1,169 research outputs found

    Resolution enhancement of video sequences by using discrete wavelet transform and illumination compensation

    Get PDF
    This research paper proposes a new technique for video resolution enhancement that employees an illumination compensation procedure before the registration process. After the illumination compensation process, the respective frames are registered using the Irani and Peleg technique. In parallel, the corresponding frame is decomposed into high-frequency (low-high, high-low, and high-high) and low-frequency (low-low) subbands using discrete wavelet transform (DWT). The high-frequency subbands are superresolved using bicubic interpolation. Afterwards, the interpolated high-frequency subbands and superresolved low-frequency subband obtained by registration are used to construct the high-resolution frame using inverse DWT. The superiority of the proposed resolution enhancement method over well-known video superresolution techniques is shown with quantitative experimental results. For the Akiyo video sequence, there are improvements of 2.26 dB when compared to the average peak signal-to-noise ratio obtained by the state-of-the-art resolution technique proposed by Vandewalle

    A Review Paper On Motion Estimation Techniques

    Get PDF
    Motion estimation (ME) is a primary action for video compression. Actually, it leads to heavily to the compression efficiency by eliminating temporal redundancies. This approach is one among the critical part in a video encoder and can take itself greater than half of the coding complexity or computational coding time. Several fast ME algorithms were proposed as well as realized. In this paper, we offers a brief review on various motion estimation techniques mainly block matching motion estimation techniques. The paper additionally presents a very brief introduction to the whole flow of video motion vector calculation

    Super Resolution of Wavelet-Encoded Images and Videos

    Get PDF
    In this dissertation, we address the multiframe super resolution reconstruction problem for wavelet-encoded images and videos. The goal of multiframe super resolution is to obtain one or more high resolution images by fusing a sequence of degraded or aliased low resolution images of the same scene. Since the low resolution images may be unaligned, a registration step is required before super resolution reconstruction. Therefore, we first explore in-band (i.e. in the wavelet-domain) image registration; then, investigate super resolution. Our motivation for analyzing the image registration and super resolution problems in the wavelet domain is the growing trend in wavelet-encoded imaging, and wavelet-encoding for image/video compression. Due to drawbacks of widely used discrete cosine transform in image and video compression, a considerable amount of literature is devoted to wavelet-based methods. However, since wavelets are shift-variant, existing methods cannot utilize wavelet subbands efficiently. In order to overcome this drawback, we establish and explore the direct relationship between the subbands under a translational shift, for image registration and super resolution. We then employ our devised in-band methodology, in a motion compensated video compression framework, to demonstrate the effective usage of wavelet subbands. Super resolution can also be used as a post-processing step in video compression in order to decrease the size of the video files to be compressed, with downsampling added as a pre-processing step. Therefore, we present a video compression scheme that utilizes super resolution to reconstruct the high frequency information lost during downsampling. In addition, super resolution is a crucial post-processing step for satellite imagery, due to the fact that it is hard to update imaging devices after a satellite is launched. Thus, we also demonstrate the usage of our devised methods in enhancing resolution of pansharpened multispectral images

    Development of Some Spatial-domain Preprocessing and Post-processing Algorithms for Better 2-D Up-scaling

    Get PDF
    Image super-resolution is an area of great interest in recent years and is extensively used in applications like video streaming, multimedia, internet technologies, consumer electronics, display and printing industries. Image super-resolution is a process of increasing the resolution of a given image without losing its integrity. Its most common application is to provide better visual effect after resizing a digital image for display or printing. One of the methods of improving the image resolution is through the employment of a 2-D interpolation. An up-scaled image should retain all the image details with very less degree of blurring meant for better visual quality. In literature, many efficient 2-D interpolation schemes are found that well preserve the image details in the up-scaled images; particularly at the regions with edges and fine details. Nevertheless, these existing interpolation schemes too give blurring effect in the up-scaled images due to the high frequency (HF) degradation during the up-sampling process. Hence, there is a scope to further improve their performance through the incorporation of various spatial domain pre-processing, post-processing and composite algorithms. Therefore, it is felt that there is sufficient scope to develop various efficient but simple pre-processing, post-processing and composite schemes to effectively restore the HF contents in the up-scaled images for various online and off-line applications. An efficient and widely used Lanczos-3 interpolation is taken for further performance improvement through the incorporation of various proposed algorithms. The various pre-processing algorithms developed in this thesis are summarized here. The term pre-processing refers to processing the low-resolution input image prior to image up-scaling. The various pre-processing algorithms proposed in this thesis are: Laplacian of Laplacian based global pre-processing (LLGP) scheme; Hybrid global pre-processing (HGP); Iterative Laplacian of Laplacian based global pre-processing (ILLGP); Unsharp masking based pre-processing (UMP); Iterative unsharp masking (IUM); Error based up-sampling(EU) scheme. The proposed algorithms: LLGP, HGP and ILLGP are three spatial domain preprocessing algorithms which are based on 4th, 6th and 8th order derivatives to alleviate nonuniform blurring in up-scaled images. These algorithms are used to obtain the high frequency (HF) extracts from an image by employing higher order derivatives and perform precise sharpening on a low resolution image to alleviate the blurring in its 2-D up-sampled counterpart. In case of unsharp masking based pre-processing (UMP) scheme, the blurred version of a low resolution image is used for HF extraction from the original version through image subtraction. The weighted version of the HF extracts are superimposed with the original image to produce a sharpened image prior to image up-scaling to counter blurring effectively. IUM makes use of many iterations to generate an unsharp mask which contains very high frequency (VHF) components. The VHF extract is the result of signal decomposition in terms of sub-bands using the concept of analysis filter bank. Since the degradation of VHF components is maximum, restoration of such components would produce much better restoration performance. EU is another pre-processing scheme in which the HF degradation due to image upscaling is extracted and is called prediction error. The prediction error contains the lost high frequency components. When this error is superimposed on the low resolution image prior to image up-sampling, blurring is considerably reduced in the up-scaled images. Various post-processing algorithms developed in this thesis are summarized in following. The term post-processing refers to processing the high resolution up-scaled image. The various post-processing algorithms proposed in this thesis are: Local adaptive Laplacian (LAL); Fuzzy weighted Laplacian (FWL); Legendre functional link artificial neural network(LFLANN). LAL is a non-fuzzy, local based scheme. The local regions of an up-scaled image with high variance are sharpened more than the region with moderate or low variance by employing a local adaptive Laplacian kernel. The weights of the LAL kernel are varied as per the normalized local variance so as to provide more degree of HF enhancement to high variance regions than the low variance counterpart to effectively counter the non-uniform blurring. Furthermore, FWL post-processing scheme with a higher degree of non-linearity is proposed to further improve the performance of LAL. FWL, being a fuzzy based mapping scheme, is highly nonlinear to resolve the blurring problem more effectively than LAL which employs a linear mapping. Another LFLANN based post-processing scheme is proposed here to minimize the cost function so as to reduce the blurring in a 2-D up-scaled image. Legendre polynomials are used for functional expansion of the input pattern-vector and provide high degree of nonlinearity. Therefore, the requirement of multiple layers can be replaced by single layer LFLANN architecture so as to reduce the cost function effectively for better restoration performance. With single layer architecture, it has reduced the computational complexity and hence is suitable for various real-time applications. There is a scope of further improvement of the stand-alone pre-processing and postprocessing schemes by combining them through composite schemes. Here, two spatial domain composite schemes, CS-I and CS-II are proposed to tackle non-uniform blurring in an up-scaled image. CS-I is developed by combining global iterative Laplacian (GIL) preprocessing scheme with LAL post-processing scheme. Another highly nonlinear composite scheme, CS-II is proposed which combines ILLGP scheme with a fuzzy weighted Laplacian post-processing scheme for more improved performance than the stand-alone schemes. Finally, it is observed that the proposed algorithms: ILLGP, IUM, FWL, LFLANN and CS-II are better algorithms in their respective categories for effectively reducing blurring in the up-scaled images

    Wavelet Based Resolution Enhancement for Low Resolution Satellite Images

    Get PDF
    International audienceSatellite images play a major role in the analysis of land cover, topographic analysis, geosciences etc. There has always existed a tradeoff between the image resolution and the image cost. In this paper, a modified discrete wavelet transform and interpolation based technique is proposed for enhancing the resolution of satellite images having low resolution in such a way that a highly resolved satellite image can be obtained without losing any image information. The advent of DWT has given a major impetus to many techniques based on achieving super resolution starting with a single low resolution image. In the proposed method, DWT is employed on the input satellite image to decompose it into sub-bands then the high frequency sub- bands and the input low resolution satellite image have been interpolated to obtain four interpolated images which are later combined after minor alterations to the interpolated input image using IDWT. The quantitative peak signal-to-noise ratio (PSNR) and classification results show that the resolution has been enhanced to a good scale without losing any information content present in the satellite image

    Motion Segmentation Aided Super Resolution Image Reconstruction

    Get PDF
    This dissertation addresses Super Resolution (SR) Image Reconstruction focusing on motion segmentation. The main thrust is Information Complexity guided Gaussian Mixture Models (GMMs) for Statistical Background Modeling. In the process of developing our framework we also focus on two other topics; motion trajectories estimation toward global and local scene change detections and image reconstruction to have high resolution (HR) representations of the moving regions. Such a framework is used for dynamic scene understanding and recognition of individuals and threats with the help of the image sequences recorded with either stationary or non-stationary camera systems. We introduce a new technique called Information Complexity guided Statistical Background Modeling. Thus, we successfully employ GMMs, which are optimal with respect to information complexity criteria. Moving objects are segmented out through background subtraction which utilizes the computed background model. This technique produces superior results to competing background modeling strategies. The state-of-the-art SR Image Reconstruction studies combine the information from a set of unremarkably different low resolution (LR) images of static scene to construct an HR representation. The crucial challenge not handled in these studies is accumulating the corresponding information from highly displaced moving objects. In this aspect, a framework of SR Image Reconstruction of the moving objects with such high level of displacements is developed. Our assumption is that LR images are different from each other due to local motion of the objects and the global motion of the scene imposed by non-stationary imaging system. Contrary to traditional SR approaches, we employed several steps. These steps are; the suppression of the global motion, motion segmentation accompanied by background subtraction to extract moving objects, suppression of the local motion of the segmented out regions, and super-resolving accumulated information coming from moving objects rather than the whole scene. This results in a reliable offline SR Image Reconstruction tool which handles several types of dynamic scene changes, compensates the impacts of camera systems, and provides data redundancy through removing the background. The framework proved to be superior to the state-of-the-art algorithms which put no significant effort toward dynamic scene representation of non-stationary camera systems

    Efficient Learning-based Image Enhancement : Application to Compression Artifact Removal and Super-resolution

    Get PDF
    Many computer vision and computational photography applications essentially solve an image enhancement problem. The image has been deteriorated by a specific noise process, such as aberrations from camera optics and compression artifacts, that we would like to remove. We describe a framework for learning-based image enhancement. At the core of our algorithm lies a generic regularization framework that comprises a prior on natural images, as well as an application-specific conditional model based on Gaussian processes. In contrast to prior learning-based approaches, our algorithm can instantly learn task-specific degradation models from sample images which enables users to easily adapt the algorithm to a specific problem and data set of interest. This is facilitated by our efficient approximation scheme of large-scale Gaussian processes. We demonstrate the efficiency and effectiveness of our approach by applying it to example enhancement applications including single-image super-resolution, as well as artifact removal in JPEG- and JPEG 2000-encoded images
    corecore