486 research outputs found

    Multifunctional MIMO systems: A combined diversity and multiplexing design perspective

    No full text
    In this treatise we investigate the design alternatives of different multiple-input multiple-output schemes while considering the attainable diversity gains, multiplexing gains, and beamforming gains. Following a brief classification of different MIMO schemes, where the different MIMO schemes are categorized as diversity techniques, multiplexing schemes, multiple access arrangements, and beamforming techniques, we introduce the family of multifunctional MIMOs. These multifunctional MIMOs are capable of combining the benefits of several MIMO schemes and hence attaining improved performance in terms of both their bit error rate as well as throughput. The family of multifunctional MIMOs combines the benefits of both space-time coding and the Bell Labs layered space-time scheme as well as those of beamforming. We also introduce the idea of layered steered space-time spreading, which combines the benefits of space-time spreading, V-BLAST, and beamforming with those of the generalized multicarrier direct sequence code-division multiple access concept. Additionally, we compare the attainable diversity, multiplexing, and beamforming gains of the different MIMO schemes in order to document the advantages of multifunctional MIMOs over conventional MIMO schemes

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    A universal space-time architecture for multiple-antenna aided systems

    No full text
    In this tutorial, we first review the family of conventional multiple-antenna techniques, and then we provide a general overview of the recent concept of the powerful Multiple-Input Multiple-Output (MIMO) family based on a universal Space-Time Shift Keying (STSK) philosophy. When appropriately configured, the proposed STSK scheme has the potential of outperforming conventional MIMO arrangements

    Improved Spatial Modulation Techniques for Wireless Communications

    Get PDF
    Transmission and reception methods with multiple antennas have been demonstrated to be very useful in providing high data rates and improving reliability in wireless communications. In particular, spatial modulation (SM) has recently emerged as an attractive transmission method for multiple-antennas systems due to its better energy efficiency and lower system complexity. This thesis is concerned with developing transmission techniques to improve the spectral efficiency of SM where antenna/subcarrier index involves in conveying information bits. In the first part of the thesis, new transmission techniques are developed for SM over frequency-flat fading channels. The first proposed scheme is based on a high-rate space-time block code instead of using the classical Alamouti STBC, which helps to increase the spectral efficiency and achieve a transmit diversity order of two. A simplified maximum likelihood detection is also developed for this proposed scheme. Analysis of coding gains and simulation results demonstrate that the proposed scheme outperforms previously-proposed SM schemes at high data transmission rates. Then, a new space-shift keying (SSK) modulation scheme is proposed which requires a smaller number of transmit antennas than that required in the bi-space shift keying (BiSSK). Such a proposed SSK-based scheme is obtained by multiplexing two in-phase and quadrature generalized SSK streams and optimizing the carrier signals transmitted by the activated antennas. Performance of the proposed scheme is compared with other SSK-based schemes via minimum Euclidean distance analysis and computer simulation. The third scheme proposed in this part is an improved version of quadrature SM (QSM). The main feature of this proposed scheme is to send a second constellation symbol over the in-phase and quadrature antenna dimensions. A significant performance advantage of the proposed scheme is realized at the cost of a slight increase in the number of radio-frequency (RF) chains. Performance comparisons with the most recent SM schemes confirm the advantage of the proposed scheme. The last contribution of the first part is an optimal constellation design for QSM to minimize the average probability of error. It is shown that, the error performance of QSM not only depends on the Euclidean distances between the amplitude phase modulation (APM) symbols and the energies of APM symbols, but also on the in-phase and quadrature components of the QSM symbols. The analysis of the union bound of the average error probability reveals that at a very large number of transmit antennas, the optimal constellations for QSM converge to a quadrature phase shift keying (QPSK) constellation. Simulation results demonstrate the performance superiority of the obtained constellations over other modulation schemes. In the second part of the thesis, the applications of SM in frequency-selective fading channels are studied. First, a new transmission scheme that employs SM for each group of subcarriers in orthogonal frequency-division multiplexing (OFDM) transmission is investigated. Specifically, OFDM symbols in each group are passed through a precoder to maximize the diversity and coding gains, while SM is applied in each group to convey more information bits by antenna indices. Performance analysis and simulation results are carried out to demonstrate the superiority of the proposed scheme over a previously-proposed combination of SM and OFDM. Next, the performance of OFDM based on index modulation and a flexible version of OFDM, knows as OFDM with multiple constellations, is compared for both case of "no precoding'' and "with precoding'' of data symbols. It is shown that the precoded OFDM with multiple constellations outperforms precoded-IM based OFDM systems over frequency-selective fading channels. The last part of the thesis investigates a multiuser downlink transmission system based on in-phase and quadrature space-shift keying modulation and precoding to reduce the minimum number of transmit antennas while keeping the complexity of the receiver low. In addition to the maximum likelihood (ML) detection, the low complexity zero forcing (ZF) receiver is also studied. Theoretical upper bounds for the error probabilities of both ML and ZF receivers are obtained and corroborated with simulation results

    A Family of Hybrid Space-Time Codes for MIMO Wireless Communications

    Get PDF
    Hybrid MIMO space-time codes combine the benefits of spatial multiplexing with diversity gain to achieve both high spectral efficiency and link reliability. In this paper, we present a family of hybrid codes, known as LD STBC-VBLAST codes, along with a receiver architecture suitable for low-complexity hardware implementation. We show that, under Rayleigh fading, the performance of LD STBC-VBLAST codes is superior to other recently proposed hybrid codes. We also present a technique to derive, from a given propagation scenario, spatially correlated MIMO channel models adequate for space-time coding performance analysis. Using this technique, we evaluate the performance of LD STBC-VBLAST codes under several correlated channels.ITESO, A.C.ITSONCINVESTAV-IPNPROME

    Efficient space-frequency block coded pilot-aided channel estimation method for multiple-input-multiple-output orthogonal frequency division multiplexing systems over mobile frequency-selective fading channels

    Get PDF
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.An iterative pilot-aided channel estimation technique for space-frequency block coded (SFBC) multiple-input multiple-output orthogonal frequency division multiplexing systems is proposed. Traditionally, when channel estimation techniques are utilised, the SFBC information signals are decoded one block at a time. In the proposed algorithm, multiple blocks of SFBC information signals are decoded simultaneously. The proposed channel estimation method can thus significantly reduce the amount of time required to decode information signals compared to similar channel estimation methods proposed in the literature. The proposed method is based on the maximum likelihood approach that offers linearity and simplicity of implementation. An expression for the pairwise error probability (PEP) is derived based on the estimated channel. The derived PEP is then used to determine the optimal power allocation for the pilot sequence. The performance of the proposed algorithm is demonstrated in high frequency selective channels, for different number of pilot symbols, using different modulation schemes. The algorithm is also tested under different levels of Doppler shift and for different number of transmit and receive antennas. The results show that the proposed scheme minimises the error margin between slow and high speed receivers compared to similar channel estimation methods in the literature.Peer reviewe

    Hybrid MIMO: a new transmission method for simultaneously achieving spatial multiplexing and diversity gains in MIMO systems

    Get PDF
    Multiple input multiple output (MIMO) technology has evolved over the past few years into a technology with great potential to drive the direction of future wireless communications. MIMO technology has become a solid reality when massive MIMO systems (MIMO with large number of antennas and transceivers) were commercially deployed in several countries across the world in the recent past. Moreover, MIMO has been integrated into state-of-the-art paradigms such as fifth-generation (5G) networks as one of the main enabling technologies. MIMO possesses many attractive and highly desirable properties such as spatial multiplexing, diversity gains, and adaptive beamforming gains that leads to high data rates, enhanced reliability, and other enhancements. Nevertheless, beyond 5G technologies demand wireless communication systems with, among other properties, immensely higher data rates and better reliability simultaneously at the same time. In this work, a new, novel MIMO technique for simultaneously achieving multiplexing and diversity gains as well as completely eliminating any processing at the MIMO receiver, leading to advantages such as low complexity and low power consumption, is proposed. The proposed technique employs the design of interference-canceling matrices, which are calculated from the channels between the transceiver antennas, where the matrices are employed at the base station to help achieve multiplexing and diversity gains simultaneously. The novelty and efficiency of the introduced paradigm is demonstrated via mathematical models and validated by Monte Carlo simulations. Results indicate that the proposed system outperforms conventional MIMO models.No sponso

    Link adaptation performance evaluation for a MIMO-OFDM physical layer in a realistic outdoor environment

    Get PDF
    corecore