to be 5 for the detectors.

It is interesting to note that the MR detector performed comparably with the other four

detectors using input estimates at maneuver onset time (k = 20) and became worse as time

progressed. This verifies the contribution of input estimate on the detection performance

of the IE based and GLR detectors: the accuracy of the input estimate improves as more

maneuver data become available. At k = 21, GLR outperformed other detectors slightly for
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Figure 6.2: Onset detection delay for Pfa=1%

small Pfa (Pfa < 0.25); however, at this early time, no single detector was clearly superior.

At k = 22, the CUSUM and GLR had similar performance and outperformed the other

detectors.

At k = 23 each detector had a detection probability very close to 100%. This result is

consistent with the average onset detection delay results (less than 3 sec for all detectors

shown in Fig. 6.1). We noticed that MLR generally performed worse than other detectors

for all samples under consideration.

The ROC curves for each maneuver onset detector at k = 22, 24 for SM2 with Pfa = 5%

were overlaid in Fig. 6.4. It shows that for hard-to-detect maneuvers, MLR and MR detectors

performed more poorly than the other IE-based detectors.
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Figure 6.3: ROC curves for different detectors in SM1 (simple case)

Computational Complexity

The comparison of the computational complexity is shown in Fig. 6.5. Since scenario specifics

and false alarm rate are irrelevant to the computational time required for detections, only

one plot was shown and the results could be applied to all scenarios and false alarm rates.

As expected, the MR detector is least computationally intensive due to its simplicity.

The MLR detector has the heaviest computational load due to the forward-backward filtering

required at each time point [27]. The IE and IEG detectors required approximately the same

processing time, as did the GLR and CUSUM detectors. This is because the detectors in
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Figure 6.4: ROC curves for different detectors in SM2 (hard case)

each pair have similar decision functions, while the majority of the processing required goes

into estimating the input. The processing time of all the detectors except MR increases as

the window length s increases.

6.4.4 Discussions of Existing Maneuver Detection Algorithms

In general, the IE, IEG, GLR and CUSUM detectors outperform the MR and MLR detec-

tors. IE, IEG, GLR, CUSUM have comparable performance, which is, however, scenario

dependent.

As pointed out in [50], even though IE and GLR focus on estimation and detection respec-

tively, the input-estimation component is essentially the same since ML and LS estimators

are the same under the linear-Gaussian assumption. For this reason, they perform about

the same, since only decision functions are different.

The MLR detector performed poorly, which might be due to the fact that the scenarios

used did not exploit the strength of the MLR detector. With a better prior knowledge or

unknown noise covariance, the marginalization technique for the MLR detector may improve

115



2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
CPU Processing Time Per Iteration

Window length (s)

C
P

U
 P

ro
ce

ss
in

g 
T

im
e 

(s
ec

.)

MR
IE
IEG
CUSUM
GLR
MLR

Figure 6.5: Comparison of CPU time

the performance. Furthermore, there is no need to be limited to the automatic threshold

produced by the MLR, since the threshold was specified in the detection problem based on

the desired false alarm rates.

It can be seen that onset detection delay is not strongly related to window length for all

the detectors under consideration. As we have previously noted, if the window is too small,

less data will cause a poor input estimate, resulting in a poor decision. Conversely, if the

window length is longer, û is more accurate, resulting in a better decision. However, this

increases the detection delay until enough data points have filled the sliding window. The

best choice of the window length is no doubt scenario dependent.

Besides deterministic scenarios, a random scenario is important in order to verify that

a particular scenario under consideration does not unfairly highlight a specific artifact of

the detection algorithm that may or may not actually be important in real-life detection

performance.
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6.5 Motivation of Sequential Detection of Target Ma-

neuvers

Based on our study, we feel that the existing detectors described above based on simplistic

models are non-optimal and ad hoc. All detectors require some batch (sliding window) pro-

cessing and are computationally demanding, especially for input estimate and likelihood ratio

based tests. In addition, no detectors utilize any prior information of target motions, which

is available in some cases. These limitations motivate us to investigate sequential processing

of measurements, a technique which has been widely studied in change point detection. A

sequential test involves a stopping rule and a final decision to achieve a trade-off between

sample size and decision accuracy. For maneuver detection, sequential testing procedures are

actually preferable because measurements are available sequentially. Moreover, a sequential

test does not need to determine the sample size in advance, unlike nonsequential-based tests.

We consider detecting a target’s maneuver as a binary hypothesis testing problem. Once

a target starts maneuvering, it should be detected as quickly as possible under certain con-

straints such as the rates of false alarms and missed detections. The Wald’s SPRT is well

known for the problem of binary simple hypothesis testing. It makes the decision by com-

paring the likelihood ratio between hypotheses (H0, H1) with two thresholds. The SPRT

is optimal in the sense that it makes the quickest detection under both hypotheses (H0,

H1) given any decision error rates. However, the standard SPRT does not fit the sequen-

tial change point detection since it assume all data relates to one of the two hypotheses,

i.e., it simply decides that there is a maneuver or that there is no maneuver. The CUSUM

and SSPRT are very popular tests for sequential change point detection based on different
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assumptions. Unfortunately neither test can be blindly used for the detection of onset ma-

neuvers since they are optimal only for simple hypothesis, which is not the case for maneuver

detection where maneuver magnitudes are usually unknown. In the following sections, we

will modify and evaluate them for the problem of maneuver onset detection.

6.6 Sequential Maneuver Detection Algorithm Devel-

opment

6.6.1 Test Statistics of Two Sequential Detection Algorithms

In this section, test statistics are developed for the CUSUM and SSPRT detectors based on

the marginalization technique and appropriate prior PDFs of the maneuvers of interest.

Denote by z̃k and Sk the measurement residual and its covariance, provided at time k by

a nonmaneuvering Kalman filter for the system (6.1)-(6.2). As shown in Secs. 5.3 and 5.4,

the test statistics of the CUSUM detector is

Lk = max

{
Lk−1 + log

f (z̃k|H1, z
κ−1)

f (z̃k|H0, zκ−1)
, 0

}
, L0 = 0

and the test statistics of the SSPRT detector is

Pk
4
=
p1

k

p0
k

=
f(z̃k|H1, z

k−1)

f(z̃k|H0, zk−1)

Pk−1 + π

1 − π
, P0

4
=
p1

0

p0
0

Clearly, the key to computing test statistics of these detectors is to obtain marginal likelihood

functions f
(
z̃k|Hi, z

k−1
)

under each hypothesis (i = 0, 1).

The marginal likelihood ofH0 is then determined as (under the linear Gaussian assumptions)

f
(
z̃k|H0, z

k−1
)

= N (z̃k; 0, Sk) =
1√

|2πSk|
e−

1
2
z̃
′

kS−1
k z̃k (6.17)
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and the marginal likelihood of H1 can be shown to be

f
(
z̃k|H1, z

k−1
)

= N (z̃k;HGu, Sk) =
1√

|2πSk|
e−

1
2
(z̃k−HGu)′S−1

k (z̃k−HGu) (6.18)

where the unknown u makes f
(
z̃k|H1, z

k−1
)

unknown.

As mentioned in Sec. 6.3.3, there are two common approaches to solving this problem.

The window-based GLR procedure is still limited with the difficulty of choosing the window

size and the threshold. In target tracking applications, prior distributions of some target

maneuver motions are available. Thus, a Bayesian-based approach can be applied, where u

is treated as random and f
(
z̃k|H1, z

k−1
)

is determined by an appropriate marginalization—

averaging out all possible values of the unknown u as a nuisance parameter [28]. Specifically,

f
(
z̃k|H1, z

k−1
)

= E
[
f
(
z̃k|H1(u), z

k−1
)]

=

∫
f
(
z̃k|H1 (u) , zk−1

)
f (u) du (6.19)

where f (u) is the a priori probability density function (PDF) of u.

Clearly, this approach provides a good means of utilizing the a priori information if it

is available. A major difficulty for its application is how to calculate the integral in (6.19).

If prior f (u) is Gaussian or uniformly distributed, an exact formula can be obtained to

calculate f
(
z̃k|H1, z

k−1
)
.

Lemma 1. If f (u) is a Gaussian distribution f(u) = N (u; ū,Λ), marginal likelihood

f(z̃k|H1, z
k−1) is determined to be (see Appendix D)

f(z̃k|H1, z
k−1) =

∫
N (z̃k;HGu, Sk)N (u; ū,Λ)du

= N (z̃k;HGū, Sk +HGΛ(HG)′) (6.20)
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Lemma 2. If f (u) is a uniform distribution f(u) = U(u;−umax, umax), marginal likeli-

hood f(z̃k|H1, z
k−1) is determined as (see Appendix E)

f
(
z̃k|H1, z

k−1
)

=

∫
N (z̃k;HGu, Sk) U(u;−umax, umax)du

=
1

4umax |HG|
[erf(

1√
2S

(HGumax − z̃k)) + erf(
1√
2S

(HGumax + z̃k))]

(6.21)

If f (u) is not Gaussian or uniformly distributed, it is rarely possible to analytically

calculate the integral in (6.19). To overcome this difficulty, we propose a fairly general way

to approximately evaluate this expectation integral based on a Gaussian sum approximation

of the prior PDFs. That is, we approximate

f(u) ≈
N∑

j=1

λjN (u; ūj,Λj) (6.22)

where N is the number of Gaussian components, λj are their weights (0 < λj < 1,
∑N

i=1 λj =

1) and ūj, Λj are their means and variances, respectively. The determination of these param-

eters is a part of the design and does not require online approximation. This approximation

can be done by using standard Matlab functions for nonlinear multidimensional optimization

to obtain a locally best fit. Other expectation maximization (EM) based mixture estimation

techniques can also be used. Higher accuracy can be obtained with more components of the

sum.

In general, under some regularity conditions, a non-Gaussian density function can be ap-

proximated to any desired accuracy by a weighted sum of Gaussians provided the number of

components is sufficiently large [92]. This makes the proposed approach generally applicable

when a marginalization is hard to obtain in exact analytical form.
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Lemma 3. If f1 (u) is a Gaussian-sum distribution f(u) =
∑N

j=1 λjN (u; ūj,Λj), marginal

likelihood f(z̃k|H1, z
k−1) is determined as

f
(
z̃k|H1, z

k−1
)

=
N∑

i=1

λiIi(z̃k) (6.23)

where Ii(z̃k) is explicitly determined by (6.20):

Ii(z̃k) =

∫
N (z̃k;HGu, Sk)N (u; ūi,Λi)du = N (z̃k;HGūi, Sk +HGΛi(HG)′) (6.24)

Based on (6.17) and (6.18), test statistics of CUSUM and SSPRT detectors can be obtained.

6.6.2 Test Statistics of Sequential Detection for a Typical 2D Tar-

get

Next test statistics of maneuver detection algorithms are developed specifically for a typical

2D target with curvilinear motions. This curvilinear motion model accounts for possibly

nonzero normal (cross-track) and tangential (along-track) target maneuver accelerations si-

multaneously.

Maneuver Model

A 2D target maneuver motion can be described as

xk+1 = Fxk + Γ(xk)ak + wk (6.25)

where the state in the Cartesian coordinates is x = [x, ẋ, y, ẏ]′, and the acceleration is a =

[at, an]′ with decomposed tangential and normal components at and an, respectively. The

system matrices are
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F = diag {F2, F2} , Γ(x) = GΥ(x), G = diag {G2, G2}

F2 =




1 T

0 1


 , G2 =




T 2/2

T


 ,Υ(x) =




c(x) −s(x)

s(x) c(x)




where Υ(x) is the rotation matrix with

c(x) = cosφ =
ẋ√

ẋ2 + ẏ2
, s(x) = sinφ =

ẏ√
ẋ2 + ẏ2

that maps ak to the Cartesian coordinates, and φ = arctan(ẋ/ẏ) is the target heading angle.

A target maneuver is described in the model through the control input uk = Γ(xk)ak. Clearly

the system mode described in (6.25) is a nonlinear model due to the dependency of ak on

xk. But it is linear given xk. This makes it possible for us to design the filter within a linear

framework.

Acceleration Models

Different models of the acceleration ak can be used [51] depending on the maneuver capabil-

ities of the targets of interest in the tracking application. To be more specific. we develop

maneuver detectors for manned maneuvering aircraft in mind.

The normal acceleration is induced by the lift forces and is usually the dominant one

during the maneuver. It was proposed in [30] that the normal acceleration an(t) be modeled

as an asymmetric function an(t) = α+βeγb(t) where α, β, γ are design parameters depending

on the particular target type and b(t) is a zero-mean first-order Gauss-Markov process. The

marginal probability density function, essential for further development of the maneuver

detector, can be easily derived to be

f(an) =
1√

2π |γ(an − α)|
e
− 1

2γ2 (ln an−α
β

)2
(6.26)
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Figure 6.6: Asymmetric PDFs of normal acceleration.

For three typical choices of α, β, γ, this highly asymmetrical density is shown in Fig. 6.6,

including one [(α, β, γ) = (8,−4, 0.5)] that is considered typical of modern piloted aircraft

in evasive maneuvers. This model is more accurate than the usual symmetrical models (e.g.,

the Singer model) at the cost of choosing these parameters, which requires knowledge of the

target type, obtained either a priori or a posteriori (e.g., with the help of an image-sensor-

aided target classification) [51].

The tangential acceleration is determined by the thrust-minus-drag force. It is generally

smaller in magnitude and shorter than the normal acceleration forse. This provides us a

guideline for scenario designs. Various random process models for its magnitude are discussed

and analyzed in detail in [51]. Most important for our maneuver detection approach is the

choice of the marginal PDF of the process. Purely a priori symmetrical models (such as

the ternary-uniform density in the Singer model) or a posteriori, adaptive (such as the

conditional Rayleigh density in the mean-adaptive “current” model) are possible candidates.
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Here we simply use a Gaussian marginal PDF model

f(at) = N (at; āt, σ
2
t ) ,

1√
2πσt

e
− (at−āt)

2

2σ2
t (6.27)

with parameters āt, σ
2
t either specified a priori (e.g., with some nominal values for the targets

of interest) or determined a posteriori through filter-based estimates āt = âtk|k−1
, σ2

t = σ̂2
tk|k−1

.

Both cases were investigated.

Under the assumption of independence between tangential and normal maneuvers, the

PDF of the total acceleration vector is f(a) = f(at, an) = f(at)f(an). For particular im-

plementation of maneuver detectors in the sequel it is assumed also that direct position

measurements of the target are available, i.e., H =diag

{[
1 0

]
,

[
1 0

]}
in (6.2).

Test Statistics

The key to computing test statistics of the two detectors is to obtain likelihood functions

f(z̃k|Hi, z
k−1) (i = 0, 1). The marginal likelihood of H0 is available in (6.17).

f(z̃k|H0, z
k−1) = N (z̃k; 0, Sk) =

1

|2πSk|
1
2

e−
1
2
z̃k

′S−1
k z̃k

To obtain f(z̃k|H1, z
k−1), we implement the marginalization approach (6.19) with the ac-

celeration PDF models (6.26)-(6.27). However, (6.25) is a nonlinear system. In order to facil-

itate the calculation of test statistics under H1, we write f(z̃k|H1, z
k−1) = f(z̃k|H1, x̂k−1|k−1)

to make the nonlinear maneuver model (under H1) contionally linear again. Then, according
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to (6.19) and (6.25), we have1

f(z̃|H1, x̂) = E[f(z̃|H1, x̂, a)] =

∫
N (z̃;HΓ(x̂)a, S)f(a)da

=

∫ ∫
N (z̃;HΓ(x̂)[at, an], S)f(at)f(an)datdan (6.28)

where f(at) and f(an) are given by (6.26) and (6.27), respectively.

Due to the complex prior density f(an), which makes the integral in (6.28) no analytical

solution available, we employ the Gaussian sum approximation techniques

f(an) ≈
N∑

i=1

λiN (an; ā(i)
n , σ

(i)2
n ) (6.29)

For our implementation of maneuver detection we obtained a fairly accurate approximation

of the asymmetric f(an) of (6.26) with a sum of only two components, which is illustrated

in Fig. 6.7. Note that the Gaussian sum approximation technique can be also applied to

f(at) if a non-Gaussian model is adopted. As such,

f(a) =
N∑

i=1

λiN (a; ā(i),Λ(i))

where ā(i) = [āt, ā
(i)
n ]′ and Λ(i) = diag{σ2

t , σ
(i)2
n }. Then evaluating the likelihood (6.28) reduces

to

f(z̃|H1, x̂) =
N∑

i=1

λiIi(z̃; x̂) (6.30)

where according to (6.23),

Ii(z̃; x̂) =

∫ ∫
N (z̃;HΓ(x̂)a, S)N (a; ā(i),Λ(i))da (6.31)

= N (z̃;HΓ(x̂)ā(i), S +HΓ(x̂)Λ(i)(HΓ(x̂))′) (6.32)

1We drop the time index to simplify the notation.
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Figure 6.7: Gaussian sum approximation of the asymmetric PDF

6.7 Performance Evaluation

Performance of the proposed algorithms was evaluated through simulations. Three scenarios

were designed to compare different aspects of the detection algorithms using ground truth

trajectories generated by a curvilinear-motion model. All results are averages over 100 Monte

Carlo runs.

6.7.1 Ground-Truth Model

The standard 2D curvilinear-motion model

ẋ(t) = v(t) cosφ(t) + wx(t) (6.33)

ẏ(t) = v(t) sinφ(t) + wy(t) (6.34)

v̇(t) = at(t) + wv(t) (6.35)

φ̇(t) = an(t)/v(t) + wφ(t) (6.36)
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was used to generate the ground truth trajectories, where (x, y), v, φ denote the target

position, speed and heading. This model is fairly general since it accounts for along- and

cross-track accelerations.

The initial states used for each scenario were chosen to be

xi
0 ∼ N (x̄0,σ

2
x0

) x̄0 = 120km, σx0 = 5km

yi
0 ∼ N (ȳ0,σ

2
y0

) ȳ0 = 150km, σy0 = 5km

vi
0 ∼ N (v̄0,σ

2
v0

) v̄0 = 300m/s, σv0 = 5m/s

φi
0 ∼ N (φ̄0,σ

2
φ0

) φ̄0 = 30 deg , σφ0 = 1 deg

with

σwx = 5m,σwy = 5m,σwv = 1m/s, σwφ
= 0.01 deg

The scenarios included both deterministic and random ones. The target track length

starts from k = 30 and continues for another 70sec. The sampling time T = 1s.

(DN) Deterministic normal acceleration scenario. The target makes a normal maneuver

during the period k = [80, 100] with a magnitude of 20 m/s2.

(DT) Deterministic tangential acceleration scenario. The target makes a tangential maneu-

ver during the period k = [80, 100] with a magnitude of 20 m/s2.

(RN) Random normal acceleration scenario. In order to test detectors on multiple ma-

neuvering scenarios simultaneously, a random maneuver scenario was developed, where the

magnitude of the normal acceleration was fixed during k = [80, 100] but chosen randomly

over runs: an ∼ f(an) as given by (6.26) with (α, β, γ) = (4,−2, 0.5).
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6.7.2 Simulation Results

There were some parameters to be designed. The threshold for each detector was determined

by simulations with given false alarm rate Pfa = 1%. Two-point differencing was used to

initialize the Kalman filter. The corresponding noise covariances were Q = (0.5)2I and

R = (50)2I.

For the SSPRT detector, the prior probability for H1 being true was 0.01 and transition

probability π from H0 to H1 was 0.005. In addition, prior densities for testing normal

accelerations were used by the CUSUM and SSPRT detectors: f(at) = N (at; 0, (0.5g)
2)

and f(an) ≈ 0.44N (an; 0.65g, (1.3g)2) + 0.56N (an; 2.2g,(0.6g)2) which were determined by

a local fit. Such design is obviously better to detect normal maneuvers since prior f(at)

will not affect normal accelerations much. It is possible that we could design a model

with prior densities particularly good for tangential accelerations. In this simulation, we

design f(at) = N (at; 0, (3.5g)
2) and f(an) with zero mean and very small variance to test

tangential accelerations. We could have a different design if we have better knowledge of

prior information of tangential accelerations. For targets with both maneuvers, we consider

combinations of two or more models, which is under investigation [89].

The CUSUM and SSPRT represent the two proposed detectors. The MR represents a

detector based on measurement residuals. The IE represents one based on input estimation

technique. Details of MR and IE can be found in Sec 6.3. The size of data window used in

IE and MR detectors was 5. The performance of these four detectors was compared in terms

of average onset detection delay (n̂− n), ROC curves and computational load.
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Average Delay of Maneuver Onset Detection

The average onset detection delay under the four scenarios is shown in Table 6.1. It is

clear that SSPRT detectors have smaller detection delay in both scenarios with normal

acceleration as well as tangential acceleration. For the cases of tangential acceleration, the

performance of the CUSUM and SSPRT detectors could be improved if we have the proper

prior knowledge for the tangential acceleration.

Table 6.1: Average delay of maneuver onset detection

n̂− n DN RN DT

CUSUM 5.33 5.57 5.75

SSPRT 4.68 4.69 5.10

MR 5.19 5.12 5.15

IE 5.04 5.03 5.11

Furthermore, the SSPRT detector also provides the posterior probability of a maneuver.

The posterior hypothesis probability for scenario DN is shown in Fig. 6.8. We note that pos-

terior probability of H1 quickly increases after the onset time. Similar results were observed

for scenario DT.

ROC Curves

The ROC curves for deterministic normal acceleration scenarios were generated by computing

the Pd at the time of interest with different Pfa using 100 Monte Carlo runs. The ROC

curves for each maneuver onset detector at k = 83 and k = 84 for scenario DN are given
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Figure 6.8: Posterior probability: normal accelerations change at k = 80

in Fig. 6.9 and Fig. 6.10, respectively. It is apparent from the curves that SSPRT has the

best performance for the tested scenarios. The CUSUM detector outperforms IE and MR

detectors for scenario DN with Pfa > 0.2. Note that IE performed better as time goes on due

to the improved accuracy of the input estimate as more maneuver data become available.

For ROC curve at k = 83 is shown in Fig. 6.11 for the scenario DT. The SSPRT and IE have

compatible performance with 0.1 < Pfa < 0.2, and the SSPRT outperforms other detectors

with Pfa > 0.2. The ROC curves verify what we observed for maneuver onset detection

delay.

Table 6.2: Computational complexity of different algorithms

CPU(s) MR CUSUM SSPRT IE

1 2.97 3.27 7.61
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Computational Complexity

The computational complexities of different algorithms were compared by using the ratio

of the CPU processing time per iteration in Table 6.2. All other algorithms (CUSUM and

SSPRT) were compared with the MR detector, which is the simplest. It shows that the

proposed detection algorithms have a much less computational load than the IE-based algo-

rithms.
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6.8 Summary

In this chapter, existing target maneuver detection algorithms are first compared in a number

of typical maneuvering target tracking scenarios. Then two sequential detectors for maneuver

onset were developed and evaluated over various scenarios designed for different aspects of

maneuvers. The proposed detection algorithms are based on sequential testing procedures,

CUSUM and SSPRT, and use properly marginalized likelihoods to cope with the unknown

magnitude of maneuver accelerations – a key difficulty in maneuver onset detection. Both

the CUSUM and SSPRT detection algorithms developed are explicit, recursive and general.

Utilizing prior distributions of the accelerations is essential in the application of the proposed

scheme. In particular the detection procedure is developed for a typical 2D target with

curvilinear motions, which uses conditioning to make the system model under H1 within

a linear framework. Performance evaluation and comparison have demonstrated that the

proposed detectors are more effective than two popular detectors when appropriate prior

distributions of accelerations are known.
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As we realize, under a similar mathematical problem formulation, there exists a duality

between actuator failure detection and target maneuver detection [31]. This motivates us

to cross-apply the proposed sequential testing procedures of maneuver detection for fault

detection. Fault detection has been considered as a change-point detection problem in the

statistical literature. Some sequential tests have been recently developed for fault detection in

dynamic systems [63, 76, 93]. In [88], two sequential detectors for actuator failure detection

in a Boeing 747 aircraft have been developed in a general setting and evaluated through

modeled data as well as real data. The proposed detection algorithms are based on the

proposed sequential testing procedures (CUSUM and SSPRT) in Sec. 6.6 with the use of

properly marginalized likelihoods to cope with the unknown magnitude of failures – a major

difficulty in fault detection. Performance evaluation and comparison have demonstrated that

the proposed detectors are more cost effective than other popular detectors when appropriate

prior distributions of failures are known.
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Chapter 7

Conclusion and Future Research

The main topics of this dissertation can be divided into two areas: including hybrid estima-

tion and sequential change point detection with applications. For hybrid estimation, the mul-

tiple model approach, particularly variable-structure MM estimation, is studied theoretically

as well as practically. Efficient and generally applicable VSMM algorithms are developed and

successfully applied to fault detection and diagnosis as well as target tracking. Related work

has been published in [85, 86, 54, 53, 102, 87, 101]. Based on our preliminary results, the

multiple model method and especially VSMM are promising techniques to solve challenging

problems such as hybrid estimation. The dissertation formulates target maneuver onset de-

tection as a change point detection problem. Based on advanced sequential statistical tests,

explicit and general detectors are developed and evaluated via various tracking scenarios.

The algorithms can be applied to other applications under similar formulations such as fault

detection. Related work has been published in [82, 84, 88, 89].

My current research will naturally lead to further exploration of adaptive estimation and

change detection. This is a multi-discipline research field with a broad range of applications
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including air traffic control system, fault detection, industrial process control, communica-

tions, medical informatics, robotic systems, etc. There are still many challenging problems

open in the area of the multiple model estimations, such as model-set design, smart mode

generation, and cooperation strategy design. Incipient failure detection is also an interesting

topics for fault detection, which is a key issue for automated system maintenance since early

warning is important and required to avoid more serious consequences.

Currently I am working on target maneuver detection with range rate measurements,

a continuation of my previous work. Due to the high nonlinearity between range rate and

target states, it is not easy to implement within a conventional Kalman filtering framework,

which is simple and available for a set of existing target maneuver detectors. Thus we propose

a simple measurement conversion technique to treat range rate as a linear measurement in

Cartesian coordinates so that a standard Kalman filter can be used for target tracking. Some

issues need further study including tracker design based on the proposed detectors, the gain

of using range rate for detection and estimation, and development of new statistics based on

range rate measurements. Initial research result was published in [83].

Fault detection and estimation actually involve joint detection and estimation since the

objective is to not only detect the presence of fault and identify its type but also estimate its

severity and state. The existing solutions to this problem are mainly decision-based where

the estimation performance depends on the detector. My future research work is to consider

the framework of joint decision and estimation, to propose solutions, and to implement

them for real problems. This structure has very promising potentials to applications in fault

detection and diagnosis, and ground target tracking.

I am also interested in the research topic of sensor fusion. An efficient multi-sensor fusion
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procedure could efficiently extract true information, which is hidden in distorted multi-sensor

data. Information from multiple sensors can reduce overall uncertainty and thus increase

the accuracy of the measurement, which finally improves the detection performance. Sensor

fusion has great potential for applications in system identification, pattern recognition, fault

detection, image processing, and target classification and tracking.
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Appendix A

Convex Combination of Estimates:

EMA approach

Here we explain and justify the proposed EMA approach, as we did in [53]. Denote by x̂1

and x̂2 any two distinct unbiased estimators of x. Define a new estimator as a convex

combination of x̂1 and x̂2:

x̂ = α1x̂1 + α2x̂2

where α1 + α2 = 1, 0 < αi < 1. We would like to determine the condition under which x̂ is

better than x̂1. From

x̃ = x− x̂ = α1x̃1 + α2x̃2, x̃i = x− x̂i

it follows that the mean-square error (mse) of x̂ is

E = E[x̃′x̃] = E[(α1x̃1 + α2x̃2)
′(α1x̃1 + α2x̃2)]

= α2
1E[x̃′1x̃1] + α2

2E[x̃′2x̃2] + 2α1α2E[x̃′1x̃2]
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Since x̂1 and x̂2 are unbiased, if their estimation errors are uncorrelated (i.e., orthogonal),

we have

E = α2
1E1 + α2

2E2

where Ei is the mse of x̂i. Since α1 = 1 − α2, we have E < E1 if and only if

(1 − 2α2 + α2
2)E1 + α2

2E2 < E1

or equivalently

E2 <
2 − α2

α2

E1

That is, the convex combination x̂ is better than x̂1 if and only if the mse(x̂2) <
2−α2

α2
mse(x̂1)

or equivalently

α2 <
2E1

E1 + E2

This inequality is always satisfied if E2 < E1, that is, if x̂2 is better than x̂1, as illustrated

in Figure A.1(a). Even if x̂2 is worse than x̂1, this inequality shows that x̂ is still better than

x̂1 provided α2 satisfies the above inequality, as illustrated in Figure A.1(b). In Figure A.1,

the distance measure is the standard error (square-root of mse) ||x̃|| = (E[x̃′x̃])1/2 = (E)1/2;

the line that connects x̃1 and x̃2 represents all possible points of x̃ and its solid line portion

represents the points at which x̂ is better than x̂1.

The above result relies on the assumption that x̃1 and x̃2 are orthogonal. As illustrated

in Figures A.1(c) and A.1(d), if they are not orthogonal, it is possible for x̂ to be better than

x̂1 (i.e., x̂ with the optimal α1 and α2 is better than x̂1) if and only if

E[x̃′1x̃2] < E[x̃′1x̃1]
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Figure A.1: Conditions for Estimate Improvement

that is, the projection of x̃2 on x̃1 either has a smaller magnitude than x̃1, if they are in the

same direction, or has a direction that is opposite to x̃1. In other words, use of x̂2 may still

be beneficial even if x̂2 is worse than x̂1 and their estimation errors are correlated. In fact,

it can be easily shown that the optimal α2 = E1

E1+E2
is the bisecting point of the solid line

portion (Figure A.1) at which x̃ is orthogonal to x̃2 − x̃1.
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Appendix B

MLE of α for Sensor Partial Failures

The log-marginal likelihood function is

ln f(zk|zk−1, ak)

= −1

2
ln(|2πSk|) −

1

2
( zk −Hkx̂k|k−1

)′S−1
k (zk −Hkx̂k|k−1

)

Taking the derivative and setting it to zero with z̃k|k−1 = zk − Hkx̂k|k−1
, Ak = S−1

k , we

have

d ln f(zk|zk, αk)

dαk

= 0 =⇒
dz̃′k|k−1Akz̃k|k−1

dαk

= 0 (B.1)

Since

dz̃′k|k−1Akz̃k|k−1

dαk

= z̃
′

k|k−1(A
′

k + Ak)
dz̃k|k−1

dαk

dz̃k|k−1

dαk

=
d( zk −Hkx̂k|k−1

)

dαk

= −(
dHk

dαk

)x̂
k|k−1

(B.1) becomes

z̃′k|k−1(A
′

k + Ak)(
dHk

dαk

)x̂
k|k−1

= 0
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Since dHk

dαk
is easy to obtain by the formula of matrix derivation with respect to a scalar,

and other terms are given by the Kalman filter directly, the MLE of α can be obtained. The

actuator failure effectiveness factor can be estimated similarly.
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Appendix C

The PDF of Normal Acceleration

It is well known that the PDF fY (y) of Y = g(x) can be determined from the PDF f(x) of

X by

fY (y) =
∑

i

fX(xi)

|g′(xi)|

where g
′
(x) = d

dx
g(x) and xi’s are the real roots if the equation y = g(x) in terms of

y: y = g(xi). Let g(b) = α + βeγb, then g′(b) = βγeγb. The root of an = α + βeγb is

b1 = 1
γ

log an−α
β

. Thus we have

f (an) =
f(b1)

|g′(b1)|
=

N ( 1
γ

log an−α
β

; 0, 1)

|γ(an − α)|

=
1√

2π |γ(an − α)|
e
− 1

2γ2 (log an−α
β

)2
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Appendix D

Marginal Likelihood Function under

H 1 with Gaussian Prior

If the a priori probability density function f (u) is Gaussian distributed,

f(u) = N (u; ū,Λ)

then

f
(
z̃k|H1, z

k−1
)

=

∫
f
(
z̃|H1 (u) , zk−1

)
f (u) du

=

∫
N (z̃;HGu, S)N (u; ū,Λ)du

=

∫
1√
|2πS|

e−
1
2
(z̃k−HGu)′S−1

k (z̃−HGu) 1√
|2πΛ|

e−
1
2
(u−ū)′Λ−1(u−ū)du
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We drop the time index for simplicity. Let m = HGu, Λm = HGΛ(HG)′, and m̄ = HGū.

Then dm = |HG| du, and

f
(
z̃k|H1, z

k−1
)

=
1√

|(2π)2SΛm|

∫
e−

1
2
[(z̃−ū)′S−1(z̃−ū)+(m−m̄)′Λ−1

m (m−m̄)]dm

=
1√

|(2π)2SΛm|

∫
e−

1
2
Ddm

Define

C1 , S−1 + Λ−1
m , C2 , S−1z̃ + Λ−1

m m̄

c3 , z̃′S−1z̃ + m̄′Λ−1
m m̄, D , m′C1m− 2m′C2 + c3

and let t = C
1/2
1 (m− C−1

1 C2), dt =
∣∣∣C1/2

1

∣∣∣ dm. Then

f
(
z̃k|H1, z

k−1
)

=
e−

1
2
(c3−C′

2C−1
1 C2)

√
|2πSC1Λm|

1√
2π

∫
e−

1
2
t′tdt

=
e−

1
2
(c3−C′

2C−1
1 C2)

√
|2πSC1Λm|

It can be directly verified that

c3 − C ′
2C

−1
1 C2 = (z̃ − m̄)′(S + Λm)−1(z̃ − m̄)

SC1Λm = S + Λm

Thus

f
(
z̃k|H1, z

k−1
)

=
1√

|2πSC1Λm|
e−

1
2
(c3−C′

2C−1
1 C2)

= N (m̄, S + Λm)
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Appendix E

Marginal Likelihood Function under

H 1 with Uniform Prior

If the a priori probability density function f (u) is uniformly distributed,

f(u) = U(u;−umax, umax)

we have

f
(
z̃k|H1, z

k−1
)

=

∫
f
(
z̃|H1 (u) , zk−1

)
f (u) du

=

∫
N (z̃k;HGu, Sk) U(u;−umax, umax)du

=

∫ umax

−umax

1√
|2πS|

e−
1
2
(z̃k−HGu)′S−1

k (z̃k−HGu) 1

2umax

du

Let m = HGu, and drop the time index for simplicity, then

f
(
z̃k|H1, z

k−1
)

=
1

2umax |HG|

∫ HGumax

−HGumax

1√
|2πS|

e−
1
2
(z̃−m)′S−1(z̃−m)dm
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Let C = 1√
|2S|

(m− z̃), then dC = 1√
|2S|

dm, thus

f
(
z̃k|H1, z

k−1
)

=
1

2umax |HG|

∫ 1√
|2S|

(HGumax−z̃)

1√
|2S|

(HGumax−z̃)

1√
|π|
e−C′CdC

=
1

4umax |HG|
[erf(

1√
|2S|

(HGumax − z̃)) + erf(
1√
|2S|

(HGumax + z̃))]

where the erf function is defined as

erf(x) =
2√
π

∫ x

0

e−tdt
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