390 research outputs found

    The Traveling Salesman Problem Under Squared Euclidean Distances

    Get PDF
    Let PP be a set of points in Rd\mathbb{R}^d, and let α≥1\alpha \ge 1 be a real number. We define the distance between two points p,q∈Pp,q\in P as ∣pq∣α|pq|^{\alpha}, where ∣pq∣|pq| denotes the standard Euclidean distance between pp and qq. We denote the traveling salesman problem under this distance function by TSP(d,αd,\alpha). We design a 5-approximation algorithm for TSP(2,2) and generalize this result to obtain an approximation factor of 3α−1+6α/33^{\alpha-1}+\sqrt{6}^{\alpha}/3 for d=2d=2 and all α≥2\alpha\ge2. We also study the variant Rev-TSP of the problem where the traveling salesman is allowed to revisit points. We present a polynomial-time approximation scheme for Rev-TSP(2,α)(2,\alpha) with α≥2\alpha\ge2, and we show that Rev-TSP(d,α)(d, \alpha) is APX-hard if d≥3d\ge3 and α>1\alpha>1. The APX-hardness proof carries over to TSP(d,α)(d, \alpha) for the same parameter ranges.Comment: 12 pages, 4 figures. (v2) Minor linguistic change

    Asymmetric Traveling Salesman Path and Directed Latency Problems

    Full text link
    We study integrality gaps and approximability of two closely related problems on directed graphs. Given a set V of n nodes in an underlying asymmetric metric and two specified nodes s and t, both problems ask to find an s-t path visiting all other nodes. In the asymmetric traveling salesman path problem (ATSPP), the objective is to minimize the total cost of this path. In the directed latency problem, the objective is to minimize the sum of distances on this path from s to each node. Both of these problems are NP-hard. The best known approximation algorithms for ATSPP had ratio O(log n) until the very recent result that improves it to O(log n/ log log n). However, only a bound of O(sqrt(n)) for the integrality gap of its linear programming relaxation has been known. For directed latency, the best previously known approximation algorithm has a guarantee of O(n^(1/2+eps)), for any constant eps > 0. We present a new algorithm for the ATSPP problem that has an approximation ratio of O(log n), but whose analysis also bounds the integrality gap of the standard LP relaxation of ATSPP by the same factor. This solves an open problem posed by Chekuri and Pal [2007]. We then pursue a deeper study of this linear program and its variations, which leads to an algorithm for the k-person ATSPP (where k s-t paths of minimum total length are sought) and an O(log n)-approximation for the directed latency problem

    New Inapproximability Bounds for TSP

    Full text link
    In this paper, we study the approximability of the metric Traveling Salesman Problem (TSP) and prove new explicit inapproximability bounds for that problem. The best up to now known hardness of approximation bounds were 185/184 for the symmetric case (due to Lampis) and 117/116 for the asymmetric case (due to Papadimitriou and Vempala). We construct here two new bounded occurrence CSP reductions which improve these bounds to 123/122 and 75/74, respectively. The latter bound is the first improvement in more than a decade for the case of the asymmetric TSP. One of our main tools, which may be of independent interest, is a new construction of a bounded degree wheel amplifier used in the proof of our results

    Approximation Hardness of Graphic TSP on Cubic Graphs

    Get PDF
    We prove explicit approximation hardness results for the Graphic TSP on cubic and subcubic graphs as well as the new inapproximability bounds for the corresponding instances of the (1,2)-TSP. The proof technique uses new modular constructions of simulating gadgets for the restricted cubic and subcubic instances. The modular constructions used in the paper could be also of independent interest

    Minimum-weight Cycle Covers and Their Approximability

    Get PDF
    A cycle cover of a graph is a set of cycles such that every vertex is part of exactly one cycle. An L-cycle cover is a cycle cover in which the length of every cycle is in the set L. We investigate how well L-cycle covers of minimum weight can be approximated. For undirected graphs, we devise a polynomial-time approximation algorithm that achieves a constant approximation ratio for all sets L. On the other hand, we prove that the problem cannot be approximated within a factor of 2-eps for certain sets L. For directed graphs, we present a polynomial-time approximation algorithm that achieves an approximation ratio of O(n), where nn is the number of vertices. This is asymptotically optimal: We show that the problem cannot be approximated within a factor of o(n). To contrast the results for cycle covers of minimum weight, we show that the problem of computing L-cycle covers of maximum weight can, at least in principle, be approximated arbitrarily well.Comment: To appear in the Proceedings of the 33rd Workshop on Graph-Theoretic Concepts in Computer Science (WG 2007). Minor change
    • …
    corecore