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Abstract Many applications related to autonomous

mobile robots require to explore in an unknown environ-

ment searching for static targets, without any a priori

information about the environment topology and target

locations. Targets in such rescue missions can be fire,

mines, human victims, or dangerous material that the

robots have to handle. In these scenarios, some coop-

eration among the robots is required for accomplishing

the mission. This paper focuses on the application of

different bio-inspired metaheuristics for the coordina-

tion of a swarm of mobile robots that have to explore

an unknown area in order to rescue some distributed

targets. This problem is formulated by first defining

an optimization model and then considering two sub-

problems: exploration and recruiting. Firstly, the en-

vironment is incrementally explored by robots using

a modified version of ant colony optimization. Then,

when a robot detects a target, a recruiting mechanism

is carried out to recruit more robots to carry out the dis-

arm task together. For this purpose, we have proposed

and compared three approaches based on three differ-

ent bio-inspired algorithms (Firefly Algorithm, Parti-

cle Swarm Optimization and Artificial Bee Algorithm).

A computational study and extensive simulations have

been carried out to assess the behavior of the proposed

approaches and to analyze their performance in terms

of total energy consumed by the robots to complete
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the mission. Simulation results indicate that the firefly-

based strategy usually provides superior performance

and can reduce the wastage of energy, especially in com-

plex scenarios.
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1 Introduction

With the increasing importance of mobile robots in

many critical applications, the study of multi-robot sys-

tems has grown significantly in size and intensity in

recent years. In applications that are too risky for hu-

mans, multi-robot systems can play a crucial role to
perform such critical tasks. Possible applications in-

clude planetary exploration, urban search and rescue

mission, environmental monitoring, air traffic control,

surveillance and cleaning of disastrous materials [1]].

The main goal is to coordinate a swarm of robots in

such a way that some predefined global objectives can

be achieved more efficiently. A particularly interesting

situation is when all the mobile robots have no a prior

information about the environment or target’s loca-

tions, and these robots have to cooperate for finding

the targets and then dealing with them jointly. In this

work, we will focus on first exploration and then robot

coordination. We suppose that a target can be detected

by proper sensors but we will not focus on the details of

such sensors. Since we are interested in how to provide

a communication system, our emphasis will be on how

to achieve a cooperative behaviour so as to perform the

mission with a decisions mechanism under the assump-

tion that the information about the environment for

each robot is only partially available.
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This paper first proposes different approaches based

on three different bio-inspired algorithms, and then car-

ries out a comparison of bio-inspired metaheuristics ap-

plied to a swarm of robot that have to complete a mis-

sion with the objective to minimize the energy con-

sumption. Energy limitation is one of the most impor-

tant challenges for mobile robots. The energy consump-

tion is related to the physical and mechanical structure

of the robots and their abilities for moving, rotating and

sensing. A robot is usually comprised of multiple com-

ponents such as motors, sensors, controllers and em-

bedded computers. The power consumption of a robot

can be divided into motion, power, sensing power, con-

trol power and computation power accordingly. Batter-

ies are often used to provide power in mobile robots;

however, they are heavy to carry and have a limited

energy capacity.

Previous studies indicate that sensing, computation

and communication can consume a significant amount

of power [2]. In order to minimize the energy consumed

by robots to complete the assigned tasks, multi-robot

algorithms should ideally have the following character-

istics: distributed among many robots, computationally

simple, low communication traffic and scalable. Fur-

thermore, the swarm of robots should be able to adapt

and cooperate towards a low energy consumption rate

energy, despite the limited sensing and communication

abilities of the individual robots and the simple local in-

teraction rules [3]. At the same time, the swarm should

be able to complete the required tasks and achieve ob-

jectives in the most efficient way.

One of the key issues is how to specify the rules

of behavior and interactions at the level of an individ-

ual robot in order to minimize unnecessary movements,

turning, and communication that can cause significant

energy consumption. In this paper, the problem is first

divided into two major phases: exploring the area for

searching targets and targets resolving. The proposed

approaches related to each phase form the main contri-

butions of this work.

The exploration stage aims to explore the region

and detect some targets distributed randomly in an un-

known area and this is mainly implemented through an

ant based strategy. In nature, ants deposit a specific

type of chemical substance (pheromone) in the terrain

while they are moving [4]. There are different types of

pheromone, each of which is associated with a particu-

lar meaning and thus enables the ants to make decisions

[5]. We use the pheromone to guide the robots during

exploration. Using this approach, it is assumed that the

robots do not know their positions and the positions of

the others in the area, but they move according to what

they can sense into the environment. When a robot de-

tects a target during the exploration phase, it becomes

a coordinator for this target and it starts to initiate a

recruitment process so as to attract other robots. This

coordinator robot together with recruited robots will

perform the handling or disarmament of the found tar-

get to make it safe cooperatively.

For this purpose, the coordinator robot uses a wire-

less communication sending out help requests through

packets to its neighbors. The robots that receive the

help requests choose in autonomous and individual man-

ner if and what target they eventually go to. The re-

cruiting task occurs in real time as soon as the targets

are found. Three bio-inspired metaheuristic approaches

are proposed as a decision mechanism for the recruited

robots. Therefore, the aim of this paper is to evalu-

ate and then compare these techniques, which provides

some insight into how a group of robots can respond

to a task of demands effectively in terms of total en-

ergy consumed by the swarm. One approach is to use

the strategy based on the Firefly Algorithm [6] inspired

by the flashing behaviour of tropical fireflies. The other

methods are Particle Swarm Optimization (PSO) and

Artificial Bee Colony (ABC), and they are inspired by

social behavior of bird flocking [7] or fish schooling and

the social behaviour of honey bees [8], respectively.

Therefore, the remainder of the paper is organized

as follows. Section 2 provides a review of the related

work. The description of the problem is the focus of

Section 3. Section 4 and Section 5 describe the essence

of the bio-inspired exploration algorithms used and the

recruiting approaches, respectively. Section 6 presents

the simulation results obtained from a set of experi-

ments and finally Section 7 draws the main research

conclusions.

2 Related Work

Coordination of multi-robot systems has received much

attention in recent years due to its vast potential in

real-world applications. Simple robots work together

to accomplish some tasks. In order to maximize the

benefits from the cooperation among robots, a good

coordination strategy is essential. The communication

among the swarm is inevitable when the robots cooper-

ate with each other, and it is the core part for control-

ling swarm behaviours. Robots coordination strategies

can be broadly divided into two main categories: ex-

plicit coordination and implicit coordination.

Explicit coordination refers to the direct exchange

of information between robots, which can be made in

the form of the unicast or broadcast of intentional mes-

sages. This often requires a dedicated on-board com-

munication module. Existing coordination methods are
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mainly based on the use of explicit communication,

that allows the accuracy of the exchange of informa-

tion among the swarm. However, such communication

implies a waste of resources that can lead to the deteri-

oration of the overall performance of the robot system.

Instead, implicit coordination is usually associated with

implicit communication, which requires the explorative

robots to perceive, model and reason others’ behavior.

In this case, an individual robot makes independent de-

cisions on how to behave, based on the information it

gathers through its own perception with others. When

the robots use an implicit communication to coordi-

nate, although the information obtained by the robots

is not completely reliable, the stability, reliability and

fault tolerance of the overall system can be improved

[9,10].

Bio-inspired algorithms for modelling self-organizing

robot systems have been proposed in recent years, in-

spired by a variety of biological systems. One of the well

known is inspired by the collective behaviour of insect

colonies such as ants and fireflies [4,6]. These algorithms

emphasise on decentralised local control, local commu-

nication and on the emergence of global behaviour as

the result of self-organization. Ant and other social an-

imals are known to produce chemical substances called

pheromone and use them to mark the paths in the en-

vironment that is used as a medium for sharing infor-

mation. Pheromone trails provide a type of distributed

information that artificial agents may use to make de-

cisions. Many works can be found in the literature us-

ing this kind of biology metaphor [5,11,12]. Chemical

trail-following strategies have been implemented with

real robots. For example, ethanol trails were deposited

and followed by the robots in Fujisawa et al. [13]], but

the use of decaying chemical trails by real robots can be

problematic. Other robotic implementations of insect-

style pheromone trail following have instead used non-

chemical substitutes for the trail chemicals. For exam-

ple, Garnier et al. [14] used a downward-pointing LCD

projector mounted above their robots arena to project

light trails onto the floor. Other works that apply this

similar approach were presented in [15,16,17].

In essence, most of the nature- inspired approaches

use a combination of stochastic components or moves

with some deterministic moves so as to form a multi-

agent system with evolving states. Such a swarming

system evolves and potentially self-organizes into a self-

organized state some emergent characteristics. Another

well-known bio-inspired approach takes inspiration from

the behaviour of the birds, called Particle Swarm Op-

timization(PSO). PSO-inspired methods have received

much attention in recent years. Pugh and Martinoli [18]

applied an adapted version of PSO learning algorithm

to carry out unsupervised robotic learning in groups of

robots with only local information. Masár [19] proposed

a modified version of PSO for the purpose of space ex-

ploration. Hereford and Siebold [20] presented a version

of PSO for finding targets in the environment. A mod-

ified version of this algorithm is a robotic Darwinian-

PSO approach by mimicking natural selection using the

principles of social exclusion and inclusion (i.e., adding

and removing robots to swarms) [21]. Another nature-

inspired algorithm called Bees Algorithm (BA), that

mimics the food foraging behaviour of swarms of honey

bees and its modified versions, has also been applied

to robotic systems, demonstrating aggregation [22] and

collective decision making [23,24].

Other studies take inspiration from the chemotac-

tic behaviour of bacteria such as the Escherichia coli,

called Bacterial Foraging Optimization (BFO). Bacte-

ria movements mainly consist of two mobile behaviours:

run in a particular direction and tumble to change its

direction [25]. Such behaviour depends on the nutrient

information around them. Yang et al. [26] applied this

method for a target search and trapping problem. An

extensive review of research related to the bio-inspired

techniques and the most behaviour of the robots can

be found in [9,27]. Regarding the energy consumption

problem, researchers have approached this problem in

different ways, including minimizing the weight of robots,

pre-positioning energy sources into the environments,

minimizing communication ranges of robots, sending

data in a simple form[28], reducing the direct commu-

nication and the use of multi-hop communication links

between robots [29], minimizing the distrance of the

traveling path [30,31]. For example, Barca et al. ad-

dressed the problems related to energy consumption in

[32].

In this paper, we apply bio-inspired algorithms to

investigate the self-organization in a swarm of robots

for target searching. A combination of indirect com-

munication and direct local communication is used to

minimize the total energy consumed by the swarm. The

main contributions of our work can be summarized as

follows:

1. The mathematical formulation of the optimization

model is presented with the objective to minimize

the total energy consumed by a swarm of robots

for exploring an unknown area and dealing with the

found targets.

2. Development of energy models of mobile robots con-

sisting of multiple components.

3. A combination of indirect and direct communication

to execute the tasks:

– Indirect communication is used for the explo-

ration task, based on the repulsion behavior of



4 Nunzia Palmieri1 et al.

the robots towards the pheromone deposited into

the visited cells. This mechanism is the same for

the all recruitment strategies.

– A direct local communication mechanism is used

in terms of a wireless medium for the coordina-

tion of the robots in the recruiting process. For

this purpose, three bio-inspired algorithms are

used and compared in order to evaluate the per-

formance in terms of energy consumptions.

3 Problem Statement

Let us consider the following swarm scenario. There are

a number of targets scattered in an unknown area, ac-

cording to a uniform distribution. A swarm of mobile

robots are deployed in this area with the goal to ex-

plore the area for searching the targets and then remov-

ing/dismantling them cooperatively. Since it is either

impossible or too expensive for a single robot to handle

a target individually, it is necessary that when a robot

detects a target, a coalition of some robots has to be

formed to perform the removal task jointly. A coalition

can handle a target only if the necessary robots are in

the target’s location. Moreover, it is assumed that there

is no prior knowledge about the targets such as their

total number and locations. Therefore, the only way to

ensure the detection and the fulfillment of all targets is

to explore the overall area. Since, the targets location is

detected gradually through searching, the recruitment

task must start in real-time as the targets are found.

The challenge is to complete the mission without any

centralized control and using only minimal local sens-

ing and communication among the swarm of robots,

and the main objective is to minimize the total energy

consumed by the team.

Broadly speaking, we can divide the mission into

two phases: exploring and recruiting. During the ex-

ploring phase, since no targets has been detected yet,

it would be more efficient deploying, in a distributed

manner, the robots in different regions of the area at

the same time. At each step, a robot from the current

location starts to sense its neighbor cells through some

sensors in order to make the decision where to go next.

In this phase, the robots do not use wireless commu-

nication, and the decisions are made by the robots on

the basis of partial available knowledge about the envi-

ronment. When a robot detects a target, since it lacks

the capabilities to carry out the rest of the task itself,

it starts a recruiting process using wireless communica-

tion in this case. The robots receiving the signal then

make the decision to get involved or not through mecha-

nisms inheriting the swarm intelligence principles. The

aim is to distribute the robots into the environment

and, at the same time, allocate a sufficient number of

robots among target’s locations, while avoiding redun-

dancy. It is worth pointing out that the exploration and

coordination tasks are not entirely decoupled; it is pos-

sible for a robot to perform both simultaneously for

example when it moves towards the targets location it

also implicitly explores the area.

3.1 Assumptions of the Model

First of all, the characteristics of the unknown area and

the capabilities of the robots are introduced. Then, the

problem is modeled as an optimization problem subject

to constraints.

The environment is mapped as a 2D plane. As a

symbolic representation of the working space, the pro-

posed method uses a grid map A with m and n cells in

the x and y direction, respectively. Each cell c ∈ A is

the basic element of the grid and it is uniquely deter-

mined by its coordinates (x, y), with x ∈ { 1, 2, . . . ,m

} and y ∈ { 1, 2, . . . , n } elements. In the area, a set

R of homogeneous robots are deloped where R = { k |
k ∈ { 1, 2, . . . , NR }} and, at each step t, the current

state of a robot k can be represented by its coordinates

(xtk, y
t
k).

As far as the characterization of the robots is con-

cerned, we assume that they live in a discrete-time do-

main and they can move on a cell-by-cell manner; that

is, one cell at a time. The movement of a robot in the

area is described by changing its coordinates in time.

They can visit all cells in the area except the cells occu-

pied by an obstacle or other robots. We assume that a

robot uses 45◦ as the unit for turning, since we only

allow the robot to move from one cell to one of its

eight neighbour cells, if all cells are free. Fig. 1 and

Fig. 2 show an example. However, for simplicity, it is

assumed that the robots have a simple set of common

reactive behaviours that enable them to avoid the ob-

stacles and recognize the other robots in order to ac-

complish the mission together. They have limited com-

puting and memory capacities and they are capable of

discovering and partially executing the tasks.

In addition, it is also assumed that the robots are

equipped with proper sensors to perceive, leave the pheromone

and detect the targets. They can mark the visited cells

with pheromone and they can sense the level of the

pheromone in their local neighborhood. They are able

to self-localize themselves in the given area using some

onboard equipment, such as GPS. Since a robots com-

munication range Rt cannot cover the whole area, the

communication capability thus enables the robot to di-

rectly communicate to others within the communica-

tion range as shown in Fig. 3
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Fig. 1: A representation of the simulation environment.

(a) (b)

Fig. 2: (a) Possible robot’s directions (b) Possible robots

turning.

Fig. 3: The robots in the cells with coordinates (4,5)

and (11,9), have each detected a target. They starts

a recruitment process by sending packets that will be

received by the robots in their wireless range Rt.

Fig. 4: Possible states of a robot in our proposal.

The robots must explore the area for searching and

dealing with a set T of NT targets disseminated in the

area, i.e., T = { z | z ∈ {1, 2, . . . , NT }}. Each target

is represented by its coordinates (xz, yz). A target z is

detected by a robot k when the target’s coordinates co-

incides with the robot’s coordinates. Once a robot finds

a target, it sends help requests through packets (that

contains mainly the coordinates of the found target)

to the robots into its wireless range (Rt). We define

RRk as a set that keeps track of the help requests that

the robot k receives, expressed in terms of targets, thus

RRk ⊂ T .

Moreover, the problem studied in this paper is based

on the following conditions or assumptions: (1) the robots

work in a static environment, (2) the number of targets

is smaller than the number of the robots in order to

avoid deadlock, (3) no changing or charging battery is

required. The behavior of the robots, at each step, has

been described in the Fig. 4 on the basis of the events

that occur:

Each robot follows simple behavioral rules described

as follows:

– Explorer State: it is the initial state of each robot.

At this state, the robots explore the area for target’s

detection and they can communicate with other mem-

bers of the swarm through the environment (indirect

communication).

– Coordinator State: a robot becomes a coordinator

when it detects a target and it tries to recruit the

necessary robots, by sending packets using a wireless

communication module. The packets contain mostly

the coordinates of the found target and they are re-

ceived only by the neighbors robots within its wire-

less range (see Fig. 3 ).
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Fig. 5: The robot in the cell (6,11) that is recruited by

the robot in the cell (6,8) after the application of a co-

ordination strategy moves into the cell with coordinates

(7,12). The distance between the target becomes much

higher than the range Rt, thus it changes its state to

Explorer State.

– Recruiter State: a robot switches to this state when

it is recruited by one or more neighbor coordina-

tors to accomplish a target, through the receiving

of packets. Then, the robot will make the decision

about where to move and what target to perform

according to different bio-inspired algorithms such

as the Firefly Algorithm, Particle Swarm Algorithm

and Artificial Bee Algorithm. A key aspect of this

state occurs when robot k, that has received help re-

quests by one or more coordinators, applying one of

the bio-inspired coordination algorithms, moves too

far from a target position. Given a robot k located

at the step t in the cell of coordinates (xtk, y
t
k) and

the target z with coordinates (xz, yz), we define the

distance between the robot k and the target z as the

Euclidean distance rkz =
√

(xtk − xz)2 + (ytk − yz)2.

If rkz ≥ (Rt+∆) ∀ z ∈ RRk means that the robot k

moves too far from the target’s location and in this

case, if it has not got other requests, it will change

its states into Explorer State (see Fig.(5)).

– Waiting State: a recruited robot, once reached the

target location, it has to wait until it receives the

order by the coordinator to perform the target.

– Execution State: Once all needed robots have reached

the target location, they can deal with the target for

a defined time (it is regulated by a fixed timer).

The overall procedure and interchange of states can

be summarized in the flowchart as shown in Fig. 6.

3.2 Mathematical Model

In order to describe the proposed system as proper

mathematical models, it is useful to introduce the fol-

lowing notations and definitions:

• A: operational area, discretized as a grid map.

• R : set of robots

• NR : number of robots NR =|R|
• NR

min = number of robots needed to deal with a

target

• S: set of recruited robots S ∈ R
• T : set of targets

• NT : number of targets, NT =|T|
• F : set of found targets during the mission where F

∈ T

Two main decisions have to be modelled properly.

On the one hand, the position of each robot is expressed

by the coordinates (xk, yk) where each robot k ∈ R

should be located at each step. On the other hand, given

a found target z ∈ F , a robot k has to decide if it is to

get involved in the recruitment process of the found tar-

get z. The first decision is mathematically represented

by the decision variables:

vkxy =

{
1 if the robot k visits the cell (x, y),

0 otherwise.
(1)

Similarly, the following decision variables allow us to

model if a robot k is involved in the recruitment process

of the target z:

ukz =

{
1 if robot k is involved with target z,

0 otherwise.
(2)

For each activity executed by the robots, a certain

amount of energy is consumed. In our study, the energy

model reflects mostly two activities: energy for commu-

nication and energy for mobility. The mobility energy

depends on several factors. For simplicity, the mobility

cost for a robot k in our model can be calculated by

considering the distance traversed and it is expressed

as follows:

Ekm =

m∑
x=1

n∑
y=1

Cm vkxy, (3)

where
∑m
x=1

∑n
y=1 v

k
xy is the total number of visited

cells for each robot k while moving in the exploration

phase and recruiting phase; Cm is the cost given to

move to one cell to another and takes into account both

the cost for moving and turning.

When a target is detected, the energy consumed is

instead related to the communication and to the cost

for performing the planned task on the target. Since
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Fig. 6: Flowchart of the proposed model.

we use a wireless communication system in this phase,

the energy consumed depends on the transmission and

reception of the packets to communicate the position

of the targets. In this case, we assume that the energy

consumed by robot k to transmit Ektx and receive Ekrx
a packet [33] is related to the maximum transmission

range Rt and to the packet size (l) as follows:

Ektx = l (Rαt etx + ecct), (4)

where etx is the energy required by the power amplifier

of transceiver to transmit one bit data over the dis-

tance of one meter, and ecct is the energy consumed in

the electronic circuits of the transceiver to transmit or

receive one bit. Here, α is called the path loss exponent

of the transmission medium where α ∈ [2, 6].

On the other hand, the energy consumption for re-

ceiving a packet is independent of the distance between

communication nodes and it is defined as:

Ekrx = l ecct, (5)

The energy consumed to deal with a target is:

Ekd = Cd, (6)

where Cd is the cost given to the working task for han-

dling a target properly, and it is the same for each robot

and it is related, for simplicity, to the mechanical move-

ment. Essentially, we model the energy consumed for

the coordination task by the robot k that is involved in

the targets issue as:

Ekcoord =

NT∑
z=1

(Ektx + Ekrx + Ekd ) ukz . (7)
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Based on the previous considerations and models,

we now introduce a performance index, called Total-

Energy-Swarm-Consumption (TESC), as:

TESC =

NR∑
k=1

Ekm +

NR∑
k=1

Ekcoord. (8)

That is, the total energy consumed by a robot is the

sum of two contributions: energy consumption for mov-

ing into the area and energy consumption for the wire-

less communication when they are involved in the per-

forming of the targets.

3.3 Objective Function and Constraints

The optimization problem in this paper has an objec-

tive function related to the minimization of the overall

energy consumption by the robot swarm to complete

the mission. Thus, the optimization problem can be

mathematically represented as follows:

Minimize TESC =

NR∑
k=1

Ekm +

NR∑
k=1

Ekcoord =

NR∑
k=1

m∑
x=1

n∑
y=1

Cm vkxy +

NR∑
k=1

NT∑
z=1

(Ektx + Ekrx + Ekd ) ukz ,

(9)

subject to

NR∑
k=1

vkxy ≥ 1 ∀ (x, y) ∈ A, (10)

NR∑
k=1

ukz = NR
min ∀ z ∈ T, (11)

vkxy ∈ {0, 1} ∀ (x, y) ∈ A, k ∈ R, (12)

ukz ∈ {0, 1} ∀ z ∈ A, k ∈ R. (13)

The objective function in (9) to be minimized repre-

sents the total energy consumed by the swarm of robots.

Constraint (10) ensures that each cell is visited at least

once. Constraint (11) defines that each target z must

be handled safely by NR
min robots. The constraints (12)-

(13) specify the domain of the decision variables. It is

worth pointing out that the optimization problem here

is intrinsically multi-objective, but we have formulated

it as a single objective optimization problem. The main

reason is that we will focus on the comparison of differ-

ent bio-inspired approaches in solving this challenging

problem. Future work will focus on the extension of the

current approach to multi-objective optimization.

Fig. 7: Example of pheromone diffusion. When a robot

moves to the new cell, it spreads the pheromone within

a certain distance Rs. The intensity of pheromone de-

cays according to the distance from the cell.

4 Exploration Strategy

In our model, at the beginning of the exploration, the

robots are initially deployed in the environment, ac-

cording to a uniform distribution. Some communica-

tion via environment (stigmergy) is used to share local

knowledge on cells gained by individual robots. To min-

imize the revisit of visited cells, we introduce a repul-

sive pheromone mechanism into the swarm. During the

exploration task, this pheromone is deposited, immedi-

ately when a robot reaches a new cell in order to mark

all cells that have been visited. The use of pheromone is

similar to the use in Ant Colony Optimization method,

but unlike ants, the robots should search for the cells

without any pheromone or with the smallest pheromone

value. The pheromone deposited by a robot on a cell

diffuses outwards cell-by-cell until a certain distance

Rs such that Rs ⊂ A ⊂ R2 and the amount of the

pheromone decreases as the distance from the robot in-

creases (see Fig. 7).

The model for the pheromone diffusion is defined as

follows: consider that robot k at iteration t is located

in a cell of coordinates (xtk, ytk) ∈ A, then the amount

of pheromone that the kth robot deposits at the cell c

of coordinates (x, y) is given by:

∆τk,tc =

{
∆τ0 e

−rkc
a1 − ε

a2
if rkc ≤ Rs,

0 otherwise,
(14)

where rkc is the distance between the kth robot and the

cell c and it is defined as:

rkc =
√

(xtk − x)2 + (ytk − y)2. (15)
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In addition, ∆τo is the quantity of pheromone sprayed

in the cell where the robots is placed and it is the max-

imum amount of pheromone, ε is an heuristic value

(noise) and ε ∈ (0, 1). Furthermore, a1 and a2 are two

constants to reduce or increase the effect of the noise

and pheromone. It should be noted that multiple robots

cam deposit pheromone in the environment at same

time, then the total amount of pheromone that can be

sensed in a cell c depends on the contribution of many

robots.

Furthermore, the deposited pheromone concentra-

tion is not fixed and can evaporate with the time. The

rate of evaporation of pheromone is given by ρ, and the

total amount of pheromone evaporated in the cell c at

step t is given by the following function:

ξtc = ρ τ tc , (16)

where τ tc is the total amount of the pheromone on the

cell c at iteration t. For the calculation of ρ , we intro-

duced a coefficient, called ERTU% (Evaporation Rate

Time Unit) that regards the evaporation rate per unit

of time spent. Let the last time in which the cell has

been visited be tv and the current time t, (t− tv) is the

time spent since the last visit of the cell. Multiplying

this time per ERTU%, the percentage of substance that

evaporates will be

ρ = (t− tv) ERTU%. (17)

Considering the evaporation of the pheromone and

the diffusion according with the distance, the total amount

of pheromone in the cell c at iteration t is given by

τ tc = τ (t−1)c − ξ(t−1)c +

NR∑
k=1

∆τk,tc , ∀ c ∈ A. (18)

Each cell has an initial pheromone value set to zero

that represents that the cell has not yet been visited by

any of the robots.

4.1 Cells Selection

Each robot k, at each step t, is placed on a particular

cell ctk that is surrounded by a set of accessible neigh-

bor cells N(ctk). Essentially, each robot perceives the

pheromone deposited into the nearby cells, and then

it chooses which cell to move to at the next step. The

probability at each step t for a robot k of moving from

cell ctk to cell c ∈ |N(ctk)| can be calculated by

p(c|ctk) =
(τ tc)

ϕ (ηtc)
λ∑

c∈N(ctk)
(τ tc)

ϕ (ηtc)
λ
, (19)

where (τ tc)
ϕ is the quantity of pheromone in the cell c at

iteration t, and (ηtc)
λ is the heuristic variable to avoid

that the robots being trapped in a local minimum. In

addition, ϕ and λ are two constant parameters which

balance the weight to be given to pheromone values

and heuristic values, respectively. The robot k moves

into the cell that satisfies the following condition:

c = min[p(c|ctk)]. (20)

In this way the robots will prefer less frequented ar-

eas and is more likely to direct towards an unexplored

region. The exploration strategy was previously vali-

dated in [11] and essentially the structure is given by

the Algorithm 1.

11 begin
22 Step 1: Initialization.

Set t: {t is the step counter}.
Define ϕ, λ, a1, a2,ε, ∆τ0 and ERTU%.

33 Step 2: Generation coordination system. For
the whole swarm, set the initial locations
in terms of coordinates in x and y
directions.

44 Step 3: Procedure
5 while the stop criteria are not satisfied do

6 foreach robot k in Explorer State (k ∈ R) do

7 evaluate the current position ctk;
8 evaluate neighboorhood N(ctk);
9 compute c according Eq. (20);

10 if (c.HasObstacle() or c.isOccupated()) then
11 choose a random cell c∗ ∈ N(ctk);
12 move robot k towards c∗;

13 else
14 move robot k towards c;
15 end if

16 end foreach

17 foreach cell c ∈ A do
18 update pheromone according Eq.(18);

19 end foreach

20 update t;

21 end while

22 end

Algorithm 1: Exploration algorithm inspired by

ant colony optimization.

The Algorithm 1 is an iterative process. At the first

iteration, each cell has the same value of the pheromone

trail, so that the initial probabilities that a cell would be

chosen is almost random. Then, the robots move from

a cell to another based on rules expressed in Eqs. (19)-

(20). The pheromone trails on the visited cells by robots

are updated according to Eq.(18) and unvisited cells be-

come more attractive to the robots. The objective is to

avoid any overlapping and redundancy efforts in order

to save energy and complete the mission as quickly as

possible. Regarding the energy consumption, the energy



10 Nunzia Palmieri1 et al.

consumed by each robot is related to the mobility ac-

cording to Eq. (3). The algorithm stops executing when

a robot k becomes a coordinator or a recruiter or if the

mission is completed (that is, all cells are visited and

all targets are found and performed).

5 Recruitment Strategies

When a robot detects a target, it starts a recruiting

process in order to handle it cooperatively. For this

purpose, wireless communication is used as a coordi-

nation mechanism. In this case, each robot is assumed

to have transmitters and receivers, using which it can

send packets to other robots within its wireless range

Rt and there is no propagation of the packets (one hop

communication) as shown in Fig. 3. The packets con-

tain mostly coordinate positions of the detected targets.

Therefore, the volume of information that is communi-

cated among the robots is small. It is worth mentioning

that the decisions to be made by the robots is indepen-

dent, and the robots and the coordinator do not know

which robots are arriving, so the coordinator will con-

tinue to send packets until the needed robots have actu-

ally arrived. This happens because the decision mech-

anism is dynamic and it depends on what the robots

decide individually.

5.1 Firefly based Team Strategy for Robots

Recruitment (FTS-RR)

Firefly Algorithm (FA) is a nature-inspired stochas-
tic global optimization method that was developed by

Yang [34,28]. FA tries to mimic the flashing behaviour

of a swarm of fireflies. In the algorithm, the two impor-

tant issues are the variations of light intensity and the

formulation of attractiveness. The brightness of a firefly

is determined by the landscape of the object function.

Attractiveness is proportional to the brightness and,

thus, for any two flashing fireflies, the less bright one

will move towards the brighter one. In addition, the

light intensity decays with the square of the distance,

so the fireflies have limited visibility to other fireflies.

This plays an important role in the communication of

the fireflies and the attractiveness, which may be im-

paired by the distance. The distance between any two

fireflies i and j, at positions xi and xj , respectively, can

be defined as the Euclidean distance as follows:

rij = ||xi − xj || =

√√√√ D∑
d=1

(xi,d − xj,d)2, (21)

where xi,d is the dth component of the spatial coordi-

nate xi of the ith firefly and D is the number of dimen-

sions. In 2-D case, we have

rij =
√

(xi − xj)2 + (yi − yj)2. (22)

In the firefly algorithm, as the attractiveness func-

tion of a firefly j varies with distance, one should select

any monotonically decreasing function of the distance

to the chosen firefly. For example, we can use the fol-

lowing exponential function:

β = β0 e
−γr2ij , (23)

where rij is the distance defined as in Eq. (21), β0 is

the initial attractiveness at the distance rij = 0, and γ

is an absorption coefficient at the source which controls

the decrease of the light intensity. The movement of

a firefly i which is attracted by a more attractive (i.e.,

brighter) firefly j is governed by the following evolution

equation:

xt+1
i = xti + β0 e

−γr2ij (xtj − xti) + α(σ − 1

2
), (24)

where the first term on the right-hand side is the cur-

rent position of the firefly i, the second term is used for

modelling the attractiveness of the firefly as the light

intensity seen by adjacent fireflies, and the third term is

randomization with α being the randomization param-

eter and it is determined by the problem of interest.

Here, σ is a scaling factor that controls the distance

of visibility and in most case we can use σ = 1. The

convergence and stability require good parameter set-

tings, as it is true for almost all meta-heuristic algo-

rithms [35]. Previous studies investigated the influence

of algorithm-dependent parameters on the convergence

of the strategy [36]. We adapted this strategy for our

problem. In particular, when a robot detects a target, it

becomes a coordinator and it tries to attract the other

robots (like a firefly), on the basis of the target’s po-

sition, in order to handle the target in a cooperative

manner.

The original version of FA is applied in the contin-

uous space, and cannot be applied directly to tackle

discrete problems, so we have modified the algorithm

in order to solve our problem. In our case, a robot can

move in a 2-D discrete space and it can go just in the

adjacent cells. This means that when a robot k, at iter-

ation t, in the cell ctk with coordinates (xtk, y
t
k) receives

a packet by a coordinator robot(like a firefly) that has

found a target in the cell with coordinates (xz, yz), this

robot will move in the next step (t+ 1) to a new posi-

tion (xt+1
k , yt+1

k ), according to the FA attraction rules
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Fig. 8: Example of an overlap region in which some

robots are in the wireless ranges of different coordinator

robots and thus they must decide towards which target

to move, according to a bio-inspired strategy.

such as expressed below:


xt+1
k = xtk + β0 e

−γr2kz (xz − xtk) + α(σ − 1
2 ),

yt+1
k = ytk + β0 e

−γr2kz (yz − ytk) + α(σ − 1
2 ),

(25)

where xz and yz represent the coordinates of the se-

lected target translated in terms of row and column of

the matrix area, rkz is the Euclidean distance between

the target z and the recruited robot. It should be no-

ticed that the targets are static and a robot can receive

more than one request. In the latter case, it will choose

to move towards the brighter target within the mini-

mum distance from the target as expressed in Eq. (23).

It is worth mentioning that rkz ≤ (Rt+∆). This last

condition ensures that if the robot k, during the move-

ment for reaching the selected target z, chooses a cell

too far from the target’s location (Rt+∆) where ∆ is a

perturbation coefficient, it switches its role and contin-

ues to explore the area (Fig. (5)). A robot’s movement is

conditioned by target’s position and by a random com-

ponent that it is useful to avoid the situation that more

recruited robots go towards the same target if more

targets have found. This last condition enables to the

algorithm to jump out of any local optimum (Fig. 8).

In order to modify the FA to a discrete version, the
robot movements have been modelled by three kinds of
possible value updates for each coordinates { -1, 0, 1 },

Fig. 9: A possible selected cell after the application of

a bio-inspired strategy.

according to the following conditions:



xt+1
k = xtk + 1 if [β0e−γr

2
kz (xz − xtk) + α(σ − 1

2
) ≥ 0 ],

xt+1
k = xtk − 1 if [β0e−γr

2
kz (xz − xtk) + α(σ − 1

2
) ≤ 0 ],

xt+1
k = xtk if [β0e−γr

2
kz (xz − xtk) + α(σ − 1

2
) = 0 ],

(26)

and



yt+1
k = ytk + 1 if [β0e

−γr2kz (yz − ytk) + α(σ − 1
2 ) > 0 ],

yt+1
k = ytk − 1 if [β0e

−γr2kz (yz − ytk) + α(σ − 1
2 ) < 0 ],

yt+1
k = ytk if [β0e

−γr2kz (yz − ytk) + α(σ − 1
2 ) = 0 ].

(27)

A robot (e.g., robot k) that is in the cell with co-

ordinates (xtk, y
t
k) as depicted in Fig. 9 can move into

eight possible cells according to the three possible val-

ues attributed to xk and yk. For example, if the result of

Eqs. (26)-(27) is (-1, 1), the robot will move into the cell

(xtk−1, ytk+1). In the described problem, the algorithm

for the Firefly based strategy is shown in Algorithm 2.

The Algorithm 2 is executed when one or more tar-

gets are found and some robots are recruited by others.

If no targets are detected or all targets are removed or

handled, the robots perform the exploration task ac-

cording to Algorithm 1. This happens because the na-

ture of the problem is bi-objective and the robots have

to balance the two tasks. In this case the energy model

comprises the mobility cost and communication cost for

the transmission and reception of the packets to com-

municate the position of the found targets Eqs. (3)-(7).
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11 begin
22 Step 1: Initialization. Set t {t is the step

counter}; Set the detected targets z ∈ F ,
the wireless range Rt, and the robots in
wireless range of the detected targets k ∈
S. Define the light absorption coefficient
γ, the randomization parameter α, the
random number σ and the attractiveness
β0.

33 Step 2: Generation coordination system. For
the detected targets and the recruited
robots, set the initial location in terms of
coordinates in x and y directions.

44 Step 3: Procedure.

5 while The stop criteria are not satisfied do

6 foreach robot k in Recruiter State (k ∈ S) do
7 set RRk;
8 evaluate the current position ctk;
9 foreach target z in RRK do

10 evaluate β according to Eq. (23);
11 choose the best target z ;

12 end foreach
13 evaluate |N(ctk)|;
14 compute the cell ct+1

k according to
Eqs.(26)-(27);

15 if (ct+1
k .HasObstacle() or

ct+1
k .isOccupated()) then

16 choose a random cell c∗ ∈ N(ctk);
17 move robot k towards c∗;

18 else

19 move robot k towards ct+1
k ;

20 end if

21 end foreach

22 update t;

23 end while

24 end

Algorithm 2: FTS-RR strategy.

5.2 Particle Swarm Optimization for Robot
Recruitment (PSO-RR)

Particle Swarm Optimization (PSO) is an optimization

technique which uses a population of multiple agents

[7]. This technique was inspired by the movement of

flocking birds and their interactions with their neigh-

bours in the swarm. Each particle k moves in the search

space and has a velocity vtk and a position vector xtk. A

particle updates its velocity according to the best pre-

vious positions and the global best position achieved by

its neighbours:

vt+1
k = ωxtk + r1c1(gbest − xtk) + r2c2(pbest − xtk), (28)

where the individual best value is the best solution has

been achieved by each particle so far that is called pbest.

The overall best value is the best value (best position

with the highest fitness function) that is found among

the swarm, which is called gbest. Here, ri (i=1,2) are

the uniformly generated random numbers between 0

and 1, while ω is the inertial weight and ci (i = 1, 2) are

the acceleration coefficients. In addition, Eq.(28) is used

to calculate the new velocity vt+1
k of a particle using

its previous velocity vtk and the distances between its

current position and its own best found position; that

is, its own best experience pbest and the swarm global

best gbest. The new position of particle k are calculated

by

xt+1
k = xtk + vt+1

k . (29)

However, like Firefly Algortihm, directly using this

PSO-based decision strategy in our recruiting task would

be problematic. Firstly on the two-dimensional map,

there are only a limited number of possible directions

for a robot to move and since we assumed that the

robots can only move one cell at a time, the next posi-

tion of the particles (robots) is limited to the neighbour

cells as shown in Fig. (2). Moreover, in the recruiting

phase, we are interested in reaching the target location

(that is our gbest) and we do not take into account pbest
of the robots. Therefore, a modified PSO version is pro-

posed and this means that for each robot k at iteration

t in a cell with coordinates (xtk, y
t
k), Eqs. (28)- (29) can

be written as the follows:
vt+1
xk

= ωvtxk
+ r1c1(xz − xtk),

vt+1
yk

= ωvtyk + r1c1(yz − ytk),

(30)


xt+1
k = xtk + vt+1

xk
,

yt+1
k = ytk + vt+1

yk
,

(31)

where (xz, yz) represent the coordinates of the detected

target translated in terms of row and column of the

matrix area. In order to modify the PSO to a discrete

version, similar to case of the FA, the robot movements

have been considered as three possible value updates for

each coordinates:{ -1, 0, 1 } according to the following

conditions:

xt+1
k = xtk + 1 if [vt+1

xk
> 0 ],

xt+1
k = xtk − 1 if [vt+1

xk
< 0 ],

xt+1
k = xtk if [vt+1

xk
= 0 ],

(32)

and

yt+1
k = ytk + 1 if [vt+1

yk
> 0 ],

yt+1
k = ytk − 1 if [vt+1

yk
< 0 ],

yt+1
k = ytk if [vt+1

yk
= 0 ].

(33)
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When a robot receives more requests, it will choose

to move toward the target at the minimum distance. In

the described problem, the Particle Swarm Algorithm

is executed is shown in Algorithm 3. Like FA, the steps

are executed when the robots are recruited by others,

but in the case when no targets are detected or all tar-

gets are handled, the robots continue to explore the

area. Similarly, the energy model comprises the mobil-

ity cost and communication cost for the transmission

and reception of the packets to communicate the posi-

tion of the targets Eqs. (3)-(7).

11 begin

22 Step 1: Initialization. Set t {t is the step
counter}; set the detected targets z ∈ F ,
the wireless range Rt, and the robots in
wireless range of the detected targets k ∈
S. Define the inertia weight ω,
randomization parameter r1 and
acceleration coefficient c1

33 Step 2: Generation coordination system. For
the detected targets and the recruited
robots, set the initial location in terms of
coordinates in x and y directions.

44 Step 3: Procedure.

5 while The stop criteria are not satisfied do
6 foreach robot k in Recruiter State (k ∈ S) do

7 set RRk;
8 evaluate the current position ctk;
9 foreach target z in RRK do

10 choose the best target z ;

11 end foreach
12 evaluate |N(ctk)|;
13 compute the cell ct+1

k according
Eqs.(32)-(33);

14 if (ct+1
k .HasObstacle() or

ct+1
k .isOccupated()) then

15 choose a random cell c∗ ∈ N(ctk);
16 move robot k towards c∗;

17 else

18 move robot k towards ct+1
k ;

19 end if

20 end foreach

21 update t;

22 end while

23 end

Algorithm 3: PSO-RR strategy.

5.3 Artificial Bee Colony Algorithm for Robot

Recruitment (ABC-RR)

Another evolutionary approach is the Artificial Bee Colony

(ABC) algorithm by Karaboga et al. [8]. This algo-

rithm is inspired by the foraging behaviour of honey

bees when seeking a quality food source. In the ABC al-

gorithm, there is a population of food positions and the

artificial bees modify these food positions along time.

The algorithm uses a set of computational agents called

honeybees to find the optimal solution. The honey bees

in ABC can be categorized into three groups: employed

bees, onlooker bees and scout bees. The employed bees

exploit the food positions, while the onlooker bees are

waiting for information from the employed bees about

nectar amount of the food positions. The onlooker bees

select food positions using the employed bee informa-

tion and they exploit the selected food positions. Fi-

nally, the scout bees find new random food positions.

Each solution, in the search space, consists of a set of

optimization parameters which represent a food source

position. The number of employed bees is equal to the

number of food sources. The quality of food source is

called its fitness value and it is associated with its po-

sition.

In the algorithm, the employed bees will be respon-

sible for investigating their food sources (using fitness

values) and sharing the information to recruit the on-

looker bees. The number of the employed bees or the

onlooker bees is equal to the number of solutions in the

population (SN). Each solution (food source) xi(i =

1, 2, . . . , SN) is a D-dimensional vector. The onlooker

bees will make a decision to choose a food source based

on this information. A food source with a higher qual-

ity will have a larger probability of being selected by

onlooker bees. This process of a bee swarm seeking, ad-

vertising, and eventually selecting the best known food

source is the process used to find the optimal solution.

An onlooker bee chooses a food source depending on

the probability value associated with that food source

pi calculated by the following expression:

pi =
fiti∑SN
n=1 fitn

, (34)

where fiti is the fitness value of the solution i evaluated

by its employed bee, which is proportional to the nectar

amount of the food source in the position i and SN is

the number of food sources which is equal to the number

of employed bees (BN). In this way, the employed bees

exchange their information with the onlookers. In order

to produce a candidate food position from the old one,

the ABC uses the following expression:

x∗ij = xij + φij(xij − xlj), (35)

where x∗ij is the new feasible food source, which is se-

lected by comparing the previous food source xij and

the randomly selected food source, l ∈ {1,2,. . . , SN}
and j ∈ {1,2,. . . ,D} are randomly chosen indexes. φij
is a random number between [-1,1] which is used to ad-

just the old food source to become the new food source
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in the next iteration. We have modified Eq. (35) to fit

with our specific domain of interested as follows:
xt+1
k = xtk + φ(xtk − xz),

yt+1
k = ytk + φ(ytk − yz),

(36)

where (xz yz) represent the coordinates of selected tar-

get translated in terms of row and column of the matrix

area. Here, (xtk, ytk) is the current position of a robot k

and the (xt+1
k , yt+1

k ) is the new position of the recruited

robot. In order to modify the ABC to a discrete version,

like the FA and PSO, the robot movements have been

limited to three possible value updates for each coordi-

nates: { -1, 0, 1 } according to the following conditions:



xt+1
k = xtk + 1 if [ φ(xtk − xz) > 0 ],

xt+1
k = xtk − 1 if [ φ(xtk − xz) < 0 ],

xt+1
k = xtk if [ φ(xtk − xz) = 0 ],

(37)

and

yt+1
k = ytk + 1 if [ φ(ytk − yz) > 0 ],

yt+1
k = ytk − 1 if [ φ(ytk − yz) < 0 ],

yt+1
k = ytk if [ φ(ytk − yz) = 0 ].

(38)

Essentially we have two cases. The first is when a

robot receives only one recruitment request and in this

case, it will move towards the target location according

to the Eqs. (37)-(38). If a robot receives more than one

request, it needs to decide which target it will move

to. In this case, we uses a concept according to the

Distributed Bee Algorithm presented in [23]. Basically,

when a robot k in the cell ctk receives a packet from a

coordinator in the cell ctz, the cost of the target z for the

robot k at step t is calculated as the Euclidean distance

between the robot and the target in the 2-D area:

rkz =
√

(xtk − xz)2 + (ytk − yz)2, (39)

We first define the utility of a target z for the robot k

the reciprocal value of the distance as:

µkz =
1

rkz
. (40)

Then, a probability that the robot k chooses the target

z can be calculated by

pkz =
µkz∑F
b=1 µ

k
b

, (41)

where F is the number of found targets and F ⊂ T .

From the Eq. (41), it is easy to show that

F∑
z=1

pkz = 1. (42)

The underlying decision-making mechanism adopts

the roulette rule, also Known as the wheel-selection

rule. That is, each target has been associated with a

probability which it is chosen from a set of detected tar-

gets. Once all the probabilities are calculated according

to Eq. (41), the robot will choose the target by spinning

the wheel. Next the robot will move according to Eqs.

(37)-(38). Such a coordination technique is well-suited,

like the FA, to avoid that several robots approach the

same target and spreading the robots over different tar-

gets locations (Fig. 8). In the described problem, the

algorithm for the bees based strategy is shown in Algo-

rithm 4.

Like FA, these steps are executed when the robots

are recruited by others. In case when no targets are de-

tected or all the tasks about the targets are performed,

the robots continue to explore the area until the mission

ends. Moreover, the energy model comprises the mobil-

ity cost and communication cost for the transmission

and reception of the packets to communicate the posi-

tion of the targets, according to the Eqs. (2,3,4).

It is worth pointing out that for all strategies, the

decision mechanism is done at each step; this implies

that if a recruited robot at step t chooses a target z, at

the step t+1 takes again the decision and it could then

choose another better target.

6 Simulation Experiments

6.1 Selection of Parameters

At the start of the simulations, all robots are in the

explorative state. Robots and targets are initially de-

ployed in the operative area according to a uniform

distribution. At each step of the simulation, a robot

will consume an amount of energy varying its state and

the robots employ different actions in different states

(Fig. 4). For example, a robot will consume more en-

ergy when performing a target than when wandering in

the search area. The cell is a square with each side be-

ing one unit length. A robot consumes 1 unit of energy

for traveling from one cell to another. One stop takes

an extra energy of 0.5 unit. A turn of 45◦ takes 0.4

unit of energy. Turn of 90◦, 135◦, 180◦, takes 0.6, 0.8

and 1 units of energy, respectively. These numbers are

approximately derived from energy measurements for

Pioneer 3-DX robot [39]. We estimate the energy for
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11 begin
22 Step 1: Initialization. Set t {t is the step

counter}; set the detected targets z ∈ F ,
the wireless range Rt, and the robots in
wireless range of the detected targets k ∈
S. Define randomization parameter φ

33 Step 2: Generation coordination system. For
the detected targets and the recruited
robots, set the initial location in terms of
coordinates in x and y direction.

44 Step 3: Procedure.

5 while The stop criteria are not satisfied do

6 foreach robot k in Recruiter State (k ∈ S) do
7 set RRk;
8 evaluate the current position ctk;
9 foreach target z in RRK do

10 evaluate pkz according to Eq. 41;
11 choose the best target z according to

the wheel-selection rule ;

12 end foreach

13 evaluate |N(ctk)|;
14 compute the cell ct+1

k according to
Eqs.(37)-(38);

15 if (ct+1
k .HasObstacle() or

ct+1
k .isOccupated()) then

16 choose a random cell c∗ ∈ N(ctk);
17 move robot k towards c∗;

18 else

19 move robot k towards ct+1
k ;

20 end if

21 end foreach
22 update t;

23 end while

24 end

Algorithm 4: ABC-RR strategy.

Table 1: Parameters used in the exploration algorithm.

Parameters Value

Sensing range Rs (cell units) 4
ERTU% 0.2
∆τ0 2
ϕ 1
λ 1
η 0.9
a1 0.5
a2 0.5
ε Uniform [0 1]

performing a planned task for removing or dismantling

the target is 5 units of energy for each robot involved

in the task. For the exploration task, the system pa-

rameters used in the experiments are shown in Table

1 according to our previous studies [11]. Regarding the

wireless communication, the value of the parameters

are modelled empirically according to previous study

presented in [33] and shown in Table 2.

In our model, ecc, etx and erc have been recalcu-

lated to express them in terms of the unit of energy.

Table 2: Cost related to the wireless communication.

Parameters Value

Bit Rate (B) 3
Energy Consumed by a transceiver circuitry to
transmit o receive a bit, ecc (Joule) 10−7

Energy Consumed by a transceiver amplifier to
transmit one bit data over one meter, etx (Joule) 10−12
Energy to receive a bit, erc (Joule) 10−7

Path loss Exponent, α [2,6]
Wireless Range Rt (units of distance) 6, 8, 10

Table 3: Parameters used in the coordination algo-

rithms.

Parameters Value

α 0.2
β0 0.5
γ 1

L
(L=max{m,n})

σ Uniform [0,1]
ω 0.729
r1 Uniform [0,1]
c1 2
φ Uniform [-1,1]

Regarding the values of the parameters of the Firefly

Algorithm, please refer to our previous paper in [38].

For PSO and ABC techniques, we have used the values

of previous studies [38,39], respectively. Table 3 shows

the parameters used in the coordination strategies.

To evaluate the proposed techniques, we have imple-

mented and built a Java based simulator. In the simu-

lations, we have considered the environment with dif-

ferent levels of complexity depending on the following

factors: the dimension of grid, the size of the swarm
of robots and the number of targets to be treated, dis-

tribution in the area. It is worth pointing out that the

simulations were done by applying the same exploration

strategy explained in Section 4, since the main focus of

the work is to analyze the performance of the coordi-

nation techniques applied to the recruiting task.

6.2 Simulation Experiments I: Influence of the size of

the swarm and the dimension of grid on the energy

consumption

These experiments are designed to analyze the perfor-

mance of the coordination strategies by varying the

number of the robots in the area k={10, 15, 20, 25,

30, 35, 40, 45, 50, 60} and the grid area with different

numbers of cells in x and y dimension {40x40, 50x50,

60x60}, keeping a constant number of targets and the

number of robots needed to perform a target. We have

evaluated in this case the behavior of the approaches
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when a few or many robots are used in the area of dif-

ferent sizes. We also consider that for dealing with a

target, it is required that 3 robots work together.

The simulation results are summarized in Fig. 10

where each point is the average of running the pro-

posed algorithms 50 times and it summarizes the cu-

mulated total energy consumed by the robots (TESC),

collected by each algorithm. Results show that, as the

size of the robot increases, the average energy of the

system decreases and as the size of the operative grid

increases the energy consumed increases. It is reason-

able to expect that by increasing the number of robots,

the efficiency of the swarm improves in terms of energy.

Regarding the three strategies, the results of Fig 10(a)

show that the performance gap is small for a grid area

with 40x40 cells, but is higher with the increase of the

complexity of the mission as shown in Fig. 10(b) and

Fig. 10(c).

This difference is greater, comparing the PSO-RR

with the others. No significant difference between the

FTS-RR and ABC-RR. One possible explanation is that

the decision mechanisms in FTS-RR and ABC-RR take

into account different criteria. PSO-RR takes into ac-

count the distance between the positions of the robots

and the targets. Instead, FTS-RR considers both dis-

tance and random metrics and ATS-RR adopts the

roulette rules. Therefore, both approaches, typically, al-

low to distribute better the robots among the targets.

6.3 Simulation Experiments II. Influence of the

number of targets on the energy consumption

Now we evaluate the energy consumed by the system

applying the strategies, when a few or many targets ex-

ist, varying the terrain size and the number of involved

robots. We considered z={3, 5, 7, 10}, the dimension of

the swarm of robots k={20, 30, 40} and the grid area

with different number of cells in x and y dimension

{40x40, 50x50, 60x60 }. Some interesting features can

be observed from Fig. 11. The ABC-RR and FTS-RR

techniques perform better and help to allocate reason-

able robots to different targets saving the energy, espe-

cially when the number of robots is small. However, a

larger robot team obtains more benefit and there is no

significant difference between the three strategies.

However, a team with a larger number of robots gen-

erally increase the performance, saving the total con-

sumed energy. Obviously, the more targets are intro-

duced, the more energy is consumed. Moreover, increas-

ing the number of targets, the recruiting tasks becomes

more complex and the used strategy becomes more im-

portant. The difference of the three strategies in terms

of energy consumption is high, especially when the size

(a)

(b)

(c)

Fig. 10: Average-Energy-System- Consumed (TESC)

evaluation for performing 3 targets and 3 robots needed

to deal with a target (a) 40x40 grid (b) 50x50 (c) 60x60.

of swarm in the operative area is low and it is compa-

rable when the number of robots increases at the same

condition of the size of the area. When the complex-

ity of the task increases, it can be seen from Fig. 11(b)

and Fig. 11(c) that it is possible that more robots in

an overlapped region receive the same requests, and go

towards the same targets, creating unnecessary redun-

dancy. However, in most scenarios, FTS-RR exhibits

superior performance and distributes the robots bet-

ter in the area, especially in comparison with the PSO-

RR. Regarding the difference between the FTS-RR and

ABC-RR, the measure of the total energy is compara-

ble and not significant difference when the task is not

complex and number of robots to coordinate is low.

But increasing the number of robots and the targets,
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(a)

(b)

(c)

Fig. 11: Evaluation of Total-Energy-System- Consumed

(TESC) for performing 3,5,7,10 targets and 3 robots

needed to perform a target (a) 40x40 grid (b) 50x50 (c)

60x60.

the FTS-RR exhibits superior performance in terms of

energy consumed. This implies that the FTS-RR would

be more promising for solving recruitment tasks in com-

plex scenarios.

6.4 Simulation Experiments III. Influence of the

wireless range on the energy consumption

The last experiment in this paper is designed to eval-

uate the influence of the wireless range on the energy

consumption by varying different rangesRt ∈ {6, 8, 10}.

Here we considered a grid area 50x50, z = (7, 10, 15)

and 3 robots needed to threat a target. It is important

to point out that effective communication between the

robots is highly dependent on the parameters of the

problem such as the size of the swarm of robots, and

the number of disseminated targets in the area.

The results are summarized in Fig. (12) where some

interesting features can be observed. A robot team with

a small number of robots (e.g., 20) is mainly affected

by the positive side of a high communication range, al-

though a relatively shorter communication range means

lower power consumption. The reason in that over long

communication range, more robots can be recruited and

they can be allocates to different targets in a shorter

time. However, the results also show that, when the

communication range is increased, the performance im-

proves up to a certain point beyond which there is no

change in the performance of the system and in such

case the increasing of the total energy consumed. A sce-

nario with a huge amount of robots (e.g., 40) implies a

huge amount of consumed energy since the recruitment

task involves multiple robots, usually unnecessary, with

some consequent waste of energy. For example, Fig. (12

a) highlights lower consumption of energy for a larger

number of robots using a short communication range

than the use of a longer communication range (Figs

12(a)-(b)). Regarding the three strategies, both FTS-

RR and ABC-RR perform better than the PSO-RR,

especially in a small robot team (20 robots) and many

targets disseminated in the area (15). Concerning the

difference between the FTS-RR and ABC-RR, FTS-RR

outperforms the other mainly in complex scenarios and

thus allows to spread the robots in a better way over the

environment, avoiding the situation that several robots

approach the same target and thus saving the energy.

6.5 Statistical tests

To validate the quality of solutions and performance of

the three meta-heuristic techniques, we have also con-

sidered the p-values of Student t-tests. The t-tests were

used to analyze the relationships between the results

obtained from the three meta-heuristics. The parame-

ter of interest is the p-value. Table 4, Table 8, Table 9

and Table 10 show the p-value obtained from the t-tests

using all above simulation results for all considered sce-

nario. If p < 0.05, there is a statistical evidence of the

difference between the strategies.

The statistical tests confirm that ABC-RR and FTS-

RR perform better than the PSO-RR when the tasks

to be completed is complex in terms of the terrain size

and the number of targets in the area. Regarding the

difference between the FTS-RR and ABC-RR, we can
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(a)

(b)

(c)

Fig. 12: Evaluation of Total-Energy-System-Consumed

(TESC) for performing 7, 10, 15 targets and 3 robots

needed to perform a target in 50x50 grid area (a) Rt = 6

(b) Rt = 8 (c) Rt = 10.

say that the performance of the two strategies is compa-

rable. However, increasing the complexity of the tasks

in terms of the size of area and the number of targets

using a small robots team, the FRS-RR will be better

with the slightly reduced energy consumption.

7 Conclusion and future work

We have developed and tested three biologically in-

spired coordination strategies for robot swarm coor-

dination under complex constraints. These techniques

have been based on the firefly, particle swarm and ar-

tificial bee behaviour, and some discrete modifications

have been carried out to make these algorithms suitable

for the purpose. We have also formulated the problem

as an optimization problem with mathematical models

for energy consumptions. The main objective has been

formulated to minimize the overall energy consumption

for the exploration and recruitment tasks. The energy

consumed by the system is a measure of how efficient

the recruiting strategy is. The most important features

of the proposed approach are:

– flexibility: parameters can be easily tuned so that

the proposed methodology can used to carry out

exploration and recruitment tasks for a system of

mobile robots.

– scalability: the algorithm works well for any number

of robots and targets.

– adaptability: the approach can be used in the envi-

ronment, allowing different conditions and distribu-

tions of targets and robots.

– parallelism: the algorithm is distributed and each

robot performs its task in parallel and make decision

individually, based on local partial information.

Our experiments through simulation have showed

that the energy consumption is higher for the Particle

Swarm approach, especially when the size of swarm is

low and the dimension of area and the the number of

targets are high. The FTS-RR and ATS-RR methods

are comparable when the task is not complex, but the

difference is more evident when the number of targets to

be performed increases and the number of robots in the

area is small. Therefore, the coordination mechanism

becomes more complex for complex tasks, the firefly-

based strategy usually gives better performance.

The work and approaches presented in this paper

have paved a way for exploring new bio-inspired tech-

niques for optimizing complex tasks for swarming robots.

Future work will focus on the extension of the current

approaches to multi-objective optimization by consider-

ing multiple objectives such as the minimization of en-

ergy consumption, the minimization of the exploration

and handling time, the maximization of the exploration

coverage, and the minimization of the computational

costs. Extension will also explore the possibility of more

complex, 2D geometrical areas with multiple obstacles

or barriers and even 3D terrains with inaccessible re-

gions such as rivers and lakes. Other bio-inspired ap-

proaches will also be investigated. It can be expected

that it will inspire more active research in this exciting

area of swarming robots with potentially more realistic

real-world applications.
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Table 4: Results of p value Test for FTS-RR, PSO-RR and ABC-RR.

FTS-RR vs PSO-RR FTS-RR vs ABC-RRl PSO-RR vs ABC-RR
Fig.10(a) Fig.10(b) Fig.10(c) Fig.10(a) Fig.10(b) Fig.10(c) Fig.10(a) Fig.10(b) Fig.10(c)

pvalue 0.1961 0.0156 0.0012 0.2421 0.0879 0.0544 0.0584 0.1210 0.0028

Table 5: Results of p value in t Test for FTS-RR and PSO-RR.

FTS-RR vs PSO-RR

20 Robots

varying

the number

of mines

Fig.11(a)

30 Robots

varying

the number

of mines

Fig.11(a)

40 Robots

varying

the number

of mines

Fig.11(a)

20 Robots

varying

the number

of mines

Fig.11(b)

30 Robots

varying

the number

of mines

Fig.11(b)

40 Robots

varying

the number

of mines

Fig.11(b)

20 Robots

varying

the number

of mines

Fig.11(c)

30 Robots

varying

the number

of mines

Fig.11(c)

40 Robots

varying

the number

of mines

Fig.11(c)

pvalue 0.0412 0.0158 0.0221 0.0489 0.0455 0.0103 0.0267 0.0405 0.0277

Table 6: Results of p value in t Test for FTS-RR and ABC-RR.

FTS-RR vs ABC-RR

20 Robots

varying

the number

of mines

Fig.11(a)

30 Robots

varying

the number

of mines

Fig.11(a)

40 Robots

varying

the number

of mines

Fig.11(a)

20 Robots

varying

the number

of mines

Fig.11(b)

30 Robots

varying

the number

of mines

Fig.11(b)

40 Robots

varying

the number

of mines

Fig.11(b)

20 Robots

varying

the number

of mines

Fig.11(c)

30 Robots

varying

the number

of mines

Fig.11(c)

40 Robots

varying

the number

of mines

Fig.11(c)

pvalue 0.4812 0.4921 0.4189 0.0412 0.1005 0.1675 0.0404 0.1923 0.3833

Table 7: Results of p value in t Test for PSO-RR and ABC-RR.

PSO-RR vs ABC-RR

20 Robots

varying

the number

of mines

Fig.11(a)

30 Robots

varying

the number

of mines

Fig.11(a)

40 Robots

varying

the number

of mines

Fig.11(a)

20 Robots

varying

the number

of mines

Fig.11(b)

30 Robots

varying

the number

of mines

Fig.11(b)

40 Robots

varying

the number

of mines

Fig.11(b)

20 Robots

varying

the number

of mines

Fig.11(c)

30 Robots

varying

the number

of mines

Fig.11(c)

40 Robots

varying

the number

of mines

Fig.11(c)

pvalue 0.058 0.1245 0.023 0.4469 0.0445 0.0889 0.0192 0.0451 0.0419

Table 8: Results of p value in t Test for FTS-RR and PSO-RR.

FTS-RR vs PSO-RR

20 Robots

varying

the number

of mines

Fig.12(a)

30 Robots

varying

the number

of mines

Fig.12(a)

40 Robots

varying

the number

of mines

Fig.12(a)

20 Robots

varying

the number

of mines

Fig.12(b)

30 Robots

varying

the number

of mines

Fig.12(b)

40 Robots

varying

the number

of mines

Fig.12(b)

20 Robots

varying

the number

of mines

Fig.12(c)

30 Robots

varying

the number

of mines

Fig.12(c)

40 Robots

varying

the number

of mines

Fig.12(c)

pvalue 0.1426 0.0469 0.0186 0.0276 0.0112 0.0413 0.0498 0.0651 0.1159

Table 9: Results of p value in t Test for FTS-RR and ABC-RR.

FTS-RR vs ABC-RR

20 Robots

varying

the number

of mines

Fig.12(a)

30 Robots

varying

the number

of mines

Fig.12(a)

40 Robots

varying

the number

of mines

Fig.12(a)

20 Robots

varying

the number

of mines

Fig.12(b)

30 Robots

varying

the number

of mines

Fig.12(b)

40 Robots

varying

the number

of mines

Fig.12(b)

20 Robots

varying

the number

of mines

Fig.12(c)

30 Robots

varying

the number

of mines

Fig.12(c)

40 Robots

varying

the number

of mines

Fig.12(c)

pvalue 0.0978 0.2625 0.0317 0.795 0.0566 0.4321 0.1237 0.2523 0.1142
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Table 10: Results of p value in t Test for PSO-RR and ABC-RR.

PSO-RR vs ABC-RR

20 Robots

varying

the number

of mines

Fig.12(a)

30 Robots

varying

the number

of mines

Fig.12(a)

40 Robots

varying

the number

of mines

Fig.12(a)

20 Robots

varying

the number

of mines

Fig.12(b)

30 Robots

varying

the number

of mines

Fig.12(b)

40 Robots

varying

the number

of mines

Fig.12(b)

20 Robots

varying

the number

of mines

Fig.12(c)

30 Robots

varying

the number

of mines

Fig.12(c)

40 Robots

varying

the number

of mines

Fig.12(c)

pvalue 0.1781 0.0031 0.0181 0.0911 0.0144 0.0471 0.0469 0.0518 0.3647
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