8,854 research outputs found

    On the geometric dilation of closed curves, graphs, and point sets

    Full text link
    The detour between two points u and v (on edges or vertices) of an embedded planar graph whose edges are curves is the ratio between the shortest path in in the graph between u and v and their Euclidean distance. The maximum detour over all pairs of points is called the geometric dilation. Ebbers-Baumann, Gruene and Klein have shown that every finite point set is contained in a planar graph whose geometric dilation is at most 1.678, and some point sets require graphs with dilation at least pi/2 = 1.57... We prove a stronger lower bound of 1.00000000001*pi/2 by relating graphs with small dilation to a problem of packing and covering the plane by circular disks. The proof relies on halving pairs, pairs of points dividing a given closed curve C in two parts of equal length, and their minimum and maximum distances h and H. Additionally, we analyze curves of constant halving distance (h=H), examine the relation of h to other geometric quantities and prove some new dilation bounds.Comment: 31 pages, 16 figures. The new version is the extended journal submission; it includes additional material from a conference submission (ref. [6] in the paper

    Lower bounds on the dilation of plane spanners

    Full text link
    (I) We exhibit a set of 23 points in the plane that has dilation at least 1.43081.4308, improving the previously best lower bound of 1.41611.4161 for the worst-case dilation of plane spanners. (II) For every integer n≥13n\geq13, there exists an nn-element point set SS such that the degree 3 dilation of SS denoted by δ0(S,3) equals 1+3=2.7321…\delta_0(S,3) \text{ equals } 1+\sqrt{3}=2.7321\ldots in the domain of plane geometric spanners. In the same domain, we show that for every integer n≥6n\geq6, there exists a an nn-element point set SS such that the degree 4 dilation of SS denoted by δ0(S,4) equals 1+(5−5)/2=2.1755…\delta_0(S,4) \text{ equals } 1 + \sqrt{(5-\sqrt{5})/2}=2.1755\ldots The previous best lower bound of 1.41611.4161 holds for any degree. (III) For every integer n≥6n\geq6 , there exists an nn-element point set SS such that the stretch factor of the greedy triangulation of SS is at least 2.02682.0268.Comment: Revised definitions in the introduction; 23 pages, 15 figures; 2 table

    Computing the Greedy Spanner in Linear Space

    Full text link
    The greedy spanner is a high-quality spanner: its total weight, edge count and maximal degree are asymptotically optimal and in practice significantly better than for any other spanner with reasonable construction time. Unfortunately, all known algorithms that compute the greedy spanner of n points use Omega(n^2) space, which is impractical on large instances. To the best of our knowledge, the largest instance for which the greedy spanner was computed so far has about 13,000 vertices. We present a O(n)-space algorithm that computes the same spanner for points in R^d running in O(n^2 log^2 n) time for any fixed stretch factor and dimension. We discuss and evaluate a number of optimizations to its running time, which allowed us to compute the greedy spanner on a graph with a million vertices. To our knowledge, this is also the first algorithm for the greedy spanner with a near-quadratic running time guarantee that has actually been implemented

    Beta-Skeletons have Unbounded Dilation

    Get PDF
    A fractal construction shows that, for any beta>0, the beta-skeleton of a point set can have arbitrarily large dilation. In particular this applies to the Gabriel graph.Comment: 8 pages, 9 figure

    Refining Multivariate Value Set Bounds

    Full text link
    Over finite fields, if the image of a polynomial map is not the entire field, then its cardinality can be bounded above by a significantly smaller value. Earlier results bound the cardinality of the value set using the degree of the polynomial, but more recent results make use of the powers of all monomials. In this paper, we explore the geometric properties of the Newton polytope and show how they allow for tighter upper bounds on the cardinality of the multivariate value set. We then explore a method which allows for even stronger upper bounds, regardless of whether one uses the multivariate degree or the Newton polytope to bound the value set. Effectively, this provides an alternate proof of Kosters' degree bound, an improved Newton polytope-based bound, and an improvement of a degree matrix-based result given by Zan and Cao.Comment: 41 pages, 1 figure. Preprint of a dissertation to be published with Proquest/UMI (in press). Shortened version of manuscript for publication elsewhere is in preparatio
    • …
    corecore