825 research outputs found

    Impact of initialization of a modified particle swarm optimization on cooperative source searching

    Get PDF
    Swarm robotic is well known for its flexibility, scalability and robustness that make it suitable for solving many real-world problems. Source searching which is characterized by complex operation due to the spatial characteristic of the source intensity distribution, uncertain searching environments and rigid searching constraints is an example of application where swarm robotics can be applied. Particle swarm optimization (PSO) is one of the famous algorithms have been used for source searching where its effectiveness depends on several factors. Improper parameter selection may lead to a premature convergence and thus robots will fail (i.e., low success rate) to locate the source within the given searching constraints. Additionally, target overshooting and improper initialization strategies may lead to a nonoptimal (i.e., take longer time to converge) target searching. In this study, a modified PSO and three different initializations strategies (i.e., random, equidistant and centralized) were proposed. The findings shown that the proposed PSO model successfully reduce the target overshooting by choosing optimal PSO parameters and has better convergence rate and success rate compared to the benchmark algorithms. Additionally, the findings also indicate that the random initialization give better searching success compared to equidistant and centralize initialization

    An Efficient Multiple-Place Foraging Algorithm for Scalable Robot Swarms

    Get PDF
    Searching and collecting multiple resources from large unmapped environments is an important challenge. It is particularly difficult given limited time, a large search area and incomplete data about the environment. This search task is an abstraction of many real-world applications such as search and rescue, hazardous material clean-up, and space exploration. The collective foraging behavior of robot swarms is an effective approach for this task. In our work, individual robots have limited sensing and communication range (like ants), but they are organized and work together to complete foraging tasks collectively. An efficient foraging algorithm coordinates robots to search and collect as many resources as possible in the least amount of time. In the foraging algorithms we study, robots act independently with little or no central control. As the swarm size and arena size increase (e.g., thousands of robots searching over the surface of Mars or ocean), the foraging performance per robot decreases. Generally, larger robot swarms produce more inter-robot collisions, and in swarm robot foraging, larger search arenas result in larger travel distances causing the phenomenon of diminishing returns. The foraging performance per robot (measured as a number of collected resources per unit time) is sublinear with the arena size and the swarm size. Our goal is to design a scale-invariant foraging robot swarm. In other words, the foraging performance per robot should be nearly constant as the arena size and the swarm size increase. We address these problems with the Multiple-Place Foraging Algorithm (MPFA), which uses multiple collection zones distributed throughout the search area. Robots start from randomly assigned home collection zones but always return to the closest collection zones with found resources. We simulate the foraging behavior of robot swarms in the robot simulator ARGoS and employ a Genetic Algorithm (GA) to discover different optimized foraging strategies as swarm sizes and the number of resources is scaled up. In our experiments, the MPFA always produces higher foraging rates, fewer collisions, and lower travel and search time than the Central-Place Foraging Algorithm (CPFA). To make the MPFA more adaptable, we introduce dynamic depots that move to the centroid of recently collected resources, minimizing transport times when resources are clustered in heterogeneous distributions. Finally, we extend the MPFA with a bio-inspired hierarchical branching transportation network. We demonstrate a scale-invariant swarm foraging algorithm that ensures that each robot finds and delivers resources to a central collection zone at the same rate, regardless of the size of the swarm or the search area. Dispersed mobile depots aggregate locally foraged resources and transport them to a central place via a hierarchical branching transportation network. This approach is inspired by ubiquitous fractal branching networks such as animal cardiovascular networks that deliver resources to cells and determine the scale and pace of life. The transportation of resources through the cardiovascular system from the heart to dispersed cells is the inverse problem of transportation of dispersed resources to a central collection zone through the hierarchical branching transportation network in robot swarms. We demonstrate that biological scaling laws predict how quickly robots forage in simulations of up to thousands of robots searching over thousands of square meters. We then use biological scaling predictions to determine the capacity of depot robots in order to overcome scaling constraints and produce scale-invariant robot swarms. We verify the predictions using ARGoS simulations. While simulations are useful for initial evaluations of the viability of algorithms, our ultimate goal is predicting how algorithms will perform when physical robots interact in the unpredictable conditions of environments they are placed in. The CPFA and the Distributed Deterministic Spiral Algorithm (DDSA) are compared in physical robots in a large outdoor arena. The physical experiments change our conclusion about which algorithm has the best performance, emphasizing the importance of systematically comparing the performance of swarm robotic algorithms in the real world. We illustrate the feasibility of implementing the MPFA with transportation networks in physical robot swarms. Full implementation of the MPFA in an outdoor environment is the next step to demonstrate truly scalable and robust foraging robot swarms

    Self-adaptive decision-making mechanisms to balance the execution of multiple tasks for a multi-robots team

    Get PDF
    This work addresses the coordination problem of multiple robots with the goal of finding specific hazardous targets in an unknown area and dealing with them cooperatively. The desired behaviour for the robotic system entails multiple requirements, which may also be conflicting. The paper presents the problem as a constrained bi-objective optimization problem in which mobile robots must perform two specific tasks of exploration and at same time cooperation and coordination for disarming the hazardous targets. These objectives are opposed goals, in which one may be favored, but only at the expense of the other. Therefore, a good trade-off must be found. For this purpose, a nature-inspired approach and an analytical mathematical model to solve this problem considering a single equivalent weighted objective function are presented. The results of proposed coordination model, simulated in a two dimensional terrain, are showed in order to assess the behaviour of the proposed solution to tackle this problem. We have analyzed the performance of the approach and the influence of the weights of the objective function under different conditions: static and dynamic. In this latter situation, the robots may fail under the stringent limited budget of energy or for hazardous events. The paper concludes with a critical discussion of the experimental results

    Comparison of bio-inspired algorithms applied to the coordination of mobile robots considering the energy consumption

    Get PDF
    Many applications, related to autonomous mobile robots, require to explore in an unknown environment searching for static targets, without any a priori information about the environment topology and target locations. Targets in such rescue missions can be fire, mines, human victims, or dangerous material that the robots have to handle. In these scenarios, some cooperation among the robots is required for accomplishing the mission. This paper focuses on the application of different bio-inspired metaheuristics for the coordination of a swarm of mobile robots that have to explore an unknown area in order to rescue and handle cooperatively some distributed targets. This problem is formulated by first defining an optimization model and then considering two sub-problems: exploration and recruiting. Firstly, the environment is incrementally explored by robots using a modified version of ant colony optimization. Then, when a robot detects a target, a recruiting mechanism is carried out to recruit a certain number of robots to deal with the found target together. For this latter purpose, we have proposed and compared three approaches based on three different bio-inspired algorithms (Firefly Algorithm, Particle Swarm Optimization, and Artificial Bee Algorithm). A computational study and extensive simulations have been carried out to assess the behavior of the proposed approaches and to analyze their performance in terms of total energy consumed by the robots to complete the mission. Simulation results indicate that the firefly-based strategy usually provides superior performance and can reduce the wastage of energy, especially in complex scenarios

    Comparison of bio-inspired algorithms applied to the coordination of mobile robots considering the energy consumption

    Get PDF
    Many applications, related to autonomous mobile robots, require to explore in an unknown environment searching for static targets, without any a priori information about the environment topology and target locations. Targets in such rescue missions can be fire, mines, human victims, or dangerous material that the robots have to handle. In these scenarios, some cooperation among the robots is required for accomplishing the mission. This paper focuses on the application of different bio-inspired metaheuristics for the coordination of a swarm of mobile robots that have to explore an unknown area in order to rescue and handle cooperatively some distributed targets. This problem is formulated by first defining an optimization model and then considering two sub-problems: exploration and recruiting. Firstly, the environment is incrementally explored by robots using a modified version of ant colony optimization. Then, when a robot detects a target, a recruiting mechanism is carried out to recruit a certain number of robots to deal with the found target together. For this latter purpose, we have proposed and compared three approaches based on three different bio-inspired algorithms (Firefly Algorithm, Particle Swarm Optimization, and Artificial Bee Algorithm). A computational study and extensive simulations have been carried out to assess the behavior of the proposed approaches and to analyze their performance in terms of total energy consumed by the robots to complete the mission. Simulation results indicate that the firefly-based strategy usually provides superior performance and can reduce the wastage of energy, especially in complex scenarios

    Study of Cooperative Control System for Multiple Mobile Robots Using Particle Swarm Optimization

    Get PDF
    The idea of using multiple mobile robots for tracking targets in an unknown environment can be realized with Particle Swarm Optimization proposed by Kennedy and Eberhart in 1995. The actual implementation of an efficient algorithm like Particle Swarm Optimization (PSO) is required when robots need to avoid the randomly placed obstacles in unknown environment and reach the target point. However, ordinary methods of obstacle avoidance have not proven good results in route planning. PSO is a self-adaptive population-based method in which behavior of the swarm is iteratively generated from the combination of social and cognitive behaviors and is an effective technique for collective robotic search problem. When PSO is used for exploration, this algorithm enables robots to travel on trajectories that lead to total swarm convergence on some target

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future
    • …
    corecore