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a b s t r a c t

A cycle cover of a graph is a set of cycles such that every vertex is part of exactly one cycle.
An L-cycle cover is a cycle cover in which the length of every cycle is in the set L ⊆ N.
We investigate how well L-cycle covers of minimum weight can be approximated.

For undirected graphs, we devise non-constructive polynomial-time approximation
algorithms that achieve constant approximation ratios for all sets L. On the other hand,
we prove that the problem cannot be approximated with a factor of 2− ε for certain sets L.
For directed graphs, we devise non-constructive polynomial-time approximation

algorithms that achieve approximation ratios of O(n), where n is the number of vertices.
This is asymptotically optimal: We show that the problem cannot be approximated with a
factor of o(n) for certain sets L.
To contrast the results for cycle covers of minimumweight, we show that the problem

of computing L-cycle covers ofmaximumweight can, at least in principle, be approximated
arbitrarily well.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A cycle cover of a graph is a spanning subgraph that consists solely of cycles such that every vertex is part of exactly one
cycle. Cycle covers are an important tool for the design of approximation algorithms for different variants of the traveling
salesman problem [3,5,6,9–12,21], for the shortest common superstring problem from computational biology [8,28], and
for vehicle routing problems [18].
In contrast to Hamiltonian cycles, which are special cases of cycle covers, cycle covers of minimum weight can be

computed efficiently. This is exploited in the above-mentioned algorithms, which in general start by computing a cycle
cover and then join cycles to obtain a Hamiltonian cycle (this technique is called subtour patching [14]).
Short cycles limit the approximation performances achieved by such algorithms. Roughly speaking, the longer the cycles

in the initial cover, the better the approximation ratio. Thus, we are interested in computing cycle covers without short
cycles. Moreover, there are algorithms that perform particularly well if the cycle covers computed do not contain cycles
of odd length [5]. Finally, some vehicle routing problems [18] require covering vertices with cycles of bounded length.
Therefore, we consider restricted cycle covers, where cycles of certain lengths are ruled out a priori: For a set L ⊆ N, an
L-cycle cover is a cycle cover in which the length of each cycle is in L.
Unfortunately, computing L-cycle covers is NP-hard for almost all sets L [20,23]. Thus, in order to fathom the possibility

of designing approximation algorithms based on computing cycle covers, our aim is to find out how well L-cycle covers can
be approximated.
Beyond being a basic tool for approximation algorithms, cycle covers are interesting in their own right. Matching theory

and graph factorization are important topics in graph theory. The classical matching problem is the problem of finding one-
factors, i. e., spanning subgraphs in which every vertex is incident to exactly one edge. Cycle covers of undirected graphs are
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also called two-factors since every vertex is incident to exactly two edges in a cycle cover. Both structural properties of graph
factors and the complexity of finding graph factors have been the topic of a considerable amount of research (cf. Lovász and
Plummer [22] and Schrijver [27]).

1.1. Preliminaries

Let G = (V , E) be a graph with vertex set V and edge set E. If G is undirected, then a cycle cover of G is a subset C ⊆ E of
the edges of G such that all vertices in V are incident to exactly two edges in C . If G is a directed graph, then a cycle cover of
G is a subset C ⊆ E such that all vertices are incident to exactly one incoming and one outgoing edge in C . Thus, the graph
(V , C) consists solely of vertex-disjoint cycles. The length of a cycle is the number of edges it consists of. We are concerned
with simple graphs, i. e., the graphs that do not contain multiple edges or loops. Thus, the shortest cycles of undirected and
directed graphs are of length three and two, respectively. We call a cycle of length λ a λ-cycle for short.
An L-cycle cover of an undirected graph is a cycle cover in which the length of every cycle is in the set L ⊆ U =

{3, 4, 5, . . .}. An L-cycle cover of a directed graph is analogously defined except that L ⊆ D = {2, 3, 4, . . .}. A special case
of L-cycle covers are k-cycle covers, which are {k, k + 1, . . .}-cycle covers. Let L = U \ L in the case of undirected graphs,
and let L = D \ L in the case of directed graphs (whether we consider undirected or directed cycle covers will be clear from
the context).
Given edge weightsw : E → N, theweightw(C) of a subset C ⊆ E of the edges of G isw(C) =

∑
e∈C w(e). In particular,

this defines the weight of a cycle cover since we view cycle covers as sets of edges.
Min-L-UCC is the following optimization problem: Given an undirected complete graphwith non-negative edgeweights

that satisfy the triangle inequality (w({u, v}) ≤ w({u, x})+ w({x, v}) for all u, x, v ∈ V ) find an L-cycle cover of minimum
weight. Min-k-UCC is defined for k ∈ U like Min-L-UCC except that k-cycle covers rather than L-cycle covers are sought.
The triangle inequality is not only a natural restriction, it is also necessary: If finding L-cycle covers in graphs is NP-hard,
then Min-L-UCC without the triangle inequality does not allow for any approximation at all. This can be seen by reduction
from the decision problem whether a graph contains an L-cycle cover (the proof is similar to the inapproximability of the
traveling salesman problem without triangle inequality [26]): Given an instance G = (V , E) for which we want to decide
whether it contains an L-cycle cover, create a complete graph on V with weights w(e) = 1 if e ∈ E and w(e) = α for some
large α � n. If G possesses an L-cycle cover, then the new graph possesses an L-cycle cover of weight n. Otherwise, any
L-cycle cover of the new graph has a weight of at least α.

Min-L-DCC andMin-k-DCC are defined for directed graphs like Min-L-UCC andMin-k-UCC for undirected graphs except
that L ⊆ D and k ∈ D and the triangle inequality is of the formw(u, v) ≤ w(u, x)+w(x, v). Again, the triangle inequality
is mandatory for the existence of approximation algorithms.
Finally, Max-L-UCC , Max-k-UCC , Max-L-DCC , and Max-k-DCC are analogously defined except that cycle covers of

maximum weight are sought and that the edge weights do not have to fulfill the triangle inequality.

1.2. Previous results

Min-U-UCC , i. e., the undirected cycle cover problem without any restrictions, can be solved in polynomial time via
Tutte’s reduction to the classical perfect matching problem [22]. By a modification of an algorithm of Hartvigsen [17], also
4-cycle covers of minimum weight in graphs with edge weights one and two can be computed efficiently. For Min-k-UCC
restricted to graphswith edgeweights one and two, there exists a factor 7/6 approximation algorithm for all k [7]. Hassin and
Rubinstein [19] presented a randomized approximation algorithm for Max-{3}-UCC that achieves an approximation ratio
of 83/43+ ε. Max-L-UCC admits a factor 2 approximation algorithm for arbitrary sets L [23]. Goemans andWilliamson [15]
showed that Min-k-UCC and Min-{k}-UCC can be approximated with a factor of 4. Min-L-UCC is NP-hard and APX-hard if
L 6⊆ {3}, i. e., for all but a finite number of sets L [20,23,29]. This means that for almost all L, these problems are unlikely to
possess polynomial-time approximation schemes (PTAS, see Ausiello et al. [2] for a definition).
Min-D-DCC , which is also known as the assignment problem, can be solved in polynomial time by a reduction to the

minimum weight perfect matching problem in bipartite graphs [1]. The only other L for which Min-L-DCC can be solved in
polynomial time is L = {2}. For all L ⊆ D with L 6= {2} and L 6= D , Min-L-DCC and Max-L-DCC are APX-hard and NP-hard,
even if only two different edge weights are allowed [23]. There is a 4/3 approximation algorithm for Max-3-DCC [6] as well
as for Min-k-DCC for k ≥ 3 with the restriction that the only edge weights allowed are one and two [4]. Max-L-DCC can be
approximated with a factor of 8/3 for all L [23].

1.3. New results

While L-cycle covers of maximum weight allow for constant factor approximations, only little is known so far about the
approximability of computing L-cycle covers ofminimumweight. Our aim is to close this gap.
We prove that approximation algorithms exist for Min-L-UCC for all sets L ⊆ U. The approximation ratios achieved are

constant; they depend only on the set L (Section 2.1). More specifically, we present an algorithm into which a finite set
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L′ ⊆ U is ‘‘hardwired’’ that achieves constant approximation ratio for Min-L′-UCC. Given a set L, our algorithm, equipped
with an appropriate L′ ⊆ L, yields also an approximation algorithm for Min-L-UCC.
On the other hand, we show that the problem cannot be approximated with a factor of 2− ε for general L (Section 2.2).
Then we transfer our results to Min-L-DCC, for which we achieve a ratio of O(n), where n is the number of vertices

(Section 3.1). This is asymptotically optimal: There exist sets L for which no algorithm can approximate Min-L-DCC with a
factor of o(n) (Section 3.2).
Finally, to contrast our results for Min-L-UCC and Min-L-DCC, we show that Max-L-UCC and Max-L-DCC can be

approximated arbitrarily well at least in principle (Section 4).

2. Approximability of Min-L-UCC

2.1. An approximation algorithm for Min-L-UCC

The aim of this section is to prove the existence of approximation algorithms for Min-L-UCC for all sets L ⊆ U. The
catch is that for most L it is impossible to decide whether some cycle length is in L since there are uncountably many sets
L: If, for instance, L is not a recursive set, then deciding if a cycle cover is an L-cycle cover is impossible. One option would
be to restrict ourselves to sets L such that the unary language {1λ | λ ∈ L} is in P. For such L, Min-L-UCC and Min-L-DCC
are NP optimization problems (see Ausiello et al. [2] for a definition). Another possibility for circumventing the problem
would be to include the permitted cycle lengths in the input. While such restrictions are mandatory if we want to compute
optimum solutions, they are not needed for our approximation algorithms.
A complete n-vertex graph contains an L-cycle cover as a spanning subgraph if and only if there exist (not necessarily

distinct) lengths λ1, . . . , λk ∈ L for some k ∈ N with
∑k
i=1 λi = n. We call such an n L-admissible and define

〈L〉 = {n | n is L-admissible}. Although L might not be a recursive set, 〈L〉 allows efficient membership testing according
to the following lemma.

Lemma 2.1 (Manthey [23, Lem. 3.1]). For all L ⊆ N, there exists a finite set L′ ⊆ L with 〈L′〉 = 〈L〉.

In the following, L will always be the set of cycle lengths we are actually interested in, while L′ ⊆ L will be a finite set
according to the lemma above. Unfortunately, there is no effective way of obtaining a finite set L′ from L. In this sense, the
proof of approximability is nonconstructive, similar to the nonconstructive proof that any minor-closed family of graphs
can be decided in polynomial time [13]. But at least for many ‘‘natural’’ sets L, an appropriate finite subset L′ can be found
easily: If L itself is finite, then, of course, L = L′ will do. If L is finite, then L′ can also be found easily. More generally, if the set
L contains exactly all multiples of a certain number g above a certain threshold p (it can contain any subset of the numbers
smaller than p), then L′ can also be computed easily.
To cope with this problem, we always assume that the finite set L′ is given and hardwired into our algorithm. Since

there are only countably many finite sets L′, we obtain a countable number of approximation algorithms for an uncountable
number of optimization problems. Thenwe prove that this algorithmachieves a constant approximation ratio forMin-L-UCC
for any L ⊇ L′ with 〈L〉 = 〈L′〉.
Let gL be the greatest common divisor of all numbers in L. Then 〈L〉 is a subset of the set of natural numbers divisible by

gL. The proof of Lemma 2.1 shows that there exists a minimum pL ∈ N such that ηgL ∈ 〈L〉 for all η > pL. The number pL is
the Frobenius number [25] of the set {λ | gLλ ∈ L}, which is L scaled down by gL. For instance, if L = {8, 10}, then gL = 2
and pL = 11 since the Frobenius number of {4, 5} is 11.
In the remainder of this section,wewill allow2-cycles,where anundirected 2-cycle consisting of verticesu and v contains

the edge {u, v} twice. (It also contributes twice its weight to the weight of the cycle cover.) We allow 2-cycles in order to be
prepared for the directed variant of the problem (Section 3.1).
In the following, L ⊆ U ∪ {2} = D will be arbitrary, and L′ ⊆ L will be chosen so as to fulfill Lemma 2.1. Note that

pL = pL′ and gL = gL′ . We compare the weight of the L′-cycle cover computed to the weight of an optimal 〈L′〉-cycle cover to
bound the approximation ratio. Every L′-cycle cover is also an L-cycle cover. Furthermore, L ⊆ 〈L〉 = 〈L′〉. Thus, the weight
of an optimum 〈L′〉-cycle cover is no greater than theweight of an optimum L-cycle cover. Thus, the ratio of theweight of the
cycle cover computed and the weight of the optimum 〈L′〉-cycle cover will provide an upper bound for the approximation
ratio for Min-L-UCC.
Goemans andWilliamson have presented a technique for approximating constrained forest problems [15], whichwewill

exploit. Let G = (V , E) be an undirected graph, and let w : E → N be non-negative edge weights. Let 2V denote the power
set of V . A function f : 2V → {0, 1} is called a proper function if it satisfies

• f (S) = f (V \ S) for all S ⊆ V (symmetry),
• if A and B are disjoint, then f (A) = f (B) = 0 implies f (A ∪ B) = 0 (disjointness), and
• f (V ) = 0.

The aim is to find a set F of edges such that there is an edge connecting S to V \ S for all S ⊆ V with f (S) = 1. (The name
‘‘constrained forest problems’’ comes from the fact that it suffices to consider forests as solutions; cycles only increase the



B. Manthey / Discrete Applied Mathematics 157 (2009) 1470–1480 1473

weight of a solution.) For instance, the minimum spanning tree problem corresponds to the proper function f with f (S) = 1
for all S with ∅ ( S ( V .
Goemans and Williamson have presented an approximation algorithm [15, Fig. 1] for constrained forest problems that

are characterized by proper functions. We will refer to their algorithm as GoeWill.

Theorem 2.2 (Goemans, Williamson [15, Thm. 2.4]). Let ` be the number of vertices v with f ({v}) = 1. Then GoeWill is a
(2− 2

`
)-approximation for the constrained forest problem defined by a proper function f .

In particular, the function fL′ given by

fL′(S) =
{
1 if |S| 6≡ 0 (mod gL′) and
0 if |S| ≡ 0 (mod gL′)

is proper if |V | = n is divisible by gL′ . (If n is not divisible by gL′ , then G does not contain an L′-cycle cover at all.) Given
this function, a solution is a forest H = (V , F) such that the size of every connected component of H is a multiple of gL′ . In
particular, if gL′ = 1, then fL′(S) = 0 for all S, and an optimum solution is n isolated vertices.
If the size of all components of the solution obtained are in 〈L′〉, we are done: By duplicating all edges, we obtain Eulerian

components. Then we construct an 〈L′〉-cycle cover by traversing the Eulerian components and taking shortcuts whenever
we come to a vertex that we have already visited. Finally, we divide each λ-cycle into paths of lengths λ1 − 1, . . . , λk − 1
for some k such that λ1 + · · · + λk = λ and λi ∈ L′ for all i. By connecting the respective endpoints of each path, we obtain
cycles of lengths λ1, . . . , λk. We perform this for all components to get an L′-cycle cover. A straightforward analysis yields
an approximation ratio of 8. A more careful analysis shows that the actual ratio achieved is 4. The details for the special case
of L′ = {k} are spelled out by Goemans and Williamson [15].
However, this procedure does not work for general sets L′ since the sizes of some componentsmay not be in 〈L′〉. This can

happen if pL′ > 0 (for L′ = {k}, for which the algorithm works, we have pL′ = 0). At the end of this section, we argue why it
seems to be difficult to generalize the approach of Goemans andWilliamson in order to obtain an approximation algorithm
for Min-L-UCC whose approximation ratio is independent of L.
In the following, our aim is to add edges to the forestH = (V , F) output byGoeWill such that the size of each component

is in 〈L′〉. This will lead to an approximation algorithm for Min-L-UCC with a ratio of 4 · (pL + 4), which is constant for each
L. Let F∗ denote the set of edges of a minimum-weight forest such that the size of each component is in 〈L〉. The set F∗ is a
solution to G,w, and fL, but not necessarily an optimum solution.
By Theorem 2.2, we havew(F) ≤ 2 ·w(F∗) sincew(F∗) is at least the weight of an optimum solution to G,w, and fL. Let

C = (V ′, F ′) be any connected component of F with |V ′| 6∈ 〈L〉. The optimum solution F∗must contain an edge that connects
V ′ to V \ V ′. The weight of this edge is at least the weight of the minimum-weight edge connecting V ′ to V \ V ′.
We will add edges until the sizes of all components is in 〈L〉. Our algorithm acts in phases as follows: Let H = (V , F) be

the graph at the beginning of the current phase, and let C1, . . . , Ca be its connected components, where Vi is the vertex set
of Ci. We will construct a new graph H̃ = (V , F̃) with F̃ ⊇ F . Let C1, . . . , Cb be the connected components with |Vi| 6∈ 〈L〉.
We call these components illegal. For i ∈ {1, . . . , b}, let ei be the cheapest edge connecting Vi to V \ Vi. (Note that ei = ej
for i 6= j is allowed.)
We add all these edges to F to obtain F̃ = F ∪ {e1, . . . , eb}. Since ei is the cheapest edge connecting Vi to V \ Vi, the graph

H̃ = (V , F̃) is a forest. (If some ei are not uniquely determined, cycles may occur. We can avoid these cycles by discarding
some of the ei to break the cycles. For the sake of simplicity, we ignore this case in the following analysis.) If H̃ still contains
illegal components, we set H to be H̃ and iterate the procedure.

Lemma 2.3. Let F and F̃ be as described above. Thenw(F̃) ≤ w(F)+ 2 · w(F∗).

Proof. We observe that F∗ contains at least one edge e∗i connecting Vi to V \ Vi for every i ∈ {1, . . . , b}. If e
∗

i = e
∗

j for i 6= j,
then e∗k 6= e

∗

i for all k 6= i, j. This means that every edge occurs at most twice among e
∗

1, . . . , e
∗

b , which implies

b∑
i=1

w(e∗i ) ≤ 2 · w(F
∗).

By the choice of ei, we havew(ei) ≤ w(e∗i ). Putting everything together yields

w(F̃) ≤ w(F)+
b∑
i=1

w(ei) ≤ w(F)+
b∑
i=1

w(e∗i ) ≤ w(F)+ 2w(F
∗). �

Let us bound the number of phases that are needed in the worst case.

Lemma 2.4. After at most bpL/2c + 1 phases, H̃ does not contain any illegal components.
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Algorithm 1 ApxUndirL′ .
Input: undirected complete graph G = (V , E), |V | = n; edge weightsw : E → N satisfying the triangle inequality
Output: an L′-cycle cover Capx of G if n is L′-admissible,⊥ otherwise
1: if n /∈ 〈L〉′ then
2: return⊥
3: end if
4: run GoeWill using the function fL′ described in the text to obtain H = (V , F)
5: while the size of some connected components of H is not in 〈L′〉 do
6: let C1, . . . , Ca be the connected components of H , where Vi is the vertex set of Ci; let C1, . . . , Cb be its illegal
components

7: let ei be the lightest edge connecting Vi to V \ Vi
8: add e1, . . . , eb to F
9: while H contains cycles do
10: remove one ei to break a cycle
11: end while
12: end while
13: duplicate each edge to obtain a multi-graph consisting of Eulerian components
14: for all components of the multi-graph do
15: walk along an Eulerian cycle
16: take shortcuts to obtain a Hamiltonian cycle
17: discard edges to obtain a collection of paths, the number of vertices of each of which is in L′
18: connect the two endpoints of every path in order to obtain cycles
19: end for
20: the union of all cycles constructed forms Capx; return Capx

Proof. In the beginning, all components of H = (V , F) contain at least gL vertices. If gL ∈ L′, no phases are needed at all.
Thus, we can assume that min(L′) ≥ 2gL.
To bound the number of phases needed, we will estimate the size of the smallest illegal component. Consider any of

the smallest illegal components before some phase t , and let s be the number of its vertices. In phase t , this component
will be connected either to another illegal component, which results in a component with a size of at least 2s, or to a legal
component, which results in a componentwith a size of at least s+2gL. (It can happen thatmore than two illegal components
are connected to a single component in one phase.)
In either case, except for the first phase, the size of the smallest illegal component increases by at least 2gL in every step.

Thus, after at most bpL/2c + 1 phases, the size of every illegal component is at least (pL + 1)gL. Hence, there are no more
illegal components since components that consist of at least (pL + 1)gL vertices are not illegal. �

Eventually, we obtain a forest that consists solely of components whose sizes are in 〈L′〉. We call this forest H̃ = (V , F̃).
Then we proceed as already described above: We duplicate each edge, thus obtaining Eulerian components. After that, we
take shortcuts to obtain an 〈L′〉-cycle cover, which is also a 〈L〉-cycle cover. Finally, we break edges and connect the endpoints
of each path to obtain an L′-cycle cover, which is also an L-cycle cover since L ⊇ L′. The weight of this L′-cycle cover is at
most 4 · w(F̃).
Overall, for the set L′, we obtain ApxUndirL′ (Algorithm 1) and the following theorem.

Theorem 2.5. Let L ⊆ U ∪ {2} = D be arbitrary and L′ ⊆ L be chosen according to Lemma 2.1. Then ApxUndirL′ is a factor
(4 · (pL + 4)) approximation algorithm for Min-L-UCC. Its running-time is O(n2 log n).

Proof. Let C∗ be a minimum-weight 〈L′〉-cycle cover. The weight of F̃ is bounded from above by

w(F̃) ≤
(⌊pL
2

⌋
+ 1

)
· 2 · w(F∗)+ 2 · w(F∗) ≤ (pL + 4) · w(C∗).

Combining this withw(Capx) ≤ 4 · w(F̃) yields the approximation ratio.
Executing GoeWill takes time O(n2 log n). All other operations can be implemented to run in time O(n2), where the O

hides a constant that depends on L′. �

We conclude the analysis of this algorithm by providing an example that shows that the approximation ratio of the
algorithm depends indeed linearly on pL. To do this, let p ∈ N be even.We choose L = {4, 2p+2, 2p+4, 2p+6, . . . , 4p+4}.
Thus, gL = 2 and pL = p− 1. Since L is finite, we can choose L′ = L. Fig. 1 shows the graph that we consider and its optimal
L-cycle cover. The graph consists of 4p + 4 vertices. The weights of the edges, which satisfy the triangle inequality, are as
follows:

• Solid bold edges have a weight of 1.
• Dashed bold edges have a weight of 1+ ε, where ε > 0 can be made arbitrarily small.
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(a) The graph. (b) The optimal L-cycle cover.

Fig. 1. An example on which ApxUndirL′ achieves only a ratio of roughly pL/2.

(a) The output of GoeWill. (b) The final forest.

(c) The L-cycle cover Capx .

Fig. 2. How ApxUndirL′ computes an L-cycle cover of the graph of Fig. 1(a).

• Solid non-bold edges have a weight of ε.
• Dashed non-bold edges have a weight of 2ε.
• The weight of the edges not drawn is given by the shortest path between the respective vertices.

The weight of the optimum L-cycle cover is 2+ (6p+ 4)ε: The four central vertices contribute 2+ 4ε, and each of the p
remaining 4-cycles contributes 6ε. By decreasing ε, the weight of the optimum L-cycle cover can get arbitrarily close to 2.
Fig. 2 shows what ApxUndirL′ computes. Let us assume that GoeWill returns the optimum L-forest shown in Fig. 2(a).

GoeWill might also return a different forest of the same weight: Instead of creating a component of size four, it can take,
e. g., two vertical edges of weights ε and 2ε. However, the resulting L-cycle covers will be equal.
Starting with the output of GoeWill, ApxUndirL′ chooses greedily the bold edges, which have a weight of 1, rather than

the two edges of weight 1+ ε (Fig. 2(b)). From the forest thus obtained, it constructs an L-cycle cover (Fig. 2(c)). The weight
of this L-cycle cover is 2(p/2+1)+ (4p+2)ε. For sufficiently small ε, this is approximately p+2 = pL+3, which is roughly
pL/2+ 3/2 times as large as the weight of the optimum L-cycle cover.
Of course, it would be desirable to have an approximation algorithm with a ratio that does not depend on L. Directly

adapting the technique of Goemans and Williamson [15] does not seem to work: The function f (S) = 1 if and only if
|S| 6∈ 〈L〉 is not proper because it violates symmetry. To force it to be symmetric, we can modify it to f ′(S) = 1 if and only
if |S| 6∈ 〈L〉 or |V \ S| 6∈ 〈L〉. But f ′ does not satisfy disjointness. There are generalizations of Goemans and Williamson’s
approximation technique to larger classes of functions [16]. However, it seems that L-cycle covers can hardly be modeled
even by these more general functions.
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2.2. Unconditional inapproximability of Min-L-UCC

In this section, we provide a lower bound for the approximability of Min-L-UCC as a counterpart to the approximation
algorithm of the previous section. We show that the problem cannot be approximated with a factor of 2 − ε. This
inapproximability result is unconditional, i. e., it does not rely on complexity theoretic assumptions like P 6= NP.
The key to the inapproximability of Min-L-UCC are immune sets [24]: An infinite set L ⊆ N is called an immune set if

L does not contain an infinite recursively enumerable subset. Such sets exist. Our result limits the possibility of designing
general approximation algorithms for L-cycle covers. To obtain algorithms with a ratio better than 2, we have to design
algorithms tailored to specific sets L.
Finite variations of immune sets are again immune sets: If a finite number of elements is added to or removed from an

immune set, the resulting set is still immune. Thus for every k ∈ N, there exist immune sets L containing no number smaller
than k.

Theorem 2.6. Let ε > 0 be arbitrarily small. Let k > 2/ε, and let L ⊆ {k, k+1, . . .} be an immune set. Then Min-L-UCC cannot
be approximated with a factor of 2− ε.

Proof. Let Gn be an undirected complete graph with vertices 1, 2, . . . , n. The weight of an edge {i, j} for i < j is
min{j − i, n + i − j}. This means that the vertices are ordered along an undirected cycle, and the distance from i to j is
the number of edges that have to be traversed in order to get from i to j. These edge weights fulfill the triangle inequality.
For all n ∈ L, the optimal L-cycle cover of Gn is a Hamiltonian cycle of weight n. Furthermore, the weight of every cycle c

that traverses ` ≤ n/2 vertices has a weight of at least 2`−2: Let i and j be two vertices of c that are farthest apart according
to the edge lengths of Gn. Assume that i < j. By the triangle inequality, the weight of c is at least 2 · min{j − i, n + i − j}.
Since ` ≤ n/2 and by the choice of i and j, we have min{j− i, n+ i− j} ≥ `− 1, which provesw(c) ≥ 2`− 2.
Consider any approximation algorithm Approx for Min-L-UCC. We run Approx on Gn for n ∈ N. By outputting the cycle

lengths occurring in the L-cycle cover of Gn for all n, we obtain an enumeration of a subset S ⊆ L. Since L is immune, S must
be a finite set, and s = max(S) exists. Let n ≥ 2s. The L-cycle cover output for Gn consists of cycles whose lengths are at
most s ≤ n/2. Since min(L) ≥ k, we also have min(S) ≥ k and the L-cycle cover output for Gn consists of at most n/k cycles.
Hence, the weight of the cycle cover computed by Approx is at least nk · (2k− 2). For n ∈ L, this is a factor of 2−

2
k > 2− ε

away from the optimum solution. �

Theorem 2.6 is tight since L-cycle covers can be approximated with a factor of 2 by L′-cycle covers for every set L′ ⊆ L
with 〈L′〉 = 〈L〉 as we will prove now. Let minL(G, w) denote the weight of a minimum-weight L-cycle cover of Gwith edge
weightsw.

Theorem 2.7. Let L ⊆ U be a non-empty set, and let L′ ⊆ L with 〈L′〉 = 〈L〉. Then we haveminL′(G, w) ≤ 2 · minL(G, w) for
all undirected complete graphs G with edge weightsw that satisfy the triangle inequality.

Proof. Consider an arbitrary L-cycle cover C and any of its cycles c of length λ ∈ L. To prove the theorem, we show how
to obtain an L′-cycle cover C ′ from C with w(C ′) ≤ 2 · w(C). Consider any cycle c of C that has a length of λ. If λ ∈ L′, we
simply put c into C ′. Otherwise, since 〈L′〉 = 〈L〉 ⊇ L, there exist λ1, . . . , λk ∈ L′ for some k ∈ N such that

∑k
i=1 λi = λ.

We remove k edges from c to obtain k paths consisting of λ1, . . . , λk vertices. No additional weight is incurred in this way.
Then we connect the respective endpoints of each path to obtain k cycles of lengths λ1, . . . , λk. By the triangle inequality,
the weight of an edge added to close a cycle is at most the weight of the corresponding path. By performing this for every
cycle of C , we obtain an L′-cycle cover C ′ as claimed. �

An immediate consequence of Theorem 2.7 is that approximation algorithms for L′-cycle covers for finite L′ can be turned
into approximation algorithms for arbitrary L by losing only a factor of 2 in the approximation performance.

Corollary 2.8. Let L ⊆ U be a non-empty set, and let L′ ⊆ L with 〈L〉 = 〈L′〉. If Min-L′-UCC can be approximated with a factor
of r, then Min-L-UCC can be approximated with a factor of 2r.

Proof. Let (G, w)be an instance ofMin-L-UCC andMin-L′-UCC. LetC ′ be the L′-cycle cover ofGoutput by the r approximation
for Min-L′-UCC. Clearly, C ′ is also an L-cycle cover. Furthermore,w(C ′) ≤ r ·minL′(G, w) ≤ 2r ·minL(G, w). �

3. Approximability of Min-L-DCC

3.1. An approximation algorithm for Min-L-DCC

In this section, we prove the existence of approximation algorithms for Min-L-DCC for all sets L ⊆ D . Again, we
provide an algorithm ApxDirL′ that contains a particular set L′ ⊆ D hardwired into it. This algorithm will then serve as
approximation algorithm for Min-L-DCC for sets L ⊇ L′ with 〈L〉 = 〈L′〉. The algorithm ApxDirL′ exploits ApxUndirL′ to
achieve an approximation ratio of O(n). The hidden factor depends on pL′ again. This result matches asymptotically the
lower bound of Section 3.2 and shows that Min-L-DCC can be approximated at least to some extent.
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Algorithm 2 ApxDirL′ .
Input: directed complete graph G = (V , E), |V | = n; edge weightsw : E → N satisfying the triangle inequality
Output: an L′-cycle cover Capx of G if n is L′-admissible,⊥ otherwise
1: if n /∈ 〈L〉′ then
2: return⊥
3: end if
4: construct an undirected complete graph GU = (V , EU)with edge weightswU({u, v}) = w(u, v)+ w(v, u)
5: run ApxUndirL′ on GU andwU to obtain C

apx
U

6: for all cycles cU of C
apx
U do

7: cU corresponds to a cycle of G that can be oriented in two ways; put the orientation c that yields less weight into Capx
8: end for
9: return Capx

In order to approximate Min-L-DCC, we reduce the problem to a variant of Min-L-UCC, where also 2-cycles are allowed
(now it pays off that we included 2 in the possible cycle lengths in Section 2.1): We obtain a 2-cycle of an undirected graph
by taking an edge {u, v} twice. Let G = (V , E) be a directed complete graph with n vertices and edge weights w : E → N
that fulfill the triangle inequality. The corresponding undirected complete graph GU = (V , EU) has weights wU : EU → N
withwU({u, v}) = w(u, v)+ w(v, u).
Let C be any cycle cover of G. The corresponding cycle cover CU of GU is given by CU = {{u, v} | (u, v) ∈ C}. Note that we

consider CU as a multiset: If both (u, v) and (v, u) are in C , i. e., u and v form a 2-cycle, then {u, v} occurs twice in CU . Let us
bound the weight of CU in terms of the weight of C .

Lemma 3.1. For every cycle cover C of G, we havewU(CU) ≤ n · w(C).

Proof. Consider any edge e = (u, v) ∈ C , and let c be the cycle of length λ that contains e. By the triangle inequality, we
have wU({u, v}) = w(u, v) + w(v, u) ≤ w(c). Let cU be the cycle of CU that corresponds to c. Since c consists of λ edges,
we obtainwU(cU) ≤ λ · w(c) ≤ n · w(c). Summing over all cycles of C completes the proof. �

Our algorithm computes an L′-cycle cover for some finite L′ ⊆ Lwith 〈L′〉 = 〈L〉. As in Section 2.1, the weight of the cycle
cover computed is compared to an optimum 〈L〉-cycle.
Let CapxU be the L′-cycle cover output by ApxUndirL′ on GU . We transfer C

apx
U into an L′-cycle cover Capx of G. For every

cycle cU of C
apx
U , we can orient the corresponding directed cycle c in two directions. We take the orientation that yields less

weight, thus w(Capx) ≤ wU(C
apx
U )/2. Overall, we obtain ApxDirL′ (Algorithm 2), which achieves an approximation ratio of

O(n).

Theorem 3.2. Let L ⊆ D be arbitrary, and let L′ ⊆ L be chosen according to Lemma 2.1. Then ApxDirL′ is a factor (2n · (pL+4))
approximation algorithm for Min-L-DCC. Its running-time is O(n2 log n).

Proof. We start by estimating the approximation ratio. Theorem 2.5 yields wU(C
apx
U ) ≤ 4 · (pL + 4) · wU(C∗U), where C

∗

U is
an optimal 〈L〉-cycle cover of GU . Now consider an optimum 〈L〉-cycle cover C∗ of G. Lemma 3.1 yieldswU(C∗U) ≤ n ·w(C

∗).
Overall,

w(Capx) ≤
1
2
· wU(C

apx
U ) ≤ 2 · (pL + 4) · wU(C∗U) ≤ 2 · (pL + 4) · n · w(C

∗).

The running-time is dominated by the time needed to execute GoeWill in ApxUndirL′ , which is O(n2 log n). �

3.2. Unconditional inapproximability of Min-L-DCC

For undirected graphs, both Max-L-UCC and Min-L-UCC can be approximated to within constant factors in polynomial
time. Surprisingly, in case of directed graphs, this holds only for the maximization variant of the directed L-cycle cover
problem. Min-L-DCC cannot be approximated with a factor of o(n) for certain sets L, where n is the number of vertices of the
input graph. In particular, ApxDirL′ achieves asymptotically optimal approximation ratios for Min-L-DCC. Similar to the case
of Min-L-UCC, this result shows that to find approximation algorithms, specific properties of the sets L have to be exploited.
A general algorithm with a good approximation ratio for all sets L does not exist.

Theorem 3.3. Let L ⊆ U be an immune set. Then no approximation algorithm for Min-L-DCC achieves a ratio of o(n), where n
is the number of vertices of the instance.

Proof. Let Gn be a directed complete graph with n vertices {1, 2, . . . , n}. The weight of an edge (i, j) is (j − i) mod n. This
means that the vertices are ordered along a directed cycle, and the distance from i to j is the number of edges that have to
be traversed in order to get from i to j. These edge weights fulfill the triangle inequality.
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For all n ∈ L, the optimal L-cycle cover of Gn is a Hamiltonian cycle of weight n. Furthermore, the weight of every cycle
that traverses some of Gn’s vertices has a weight of at least n: Let i and j be two traversed vertices with i < j. By the
triangle inequality, the path from i to j has a weight of at least j − i while the path from j to i has a weight of at least
i− j+ n = (i− j) mod n.
Consider any approximation algorithm Approx for Min-L-DCC. We run Approx on Gn for n ∈ N. By outputting the cycle

lengths occurring in the L-cycle cover of Gn for all n = 1, 2, . . ., we obtain an enumeration of a subset S ⊆ L. Since L is
immune, S is a finite set, and s = max(S) exists. Thus, the L-cycle cover output for Gn consists of at least n/s cycles and has a
weight of at least n2/s. For n ∈ L, this is a factor of n/s away from the optimum solution, where s is a constant that depends
only on Approx. Thus, no recursive algorithm can achieve an approximation ratio of o(n). �

Assume that we can approximate Min-L′-DCC with a ratio of r for every finite set L′. Theorem 3.4 shows that thenMin-L-
DCC can be approximated for all Lwith a ratio of εnr , where ε can be made arbitrarily small. This is the directed counterpart
of Theorem 2.7 and Corollary 2.8, and it shows that Theorem 3.3 is tight.

Theorem 3.4. For every L and every ε > 0, there exists a finite set L′ ⊆ L with 〈L′〉 = 〈L〉 such that minL′(G, w) ≤
εn ·minL(G, w) for all directed complete graphs G with edge weights w.

For the proof of the theorem, we need the following lemma, which we will also use for Theorem 4.1.

Lemma 3.5. For every L ⊆ N and every ε > 0, there exists a finite set L′ ⊆ L with 〈L′〉 = 〈L〉 and the following property: For
every λ ∈ L \ L′, there exist λ1, . . . , λz ∈ L′ with z ≤ ελ such that

∑z
i=1 λi = λ.

Proof. If L is finite, we simply choose L′ = L. So we assume that L is infinite. Let again gL denote the greatest common divisor
of all numbers of L. Let us first describe how to proceed if gL ∈ L. After that we deal with the case that gL 6∈ L.
Let L′ = {λ ∈ L | λ ≤ m}, and let ` ∈ L′. If m is sufficiently large, then 〈L′〉 = 〈L〉 (this follows from the proof of

Lemma 2.1 [23, Lem. 3.1] and also implicitly from this proof). We will specify ` andm, which depend on ε, later on.
Let λ ∈ L \ L′. Thus, λ > m. Let r = mod (λ, `). Since λ and ` are divisible by gL, also r is divisible by gL. Since λ 6∈ L′, we

have to find λ1, λ2, . . . ∈ L′ that add up to λ. We have λ = bλ/`c · ` + (r/gL) · gL. Now we choose λ1 = · · · = λbλ/`c = `
and λbλ/`c+1 = · · · = λbλ/`c+r/gL = gL. What remains is to show that bλ/`c + r/gL ≤ ελ. To do this, we choose ` > 1/ε.
Since r/gL is bounded from above by `/gL, which does not depend on λ, we obtain bλ/`c+ r/gL ≤ ελ for all λ > m for some
sufficiently largem.
The case that gL 6∈ L remains to be considered. There exist π1, . . . , πp ∈ L and ξ1, . . . , ξp ∈ Z for some p ∈ N with

gL =
∑p
i=1 ξiπi. Without loss of generality, we assume that ξ1 = min1≤i≤p ξi. We have ξ1 < 0 since gL 6∈ L.

As above, let L′ = {λ ∈ L | λ ≤ m}, and let ` ∈ L′. Let `∗ = −ξ1` ·
∑p
i=1 πi > 0. We choose m to be larger than `

∗. Let
λ > m, and let r = mod (λ− `∗, `). Then

λ =

⌊
λ− `∗

`

⌋
· `+ r + `∗ =

⌊
λ− `∗

`

⌋
· `+

r
gL
·

p∑
i=1

πiξi − ξ1` ·

p∑
i=1

πi

=

⌊
λ− `∗

`

⌋
· `+

p∑
i=1

πi ·

(
rξi
gL
− ξ1`

)
.

We have ρi =
rξi
gL
− ξ1` ≥ 0: Since ξ1 < 0, we have−ξ1` > 0. If ξi > 0, then of course ρi ≥ 0. If ξi < 0, then−ξi ≤ −ξ1,

and ρi ≥ 0 follows from r < `. According to the deliberations above, we choose λ1 = · · · = λb(λ−`∗)/`c = `. In addition,
for 1 ≤ i ≤ p, we set ρi of the λj’s equal to πi. It remains to be shown that b(λ− `∗)/`c +

∑p
i=1 ρi ≤ ελ. This follows from

the fact that ρi ≤ ` · (ξi/gL − ξ1) for all i, which is independent of λ. Again, we choose ` > 1/ε and m sufficiently large to
complete the proof. �

Proof of Theorem 3.4. Let ε > 0 and L ⊆ D be given. We choose L′ ⊆ L as described in the proof of Lemma 3.5. In order
to prove the theorem, let G be a directed complete graph, and let C be an L-cycle cover of minimum weight of G. We show
that we can find an L′-cycle cover C ′ withw(C ′) ≤ εn · w(C).
The L′-cycle cover C ′ contains all cycles of C whose lengths are in L′. Now consider any cycle c of length λ ∈ L \ L′.

According to Lemma 3.5, there exist λ1, . . . , λz ∈ L′ with
∑z
i=1 λi = λ and z ≤ ελ. We decompose c into z cycles of length

λ1, . . . , λz . By the triangle inequality, the weight of each of these new cycles is at most w(c). Thus, the total weight of all z
cycles is at most z ·w(c) ≤ ελ ·w(c) ≤ εn ·w(c). By performing this for all cycles of C , we obtain an L′-cycle cover C ′ with
minL′(G, w) ≤ w(C ′) ≤ εn · w(C) = εn ·minL(G, w). �

4. Properties of maximum-weight cycle covers

To contrast our results for Min-L-UCC and Min-L-DCC, we show that their maximization counterparts Max-L-UCC and
Max-L-DCC can, at least in principle, be approximated arbitrarily well; their inapproximability is solely due to their APX-
hardness and not to the difficulties arising from undecidable sets L. In other words, the lower bounds for Min-L-UCC and
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Min-L-DCC presented in this paper are based on the hardness of deciding if certain lengths are in L. The inapproximability
of Max-L-UCC and Max-L-DCC is based on the difficulty of finding good L-cycle covers rather than testing if they are L-cycle
covers.
Let maxL(G, w) be the weight of a maximum-weight L-cycle cover of Gwith edge weightsw. The edge weightsw do not

have to fulfill the triangle inequality. We will show that maxL(G, w) can be approximated arbitrarily well by maxL′(G, w)
for finite sets L′ ⊆ L with 〈L′〉 = 〈L〉. Thus, any approximation algorithm for Max-L′-UCC or Max-L′-DCC for finite sets L′
immediately yields an approximation algorithm for general sets L with an only negligibly worse approximation ratio. The
following theorem for directed cycle covers contains the case of undirected graphs as a special case.

Theorem 4.1. Let L ⊆ D be any non-empty set, and let ε > 0. Then there exists a finite subset L′ ⊆ L with 〈L′〉 = 〈L〉 such that
maxL′(G, w) ≥ (1− ε) ·maxL(G, w) for all directed complete graphs G with edge weightsw.

Proof. Let ε > 0 be given. Depending on L and ε, we choose L′ according to Lemma 3.5. Let us compare maxL′(G, w)
to maxL(G, w). Therefore, let C be an optimum L-cycle cover. We show how to obtain an L′-cycle cover C ′ from C . The
L′-cycle cover C ′ contains all cycles of C whose lengths are in L′. Let us consider any cycle c of length λ ∈ L \ L′. There
exist λ1, . . . , λz ∈ L′ for some z ≤ ελ that sum up to λ. We break z edges of c to obtain a collection of paths of lengths
λ1−1, . . . , λz−1. By doing this, we remove at most an ε fraction of c ’s weight: Let e1, . . . , eλ be the edges of c in that order,
where e1 is chosen uniformly at random from c ’s edges. Then we break eλ1 , eλ1+λ2 , . . . , eλ1+···+λz . In this way, we obtain a
collection of paths consisting of λ1− 1, λ2− 1, . . . , λz − 1 edges, each of which can be closed to form a cycle whose length
is in L′. By the random choice of e1 and since z ≤ ελ edges are broken, every edge is removed with a probability of at most
ε. Thus, the expected total weight of the paths is at least (1− ε) ·w(c). Hence, we can choose e1 deterministically such that
at most an ε fraction of the weight is removed.
We have lost at most ε · w(c) of the weight of every cycle c of C , thus maxL′(G, w) ≥ w(C ′) ≥ (1 − ε) · w(C) =

(1− ε) ·maxL(G, w). �

5. Concluding remarks

First of all, we would like to know if there is a general upper bound for the approximability of Min-L-UCC : Does there
exists an r (independent of L) such that Min-L-UCC can be approximated with a factor of r? If such an algorithm works
also for the slightly more general problem Min-L-UCC with 2 ∈ L (see Section 3.1), then we would obtain a factor rn/2
approximation for Min-L-DCC as well.
While the problem of computing L-cycle cover of minimum weight can be approximated efficiently in the case of

undirected graphs, the directed variant seems to bemuch harder.We are interested in developing approximation algorithms
for Min-L-DCC for particular sets L or for certain classes of sets L. For instance, how well can Min-L-DCC be approximated if
L is a finite set? Are there non-constant lower bounds for the approximability of Min-L-DCC, for instance bounds depending
on max(L)? Because of the similarities between Min-L-DCC and ATSP, an answer to either questions would hopefully also
shed some light on the approximability of the ATSP.
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