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Abstract 

On-site exploration is an important procedure in scheduled Operation and 

Maintenance (O&M) in power plants. Currently, the efficiency of O&M work is 

challenging due to human reliability and the limitations of the deployed robots. Thus, 

the goal of this project is to develop an enhanced robotic exploration system for on-

site data collection of power plants. Specifically, this project focuses on developing 

an efficient coordination method for a multi-robotic exploration system, with the aim 

of maximising utilisation of the limited onboard energy of exploration robots to 

accomplish on-site inspection tasks with high efficiency. 

In the exploration scenarios, this project considered using a limited number of robots 

to conduct continuous exploration of multiple targets. Two modes were specifically 

considered for on-site exploration at a power plant: (1) temporary exploration, 

whereby the robots are required to conduct the exploration as quickly as possible to 

diagnose faults zone-by-zone, and (2) long-term exploration, whereby the robots are 

required to use their limited energy resource to maximise the number of inspected 

targets explored.  

In the exploration system’s development, this project considered two factors for 

optimal exploration-efficiency: (1) scheduling of an optimal exploration plan, and (2) 

appropriate charging controls. Consequently, three multi-robotic exploration 

approaches were developed in this study: (1) the Greedy algorithm and general 

charging method for temporary exploration, (2) the Genetic Algorithm (GA) and 

general charging method for long-term exploration, and (3) the GA and predicted 

charging method for exploration system improvement.  

A comparison of these three approaches showed that the developed Greedy based 

method was suitable for temporary exploration tasks to diagnosis faults zone-by-zone. 

However, the developed GA based method had more advantages in long-term 

exploration. Finally, it was found that the predicted charging method could save 

energy and increase inspection efficiency of the exploration system. In application, 

these developed exploration approaches can be used for different scenarios inside a 

power plant, and can be applied to other similar domains, such as cooperate rescue, 

farming or cleaning.  
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Introduction 

 

1.1 Research Background 

Exploration using robotic platforms for extreme environments has become an 

important research topic in recent years. These areas include petroleum [1], chemical 

industry [2], underwater [3] or lunar and planetary environments applications [4]. In 

terms of the use of a single robot for exploration, this has been proposed for visual 

inspection of nuclear power plants in [5]. The developed robot can reduce human 

involvement in inspections of radioactive nuclear areas. In a recent study [6], an 

exploration robot was developed to inspect an aircraft fuel tank, which decreased the 

workload of the aircraft crew and improved maintenance efficiency. In addition to 

these individual exploration robots, multi-robotics can be used as an alternative to 

solve complex exploration tasks. As an example, monitoring of a jet engine turbine 

used miniature swarm robots as proposed in [7] and in another study, an application 

of swarm robotics in crops inspection for precision agriculture was proposed in [8]. 

Hence, a customised robotic exploration system using multiple robots can be a reliable 

solution for different applications.     

On-site exploration in power plants to inspect equipment is an indispensable process 

for the site’s sustainability and maintenance. Currently, the inspection task is generally 

conducted by human inspectors who operate in hazardous areas where they are 

exposed to high temperatures, electric shock, dust, noise, and extreme weather. It is 

clear that these engineers experience great challenges in their Occupational, Safety 

and Health (OSH) [9][10]. This is likely to become even more prevalent in the future 

as the number of renewable energy generation facilities in remote locations is likely 

to increase in the future [11]. In this context, the associated costs of accessing these 

remote sites has inspired the deployment of advanced robotic systems for exploration 

of these facilities.   
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1.2 Research Motivation 

Continuously monitoring of power generation devices for maximum power generation 

is a requirement of different power plants. The most common maintenance method to 

diagnose faulty devices is on-site manual exploration in cooperation with sensor 

networks [12][13]. However, the reliability of this maintenance method is not very 

high due to human involvement, large number of sensors required and the sensor's 

stability, which has lead to difficulty in the precise O&M of a power plant. Upgrading 

a complete set of the sensor networks in old operating facilities to an advanced 

configuration will lead a power plant shutdown with a certain time, and this process 

also results in a considered cost [14].    

Using exploration robots is an alternative and versatile method instead of manual on-

site exploration to enhance the quality of monitoring, such as its accuracy and 

efficiency. Only a few robotic projects have been successfully commercialized to 

assist power plants conducting on-site exploration works [12]. This indicates that the 

performance of these robots needs to be improved, such as their effectiveness, or 

applicability for those different power plants. This has also lead to another concern, 

which is that due to these unmatured exploration robots, manual operation for on-site 

exploration still exists in various power plants, which poses a threat to the safety of 

engineers. 

Therefore, there is a necessity to determine the characteristics of on-site exploration 

tasks for different power plants, and recognise the limitations of current exploration 

platforms to develop a general-purpose and effective robotic exploration system for 

the precise O&M of power plants. 

1.3 Aims and Objectives 

The premise of sustainable electricity in any power plant is that the equipment’s health 

is inspected and maintained to allow full-time operation under the designed operating 

conditions. This project inspired by current robotic explorations' limitations in its 

efficiency and its applicability in case of on-site exploration works. Thus, this project 

aims to develop an enhanced robotic exploration system using multiple mobile robots. 

The main objectives of this research are:   
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(1) To determine the characteristics of on-site exploration tasks in different kinds 

of power plants. 

(2) To recognise the challenges of human inspectors working on-site and to 

discover the significance of using on-site exploration robots. 

(3) To identify the limitations of current deployed robotic exploration for as the 

inspection requirements summarised in Objective 1, and to develop effective 

exploration methods to deal with different conditions.   

(4) To develop exploration scenarios and evaluation metrics for dynamic testing of 

the developed robot exploration system.   

1.4 Scope of the Work 

This project is a prototype work which contributes to development of an exploration 

system. The system will use multiple limited robots for covering on-site exploration 

tasks in power plants. The proposed system was implemented using simulation 

software. For the overall scope of this project, see Figure 1.1.   

In addition to the development of the exploration algorithm, the simulation of the 

system is performed using the following three stages: 

(1) Develop a multi-layered framework for the robot’s main controller. In detail, 

high, middle, and low-level behaviours were developed to accomplish multi-

robot task allocation, robot motion control, and conduct exploration. For further 

details, see Section 4.2.   

(2) Develop an exploration platform for a multi-robotic exploration system. In detail, 

three auxiliary sensors were developed and integrated into the selected platform: 

(1) an approximate sensor to avoid collisions, and (2) an encoder system and (3) 

a Distance Estimation Module (DEM) for the robot’s motion control. For further 

details, see Section 4.3. 

(3) Develop four different configuration maps for the exploration system evaluation. 

To be more specific, two small size maps (25 × 25 m2 ), with 10 and 20 

exploration targets, and two large size maps (300×250 m2), with 10 and 20 

exploration targets, respectively, were developed. Thus, based on the different 

scales maps, but with same exploration targets configuration, the performance of 

the computational system can be checked accordingly. For further details, see 

Section 4.4.   
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Figure 1.1: Scope of this thesis. 

 

1.5 Novelty and Contributions 

The novelty of the developed multi-robot exploration system is twofold: (1) the 

exploration system is customised for application in a real power plant, based on the 

two exploration modes (temporary and long-term) that may occur in a power plant, 

and (2) the exploration system considers the impact from both the scheduling of the 

exploration strategy and the different charging mechanisms for multi-robotic 

exploration system optimisation. The contributions of this research are as follows:  

(1) This project establishes a good foundation for further work on the development 

of a robot exploration system for power plant: 

• The characteristics of on-site inspection in different power plants is 

determined via a literature review and through interviews with 

engineers from power plants, which is demonstrated in Section 2.1.1; 

• in addition, the limitations of the current human-based sensor network 

for O&M of power plant, and the significance of using robotic 

exploration system are provided in Sections 2.1.2 and 2.1.3; 
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• the limitations of the most recently developed robot for on-site 

exploration of power plants is outlined in Section 2.2;  

(2) This project develops a multi-layered framework between Matlab and V-REP 

for multi-robot synergy control, which can be directly adapted in the power 

industry as it has universal applicability, and saves robot limited on-board 

computation resources, which is presented in Section 4.2; 

(3) This project discusses the general requirements of on-site inspection at power 

plants, and develops an exploration platform, which contributes to the overall 

body of knowledge in exploration system formulation. This is described in 

Sections 4.3.1 and 4.3.2; 

(4) This project provides a new, easy and reliable method (via an encoder) to solve 

real-time measuring robot past-path lengths issues in V-REP simulator. The 

contribution of this method for V-REP simulator is twofold: (1) it is generally 

applicable as it can be used to measure wheeled robots’ past-path lengths in 

real-time for any type of path-planning algorithm; and (2) there are no 

requirements to study the principles of these algorithms and complex 

mathematical works to capture robots’ past-path lengths. This is demonstrated 

in Section 4.3.3, and Section 5.2;   

(5) Power plant modelling works are based on real power system constructions. In 

addition to two small-scale power plant models, this project provides another 

two real-sized power plant models, which are explained in detail in Section 4.4. 

These models present the general lay out of power generation devices in a 

power plant, which can be used in further research, e.g. route situation-based 

multi-robot task allocation; 

(6) The V-REP path planning library – the Open Motion Planning Library 

(OMPL), was tested based on limited computer configuration, where nineteen 

state-of-the-art path planning algorithms are evaluated, while the further use 

and development recommendations using OMPL are detailed in Section 5.1; 

(7) The multi-robotic exploration systems developed in this study can conduct 

inspections and charging tasks, and these systems are optimised via the 

developed predicted charging mechanism. These exploration systems are 

adaptable for temporary or long-term exploration modes for enhancing precise 
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O&M in power plants, and these contributions are demonstrated in Chapter 3, 

and Sections 5.3, 5.4, respectively.   

1.6 Thesis Structure 

This thesis is divided into six chapters and one additional appendix. Following the 

introduction, Chapter 2 reviews the various current exploration techniques used in 

power plants. The characteristics of on-site exploration in different kinds of power 

plants, and the significance of using exploration robots to replace human inspectors 

are discussed in this chapter. Following that, fifteen of the most recently developed 

power-plant exploration robots, and five multi-robotic exploration methods are 

analysed. At the end of this chapter, three robot simulation software are described. In 

Chapter 3, details of the developed multi-robotic exploration methods are outlined. 

The first two sections of this chapter explain the function of the exploration robot and 

the two charging methods, while the last two sections describe two different multi-

robot exploration approaches for temporary and long-term exploration modes. Chapter 

4 outlines the experimental configurations for implementation of these developed 

exploration methods. The first two sections of this chapter discuss the experimental 

setup and robot control framework and, following that, the development works of the 

exploration robot platform are presented. The final two sections of this chapter 

describe the exploration scenarios and evaluation metrics, before Chapter 5 

demonstrates the experimental results and discussions. Finally, Chapter 6 

demonstrates the conclusion and further works and Appendix A details information 

on the investigated power plants. 
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Chapter 2  

 
Literature Review 

  

Manual and robotic are two methods for on-site exploration of power plants, which 

will be reviewed in this chapter. This chapter is divided into five sections. Firstly, 

Section 2.1 reviews the manual explorations solutions in power plants, before, in 

Sections 2.2 and 2.3, reviews of the most recently developed power-plant exploration 

robots and multi-robotics exploration methods are explained. Following that, Section 

2.4 reviews three robot simulation packages before finally, Section 2.5 summaries the 

chapter.        

2.1 Exploration in Power Plants 

This section aims to discover the characteristics of on-site exploration tasks in 

different power plants, and identifies the significance of using robots for exploration. 

In this section, general reviews of exploration requirements in different power plants 

are described, before discussion on human reliability in power generation industry. 

Then, this section will briefly discuss the places that can be served by exploration 

robots and how robots benefit the power plant industry. Finally, this section 

summarises the challenges of developing a generally applicable exploration robot for 

these power plants.    

2.1.1 Manually Inspection 

There are two types of power plants operated around the world: conventional and 

renewable. Conventional power plants have been in use for many years, using fossil 

fuels to generate power, such as coal/gas-fired power plants. Recently, however, the 

use of renewable energy has increased, such as wind farms and nuclear, solar, or 

hydropower plants, and so on. These plants play a role in generating electricity for the 

world and their proportion of the energy mix is likely to increase in the future. 

However, whether a conventional or renewable plant, manual inspections still exist in 
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all power plants. This is verified by recent exploration projects and 11 different O&M 

engineers from nine power plants. The details of this review are as follows: 

(1) Solar power plant: In a solar power plant [15], the manual exploration-efficiencies 

for check the dust cover rate on solar panels is poor. This is because thousands of 

solar panels are generally deployed in a large area. In another solar power plant  

[16], inspector safety was threatened when they inspected the pipes because the 

liquid inside these pipes is of very high temperatures.  

(2) Wind farms: In [17], there was a challenge of efficiently monitoring wind farms 

by manual inspection as the difficulty in reaching the top of the wind turbines. In 

addition, in other wind farms [18], the difficulty of monitoring of the wind turbines 

for making sure it is running under designed conditions has been recognised, as 

these turbines have a vulnerable sensing system. Generally, when these turbines 

are deployed over the long-term to face uncertain weather, the turbines are turned 

off even with pitch position sensor errors.  

(3) Nuclear: In [19], on-site inspection of a nuclear power plant occasionally requires 

human involvement, which is considered dangerous due to the radioactive 

materials and multiple exploration targets. In [20], the decommissioning of a 

nuclear power plant faced the same problem as human inspectors had to experience 

extreme environments to gather on-site data.   

(4) Thermal and Hydropower: In [21], manual inspection of a thermal power plant 

was considered time-consuming due to these exploration tasks are repetitive 

generally. In addition, the on-site inspector’s safety is at risk due to power plant’s 

reliability. In [22], manual inspection of underwater structures in a hydropower 

plant is ineffective due to underwater visibility and the multiple exploration targets. 

(5) Additional investigation of real power plant engineers: a total of 11 O&M 

engineers from nine different power plants are invited for providing the on-site 

exploration information (ten from thermal power plants, one from a hydropower 

plant).  From the results, on-site exploration is a basic O&M requirement in these 

plants, and human inspectors carry out this work. The two most common modes 

for on-site exploration are: (1) in cooperation with a main station to conduct a 

temporary inspection for fault diagnosis, and (2) periodic exploration (long-term) 

to inspect the health of equipment in different zones. Details of these engineers are 
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listed in Appendix A. In relation to the on-site inspection/O&M of power plants, 

these engineers were mainly concerned about professional risks due to the power 

plant’s reliability. Thus, potential on-site risks and some sample exploration 

targets are also summarised from the interviews with engineers, which are 

demonstrated in Tables 2.1 and 2.2. 

From the reviews above, it is clear that the phenomenon of manual on-site inspection 

in different power plants exists. In this context, the next sections of this chapter will 

discuss human reliability in power generation. 
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Table 2.1: List of subsystems and faults that may occur in a power plant, as summarised from interviews with engineers (for further details, see 

Appendix A).  

Power plant subsystem Function Potential problem Consequence 

Raw material handling 

system 
Convert raw fuels to useful small pellets. 

Dust explosions, self-

ignition, off-gassing of 

bacteria, fungi 

Fire, 

 

Explosion, 

 

Worker fatalities, 

 

Loss of production, 

 

Poison, 

 

Power plant 

destruction, 

 

Human operator’s 

OSH, 

 

Gas/steam turbine 

or generator 

damage, 

 

Large-scale 

electricity black-out, 

 

Unexpected 

maintenance  

Fuel storage system Storage of the raw/converted fuels. 

Feeding system Delivery of the treated pellets. Noise 

Carbonisation system 
Removal of the different moisture content from coal 

pellets. 
Self-ignition 

Air booster system 
Pump the compressed air to gasification or gas 

turbine. 

High temperature, 

pressure 

Gasification system Transfer the solid fuel to a gas fuel. 
Syn-gas leakage, 

explosion-prone 

Tar removal system Remove the tar from syn-gas. 
High temperature, 

pressure 

Syn-gas purification 

system 
Remove the ash and impurities from syn-gas. Combustible leakage 

Gas power system Generate electricity via gas turbine. Excessive vibration and 

overheating, tube 

corrosion, leakage, noise 
Steam power system Generate electricity via steam turbine. 

Heating system 

Recovery of waste heat from power cycle for 

heating requirements of terminal users, such as hot 

water supply. 

Output water temperature 

fault 

Refrigeration system 
Recovery of waste heat from power cycle to support 

cold requirements. 
Refrigerator fault 

Back-up system 
Support power can be generated when maintaining 

on some devices. 

Back-up system starts 

time delay 
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Table 2.2: Details of the exploration samples of a power plant, as summarised from interviews with engineers (for further details, see Appendix 

A). 

Mainly Task ID Service Zone Case Study Example Fault Phenomenon 

On-site 

exploration 

1 

Boiler system 

Steam pipe leakage Leakage 

2 Steam temperature faults Overheat 

3 Feedwater leakage Leakage 

4 Boiler safety valve faults Steam leakage, high-frequency leakage 

5 Boiler air pre-heater faults (1) loose pipe; (2) water leakage 

6 Drum water level indicator (1) mica leakage; (2) lack water 

7 Boiler ash leakage Leakage 

8 Forced draft fan faults (1) unusual noise; (2) lubricant leakage 

9 Coal mill Pulverised coal leakage. 

10 

Turbine system 

Booster pump faults Overheat and lack of lubrication  

11 Electrical feed pump front pump faults Oil leakage 

12 Oil filter faults Oil leakage to the hot tube resulting in fire 

13 Generator faults Generator overheat 

14 Condenser vacuity faults Air leakage 

15 Pipe faults Pipeline crack/corrosion 

16 Refrigeration system faults H2 leakage 

17 Valve faults Valve cracks at water source 

19 

Electrical unit 

Motor faults Overheat or fumes 

20 Generator mechanical faults Overheat or unusual noise 

21 Electrostatic precipitator faults Voltage gauge has more error than normal 

22 Coal feeding faults Fuse broke 

23 Sewage pump faults Cannot start or relay action fault 
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2.1.2 Human Reliability 

   

Figure 2.1: Some accident caused by operator error in a power plant, adapted from 

[23]. 

 

From the reviews above, human-based/assisted on-site inspection still exists in 

different power plants. However, the reliability of these plants is at risk as most 

accidents reported are closely connected with human operations. For example, in the 

accidents reported in [9], in August 2016, 22 engineers were seriously injured as the 

human inspector failed to find the faulty device on-time.  

In [23], the challenges of engineering maintenance arises from human reliability, error, 

and other factors in the manufacturing process have been summarised. These 

challenges are due to various causes as shown in Figure 2.1:  

(1) procedural deficiency, the faulty device may not be checked on-time due to 

extreme cold or heat conditions;  

(2) misunderstanding of procedures, resulting in an incorrect judgement of the 

device’s health;  

(3) disregard of procedures, resulting in a careless exploration;  

(4) use of wrong procedures, such as exploration plan being delayed during a shift 

exchange; and  

(5) typographical error, resulting in difficulty in analysing on-site information. 

Typographical error

Inadequate

procedures and

lack of clarity
Causes

Procedural

deficiency

Misunderstanding

of procedures

Disregard of

procedures

Misunderstanding

of technical

specifications

Misidentification

of an alarm
 perator oversight

Lack of guidelines

Check list not

completed

Use of wrong

procedures
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Therefore, there is a requirement to develop an on-site exploration technique to reduce 

the risks from human operation, such as an effective exploration robot system. Thus, 

the next section will discuss the significance of using exploration robots for inspection 

of power plants. 

2.1.3 Exploration using Robots 

The benefits of using exploration robots in the inspection of power plants are as follow: 

(1) Guarantee of an additional feedback route. In [24], the performance of the current 

sensor network still had room for improvement. Two faults may affect the 

reliability of overall sensor networks: (1) a functional fault that leads to data loss, 

and (2) a data fault that may result in significant bias. This situation is particularly 

concerning in large-scale plants, which may be equipped with thousands of sensors 

nodes. The data from exploration robots can be used when calibrating or changing 

these fault sensors. 

(2) Enhance the efficiency of fault diagnosis processes in case of old facilities. As is 

generally known, some power plants have been in operation for a number of years, 

meaning these plants may be equipped with a low-intensive sensor network. This 

situation might result in the health of the main power generation devices are well 

monitored, but not other subsystems. In this case, the diagnosis process is time-

consuming, and experienced engineers are required. Thus, the historical data of 

these subsystems provided by exploration robots can be used as a reference for 

monitoring the device’s health. 

(3) Reduce the O&M costs for the power plant. Due to the different old/new 

conditions, sensor configurations and levels of automation, there are currently 

around 1.2 million O&M engineers working in power plants around the world [25]. 

Compared with the investigation results outlined in Appendix A (labour cost), a 

power plant may be assisted by hundreds or thousands of labours. Thus, using 

exploration robots to assist a few key engineers is an attractive solution compared 

to employing thousands of peoples. 

(4) Protect the safety of on-site engineers. From the review, several flaws exist in 

power plant inspection, which may pose serious risks to the human operator's OSH 

[26]. Indeed, in August 2017, a human inspector received multiple injuries and 

large-scale burns after an accident in a power plant, and six weeks later, two human 
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inspectors were hurt at other power plants [26]. In addition, compared with the 

investigation results presented in Table 2.1, on-site inspection of a power plant can 

be regarded as an extreme environment where inspectors/O&M engineers face 

several risks. For example, inspectors/O&M engineers face threats to their health 

when inspecting fuel stocks due to dust or bacteria, or risk scalding when 

inspecting high-temperature pipework.   

Thus, the use of robots for on-site exploration is an alternative solution that can help 

improve the precision of the  &M of power plants to optimise the plants’ reliability. 

2.1.4 Summary  
 

From the review, it is clear that on-site inspection tasks exist in different types of plants. 

Thus, these plants are looking for a technology that could be used to cover the various 

on-site inspection tasks instead of human labour. At present, two exploration modes 

general exist: (1) temporary exploration where the human inspectors are required to 

operate as quickly as possible to find the faulty device, and (2) long-term exploration 

to inspect the health of equipment in different zones. However, the main challenge of 

using manual exploration in power plant inspection is the risks to the safety of these 

engineers when they work on-site. Thus, there is a requirement to develop an effective 

on-site exploration robot system with different exploration modes to inspect the health 

of equipment in power plants. The next section of this chapter will review the most 

recently developed power-plant exploration-robots and assess to what extent they meet 

this requirement. 

2.2 Exploration Robots for Power Plants 

The function of an exploration robot is to gather information in unknown or hazardous 

environments. In this section, the most recently developed robot exploration 

techniques for different types of power plants will be reviewed. The features and 

limitations of these projects are analysed and, following this review, the multi-robotic 

exploration system was chosen as the most appropriate approach for this project. The 

reasons for which will be outlined in this section.   
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2.2.1 Solar Power Plants 

 

Figure 2.2: The developed pipeline detection robot for the solar power plant, adapted 

from [16]. 

 

Case study 1: Aitor et al. [16] developed an autonomous exploration robot to inspect 

pipe leakages of a solar power plant. In their study, two problems were recognised: (1) 

the inspectors’ safety was threatened by high-temperature Heat-Transfer-Fluid (HTF) 

leakages from the Parabolic Cylinder Collectors (PCC), and (2) there was a difficulty 

of efficiently monitoring solar power plants by manual inspection as the exploration 

targets were generally laid out over a large area. An exploration robot was therefore 

developed to inspect HTF leakage from the PCC. Specifically, the developed robot 

was based on two parts: (1) a RobucarTT exploration platform with a ±0.2 m accuracy 

localisation system; and (2) a sensor and thermographic camera (attached with 

onboard manipulator) to detect leakages. The details of the developed exploration 

robot can be seen in Figure 2.2.  

In terms of hardware configuration, the navigation problem of the robot was 

considered. This research attempted to keep the exploration on the pipeline, making 

sure the pipe remained in the robot’s scanning range. Technically, the routes for 

exploration were planned via two processes: (1) Dijkstra’s routing technology for 

computing the path on the topological graph; and (2) robot navigation through local 

metric maps and search-based algorithms. To be more specific, the global metric 

planner generated a path from the robot to the target, and the local metric planner then 

controlled the robot around the path generated from the first step to achieving 

navigation.  
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According to the test results, the exploration robot with the developed pipeline 

tracking system was able to conduct explorations of the solar power plant and the 

developed system could provide a high rate of success in pipeline position tracking 

with an acceptable error rate. The exploration was flexible as the leakage detection 

sensor could be adjusted by onboard manipulator. However, despite the usability of 

the developed robot, the performance of the developed robot was an issue when its 

exploration on thousands of PCCs. 

Case study 2: Torsten et al. [27] developed a climbing robot for exploration of a 

receiver panel in a concentrated solar power plant. This system was developed because 

the receiver panels were vertically installed on a one hundred metres higher tower 

which was exposed to very high temperatures, meaning it was difficult to service by 

manual operation. A climbing exploration robot, based on a special mechanical and 

sensing systems, was therefore developed. In the mechanical system, a ‘six-legged’ 

structure was adopted whereby every leg was equipped with suction cups that helped 

the robot stick to the tower’s surfaces for climbing. In the sensing system, contactless 

sensors were used in the overall inspection processes to avoid damage to the detected 

device. The developed central-tower tube-exploration robot system can be seen in 

Figure 2.3.      

In terms of exploration tasks, the robot was designed to conduct visual and eddy 

current tests to check the health of the receiver panel. These health conditions included 

three sides: (1) coating degradation, (2) coating thickness, and (3) corrosion inside the 

tube. In terms of the exploration methods, the developed exploration robot was 

controlled by human operators and to test the developed exploration robot, and an 

indoor mock-up solar tower receiver panel was developed in this study.  

From the results, the developed robot was found to be able to perform the exploration 

tasks. The exploration period to inspect the entire receiver took 50 hours (with two 

sensors), and 16 hours (with eight sensors in parallel). After using the parallel 

inspection method, the efficiency of the exploration robot was enhanced. The main 

limitations of this robot are summarised as follows: (1) the solar energy conversion 

efficiency decreased as the receiver was covered by the exploration robot 

(2.3×1.6×0.8 m3); (2) the heavyweight of the exploration robot (280 kg) lead to 

energy consumption issues; (3) the evaluation processes were different compared with  
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Figure 2.3: The developed central tower exploration robot, adapted from [27]. 

 

reality, for example, the high-temperature surface of the heat exchangers meant the 

deployed suction cups would melt when the robot carried out an exploration; (4) the 

robot was manually operated; and (5) the efficiency of the developed robot needed to 

be improved.    

Case study 3: Zhuo et al. [15] presented an idea to design a robot for monitoring and 

cleaning the photovoltaic surfaces of a solar power plant. In this project, the problem 

was recognised as the dust on the solar panels, which would lower the efficiency of 

power generation. In addition, monitoring and cleaning processes were manually 

conducted by human operators, which was time-consuming and labour-intensive. 

Thus, the project presented a novel idea to develop a multi-functioned robot platform 

to satisfy both monitoring and cleaning requirements. The robot was required to have 

the capability to jump the gaps between different solar photovoltaic pieces, and to run 

on these surfaces for inspection and cleaning. As a result, an Unmanned Autonomous 

Vehicle (UAV) was integrated with a split crawler as a robot platform for the 

maintenance of the photovoltaic surfaces. The proposed exploration and maintenance 

robot system is presented in Figure 2.4. 

In terms of the robot’s control, for exploration, thermal imaging infrared and cameras 

were used for on-site data collection. The exploration processes were customised via 

remote commands, such as take-off or exploration route planning. In terms of 

hardware configuration, dust cleaning and scraper cleaning devices were equipped to  
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Figure 2.4: The proposed robot system for solar panel exploration and maintenance, 

adapted from [15]. 

 

the robot’s onboard arms. This design allowed for adjustment of the scrapers to carry 

out the different cleaning requirements. The advantage of this design is that the 

exploration robot is multi-functioned, with the capability to both conduct inspections 

and clean the photovoltaic surfaces of the solar power plant. In addition, this 

exploration robot has a general-applicability in any type of power plant as it is 

contactless. For example, this exploration robot can be adapted in Case study 2 for 

exploration of a receiver panel in a concentrated solar power plant.  

The main limitation of this study is that a real robot is still in development as all the 

details of the exploration robot provided above were imagined by the author. In 

addition, the endurance of this multi-functioned robot for continuously carrying out 

O&M tasks in a solar plant is a concern. This concern is because the robot is battery 

powered which means the robot has limited power to support its multiple functions.  

2.2.2 Wind Farms 

Case study 4:  Netland et al. [17] presented a study to investigate the feasibility of a 

telerobot system for exploration of offshore wind farms. The inspiration for this 

project was twofold: (1) the difficulty of reaching the top side of the wind turbines 

manually which resulted in an exploration process that was poorly efficient; and (2) 

higher labour-costs due to turbine groups are required to be simultaneously checked 

with a certain period. Therefore, a rail-based robot exploration system was developed. 

This method allowed robots to be powered by ground stations, and avoided the  
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Figure 2.5: The proposed rail-way based inspection robot system for wind farms, 

adapted from [17]. 

 

exploration process being interrupted by limited onboard energy. The proposed rail-

way based inspection robot system can be seen in Figure 2.5.  

In terms of the sensing system, a camera was adapted for visual exploration. Regarding 

the motion system, the robot could move forward and backwards. In the overall 

exploration process, the developed exploration robot was wirelessly operated by the 

ground station and during usability tests, the satisfaction level of human-robot 

interaction process from these participants was evaluated.  An indoor environment was 

used in the system’s evaluation, where the robot was required to locate two faults in a 

distribution box: (1) a loose cable, and (2) a tripped fuse. 

From the results, the developed robot was found to be able to locate the faults. 

However, participants were concerned about the flexibility of the proposed 

exploration robot, such as its ability to adjust to locate exploration targets but the 

robot’s battery limitations were solved to allow exploration in the long-term. The main 

limitations of this project are summarised as follows: (1) skilled human operators are 

required as the robot is operated manually; (2) the test environment was idealised; and 

(3) it was expensive to build a railway route for real implementation.   

 



Chapter 2. Literature Review 

 

31 

 

Case study 5: Juntao et al. [18] carried out a study to develop a multi-robotic 

exploration system to monitor the health of wind farms. Currently, the precise O&M 

of wind farms is difficult due to extreme weathers. This because the reliability of the 

overall subsystem inside a wind turbine will suffer a great impact, such as the 

lifecycles of mechanical or sensor system are reduced. There was a necessity to 

develop another on-site exploration method which can be adapted to check these 

turbines healthy at any time.  In general, the turbines in a wind farm are grouped and 

laid out over a large area. Therefore, this project considered using a multi-robotic 

exploration system to overcome the monitoring gap. This project involved two main 

steps: (1) developing a fault database for the turbines to formulate a potential risk 

assessment; and (2) developing a controller for scheduling an exploration strategy for 

a multi-robotic system.   

For the fault database, Exponential Risk of Fault (ERF) concepts was proposed to 

quantify the damage of the defects. This helped the robot controller calculate the threat 

level for each exploration task. All ERF concepts from each robot were grouped 

together, which allowed the lowest-risks exploration plan for the robot team to be 

found. From there, the inspection strategy was formulated for the exploration system, 

which attempted to minimise the damage to a wind farm.  

During testing, fault data from real wind farms were collected and used for ERF 

method assessment. From the results, the multi-robot system was found to be able to 

perform exploration tasks for wind farms with a low chance of serious accidents. This 

novelty of this project was its use of ERF as evidence for minimising operational risk 

for the development of the exploration system. However, the main limitation of this 

study was that the proposed multi-robotic exploration system was not fully developed.   

Case study 6: Fabio et al. [28] carried out a study to investigate the usability of an 

exploration system for wind farms. In their study, the problem - the O&M technical 

inefficiency bothering the power generation capabilities of the wind farms – was 

identified. Thus, a risk-based method was considered and used to define the priority 

level of the inspection tasks to avoid serious accidents. In the development of the 

exploration robot system, two works were carried out: (1) an experienced dataset was 

built in the main station for diagnosis of the faults in wind farms; and (2) a fault  
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Figure 2.6: The proposed exploration system for wind farms in Greece, adapted from 

[28]. 

 

prediction model was proposed as evidence for scheduling the inspection strategy of 

the exploration robot, which contributed to minimising the damage to wind farms as 

much as possible. The proposed exploration system for wind farms can be seen in 

Figure 2.6.   

In terms of dataset construction, one year of real data from a wind farm was collected. 

These data included the general situations of the wind turbines, such as their power 

generation, wind levels, gear temperature, and so on. In terms of the development of 

the predictive model, these collected fault data were classified into eight groups to 

represent the on-site situations and relative threat levels of damage. Furthermore, these 

threat levels were separated into two groups: (1) acceptance and (2) unacceptance. 

Thus, the exploration robot was able to recognise the priority levels of the inspection 

tasks. 

After the experiments, the method developed for the robot exploration for wind farms 

reduced the chances for unscheduled maintenance of the wind farm.  In addition, the 

power generation of the selected wind farm increased after adapting the developed 

robot system. The limitations of this project are summarised as follows: (1) the 
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exploration efficiencies were limited by a single robot; (2) the predictive models for 

building the fault database required a large amount of experienced data, and this may 

have meant the developed exploration robot is not applicable to other facilities, such 

as a thermal power plant; and (3) the details of the exploration robot are not provided. 

This project considers generic agents and was interested in planning a low-level risks 

exploration strategy rather than the physical platform.   

The contribution of this project is that it is strongly connected with the real power 

industry, and the exploration system that has been developed has been successfully 

deployed in a wind farm. In addition, this project also provides a key concept to 

exploration system development, which is that a developed exploration system should 

be able to adjust its exploration strategy based on different situations to minimise the 

possibility of shutdown of a power plant. Therefore, it is worth considering how to 

allocate exploration tasks to multi-robots to protect power plant as much as possible 

based on different exploration modes as concluded in Section 2.1.1. 

2.2.3 Nuclear Power Plants 

Case study 7: Qingsong et al. [29] developed a steam-generator exploration robot for 

a nuclear power plant. This study was inspired as a manual exploration of the steam-

generator in a nuclear power plant was impossible due to the small spaces. Therefore, 

a remote-controllable exploration robot was developed for visual inspection tasks 

inside steam-generator. In this study, four subsystems were developed: (1) robot 

platforms, (2) sensing equipment, (3) assisting equipment, and (4) an operating system. 

The proposed exploration robot can be seen in Figure 2.7 left-hand side.  

In terms of the development of the robot platform, magnetic wheels were adapted for 

the robot, giving it the capability to move and stick on the surface of the steam 

generator. To inspect the surrounding situation, four cameras were installed in the 

front and side of the exploration robot. One extra camera was attached to a built-in 

robotic arm to make detection more flexible. In addition, the distance from the robot 

to the target could be measured by the integration of distance sensors and a Virtual 

Reality (VR) system was adopted which allowed the human operator to see the robot’s 

position in the steam generator. In terms of the robot’s operating system, the 

exploration robot was controlled and monitored by a control panel and two screens.  
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Figure 2.7: The robot system for exploration of a nuclear steam generator, adapted 

from [29]. 

 

The details of the VR system and control system can be seen in Figure 2.7 right-hand 

side. 

In the experiments, the exploration processes were conducted on mocked-up models 

with the results revealing that the robot was able to perform exploration tasks inside 

the steam generator. The novelty of this project was that its utilised VR technology, 

which allowed operators to check on-site situations. The limitation of this study was 

that the robot was controlled via cables, which may mean the robot struggles with 

obstacles.     

Case study 8: Dinesh et al. [20] carried out a study to apply a small quadrotor into 

nuclear power plants to gather on-site data for decommissioning. The inspiration for 

this project was twofold: (1) manual exploration of radiation areas for 

decommissioning or decontamination of nuclear sites is impossible, and (2) the robot’s 

navigation capability is challenged in this kind of unknown environment where might 

without GPS signal, or commands from a human operator. Thus, an autonomous 

exploration robot was developed to avoid human involvement in the exploration of 

nuclear sites. In addition, two external situations were considered: (1) the autonomous 

exploration capability when robot left with different battery are considered; and (2) 

robot are required to check situations for a narrow place, such as a primary 

containment vessel.  Thus, a small quadrotor (diameter of 0.16 m) was selected as the 

exploration platform, which can be seen in Figure 2.8.    
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Figure 2.8: The proposed small UAV exploration platform for nuclear 

decommissioning, adapted from [20]. 

 

In terms of the development of the autonomous system, this project was split into three 

steps: (1) the real-time status of UAV are collected for adjusts its flying pose; (2) the 

environments around the UAV were mapped via a stereo and a camera; and (3) a pre-

generated map was used to plan the exploration path for the UAV. During testing, the 

system was evaluated under a mocked-up model.  

From the results, the exploration robot was found to be able to be used in an unknown 

environment to conduct autonomous exploration without human intervention. 

However, battery consumption had a significant impact on exploration performance. 

To be more specific, in the case of low battery, the sensing system was affected as the 

exploration process was unstable, which caused the exploration robot to crash or drift 

in some instances. The main limitation of this study was that the robot was tested is in 

an indoor lab environment. 

Case study 9: Benjamin et al. [19] carried out a study to investigate the feasibility of 

using autonomous exploration robots for general O&M of nuclear power plants. This 

project was inspired by the fact that manual monitoring of radiological materials inside 

a nuclear plant is generally considered dangerous, time-consuming, and repetitive. In 

this project, the significance of using an autonomous robot was discussed, with the 

conclusion that nuclear plants can benefit from the use of exploration robots in terms 

of the release of labour for more complex tasks, the double verification of equipment 

for the plant, reductions in costs, and so on. As a result, a fully autonomous exploration 

robot – CARMA – was developed, which can be seen in Figure 2.9.    
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Figure 2.9: The developed CARMA robot, adapted from [19]. 

 

The development was split into four steps: (1) radiation sources (alpha, beta, and 

gamma) in the nuclear plant were determined; (2) the exploration robot was developed, 

based on the robot platform (TurtleBot2) and relative sensing system (a thermal sensor 

package and navigation sensor). A spring arrangement was also developed to absorb 

the shock of the sensors when the robot operated on uneven surfaces; (3) the 

autonomous exploration system was developed based on simultaneous localisation 

and mapping techniques; and (4) the radiation avoidance algorithm was developed for 

planning the exploration path. To test the developed exploration robot, two 

experiments were carried out: (1) a computer simulation, and (2) the deployment of 

the developed system to a real nuclear power plant. 

During testing, the developed robot system was found to be able to undertake 

exploration tasks and ran at a highly autonomous level. The contamination zone was 

identified by the developed exploration robot, and the exploration process was more 

reliable by the adoption of spring arrangements in the sensing system. The project 

developed radiation avoidance algorithms that could be used to compute a cleaning 

path for the robot, which allowed further maintenance and recycling if the robots were 

to be deployed in a real nuclear power plant. However, after a comprehensive review, 

a concern was the exploration efficiency of this robot when deployed to a large-scale 

site to inspect multiple targets.   
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2.2.4 Thermal Power Plants 

 

Figure 2.10: The developed exploration robot for a thermal power plant, adapted from 

[21]. 

  

Case study 10: Yandong et al. [21] developed a robot for on-site monitoring of the 

equipment in a thermal power plant. This project was inspired by three reasons: (1) 

reliability and effectiveness of manual exploration is limited when inspectors face 

multiple and various exploration tasks in a thermal power plant; (2) on-site exploration 

in a power plant generally involves extreme conditions, such as high-temperatures, 

thus the engineer’s safety suffers great risks; and (3) labour shortages. Therefore, a 

robot system was developed to accomplish general on-site exploration tasks for 

thermal power plants and this robot can be seen in Figure 2.10.      

In terms of the robot’s hardware configurations, three parts were developed: (1) an 

exploration platform, (2) sensing system, and (3) charging system. To cover the 

exploration tasks in large sites, the speed of exploration platform was designed to 1.3 

m/s and its ability to climb 25° slopes. In addition, considering indoor and outdoor 

exploration requirements, the robot was developed to be able to work at conditions 

between -40°C ~ +70°C. For the sensing system, a camera was specially customised 

with a detection range of up to 30 metres and a shock absorption system was adapted 

to enhance the system’s exploration qualities. Obstacle avoidance was achieved by 

using an ultrasonic distance measurement radar. In terms of the charging system, the 

robot continuously monitored its remaining battery via an energy consumption 

evolution chip. During exploration, the robot navigated a fixed route.   
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According to the test results, the developed exploration robot was able to conduct 

explorations of the thermal power plant. For instances, it was used to check the gage 

pressure, thermometer, oil level, and valve status in the thermal power plant. However, 

limitations included the fact that the exploration robot navigated a pre-defined route, 

and the efficiency of the developed robots was an issue when multiple targets needed 

to be checked in a limited amount of time.    

Case study 11: Jun et al. [30] developed a robot for exploration of Boiler Water Walls 

(BWW) in a thermal power plant. Current manual exploration of BWW is inefficient 

and results in a loss of power generation. This inefficiency is due to the highly complex 

and tough conditions inside a boiler. Thus, there was a requirement for quick 

maintenance of boiler systems to reduce O&M time. A wall-climbing robot was 

therefore developed to assist the engineers for conducting exploration inside a BWW. 

This robot can be seen in Figure 2.11. 

In terms of the system’s development, two main parts were considered: (1) the 

exploration platform, and (2) non-destructive testing. For the exploration platform, to 

accomplish exploration in a flexible way, the robot’s body was made straight, with 

sideways walking parts that allowed the robot to move on a horizontal or vertical plane. 

In addition, the robot’s power breaks problem was also considered because of robot 

might fall to lead the device got a secondary damaged. Thus, a magnetic adsorption 

system was deployed which was used to make sure the robot remained on the BWW. 

For the sensing system, cameras and an ultrasonic sensor were both installed for 

obstacle avoidance and tube exploration. 

Experiments were conducted in a real power plant and in the experiments, it was found 

that exploration of the BWW could be easily conducted by the developed robot. In 

addition, the efficiency of the proposed exploration system was enhanced, as the robot 

was able to inspect six points in one-stop. However, the limitation was that the 

proposed robot was only suited to a boiler system.      
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Figure 2.11: The proposed wall-climbing robot system for exploration of a thermal-

plant boiler, adapted from [30]. 

 

Case study 12: Vikesh et al. [31] developed an exploration robot to monitor a thermal 

power plant’s fuel feeding system. The inspiration for this project was twofold: (1) 

breakdown problems of the coal conveyor were identified as lowering the power 

production of the thermal power plant; and (2) manual exploration to prevent conveyor 

shutdown was challenging due to dusty conditions (because of the conveyor’s open 

design, the pulverised coals are exposed directly). Thus, an exploration robot was 

developed to inspect the coal conveyor belt in this project.  

In terms of the fault phenomenon of the conveyor system, two common faults were 

considered for the system’s development: (1) the unusual temperature of the bearing 

system, and (2) unusual noise of the conveyor belt. Thus, an infrared temperature 

sensor and a sound level metre were adopted in the robot sensing system. In terms of 

exploration routes, Radio-Frequency Identification (RFID) labels were stuck on the 

conveyor belt where these RFID labels were far from each other with a certain distance 

for the robot to follow. In terms of fault diagnosis, the console received data via a 

wireless module from the exploration robot.  

According to the test results, the exploration robot was able to check the conveyor 

instead of manual exploration. However, the proposed RFID system may be 

interrupted by coal dust, which could lead to the robot’s loss of control or it missing 

‘hot spot’ exploration points.  
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2.2.5 Robot Platforms for Exploration 

  

Figure 2.12: The real exploration robot system deployed in Lanxi 500 kV substation, 

adapted from [32]. 

 

Case study 13: Lihui et al. [32] developed a robot platform to explore on-site device 

health in substations. The inspiration for this project was twofold: (1) cost-effective 

issues of manual exploration of substations, as exploration processes are repetitive and 

a certain number of inspectors are required; and (2) the fact that human inspectors may 

face challenges such as high voltage, high temperatures or extreme weather. Therefore, 

a mobile exploration robot was developed to undertake on-site exploration tasks in 

substations. This robot can be seen in Figure 2.12.  

Firstly, the on-site exploration characteristics were determined as the exploration 

targets being various and laid out over a large exposed area. Therefore, a perception 

system was integrated with different onboard sensors for comprehensive exploring 

capability. For instance, the robots’ had the ability to read the voltmetre or oil level 

gauge through a high-resolution camera; or it can check the temperature fault for 

different devices via the onboard thermal cameras, etc. During exploration, an RFID 

routing system was deployed to guide the robot’s navigation. In addition, the charging 

task of the exploration robot was considered due to its limited battery. After finishing 

a one-period exploration task, the robot returned to the station for charging. The 

developed robot system was tested in a 300×200 m2 real substation. During testing, 
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two exploration robots were separately serviced for 500 kV, 220 kV, and 35 kV zones 

in the Lanxi substation.  

The result was that the robot team was found to be able to effectively assist substation 

in carrying out on-site exploration tasks. In terms of the robots’ efficiencies, three 

exploration periods can be guaranteed by two robots in one day. However, the main 

limitation of this study was that, due to the pre-fixed route of the RFID label, a large 

amount of labelling was required. In addition, in terms of the temporary exploration 

tasks, the robot may not fully be charged, meaning there was a necessity to develop a 

charging method to avoid the robots stopping, such as robots are required to get back 

to charging station once the battery left lower than a threshold value. 

Case study 14: Hutter et al. [33] developed a quadrupedal robot platform to replace 

manual operation in harsh environments. In this study, due to the traditional wheeled 

robot structures, the mobility and versatility of these robots were limited in complex 

environments, such as climbing stairs. Thus, a novel robot dog – ANYmal – was 

invented to enhance operational capability in these challenging environments. The 

developed robot was 0.5 m high and weighed 30 kg and can be seen in Figure 2.13.   

In this project, hardware and kinematic motion control of the robot were both studied. 

For the hardware, considering further maintenance was needed, the robot was 

designed to be fully reassembled by different units. As the robot was developed for 

harsh and unknown environments, ANYmal was customised to protect from dust 

ingress, and with capability to stay safe if it fell from 50 cm height.  Environmental 

perceptions were based on three systems: (1) two industrial-levels lidars were 

equipped for robot localisation and mapping environments; (2) wide-angle cameras 

were used for on-site situation feedback; and (3) a pan-tilt head system was adapted 

to support different sensing packages that could be integrated for various cases. The 

overall test of the robot was carried out in a real industrial factory where ANYmal was 

required to conduct explorations to inspect different targets. 
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Figure 2.13: The invented robot dog, ANYmal, adapted from [33]. 

 

From the results, the proposed structure was found to be able to help the robot perform 

tasks in complex environments. This was because the robot was able to engage in 

normal walking, running, climbing stairs and jumping. Based on the developed 

perception system, the robot is successfully navigated which allowed the robot to 

avoid obstacles and arrive at targets successfully for exploration tasks. The novelty of 

this system was that, compared with a general wheeled robot, the mobility and 

dynamic locomotion of ANYmal was significantly improved. However, after review, 

this project was found to have two primary concerns: (1) the exploration efficiency of 

ANYmal when it is deployed in a large area for long-term exploration; and (2) legs of 

the ANYmal could stuck into floor gaps.   

Case study 15: Romulo et al. [34] developed an autonomous robot to explore defects 

in civil infrastructure. This project was inspired as the safety of civil-infrastructure 

inspectors is at risk when they conduct exploration of ageing buildings. Thus, an 

exploration robot system was developed to undertake exploration tasks for these old 

facilities. The details of the developed exploration robot can be seen in Figure 2.14.  

In this project, hardware configuration and exploration methods of the robot’s 

development were considered. In terms of the exploration robot platform, a Husky 

robot platform was deployed with a high-resolution camera. While in terms of 

exploration methods, two main algorithms were developed to support the robot carry 

out explorations: (1) a crack detection algorithm was developed to locate defects in  
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Figure 2.14: The proposed autonomous robot system for monitoring civil structures, 

adapted from [34]. 

   

the buildings; and (2) a measurement algorithm was developed to quantify the level of 

damage. An indoor experiment with 14 different types of cracks (horizontal, vertical, 

curved, angled, etc.) was used to test this exploration system. 

According to the test results, all cracks were successfully detected by the exploration 

robot, and the accuracy of crack measurement was as high as ±1.033% in terms of 

crack position, and ±5.48% in terms of crack dimensions. However, the usability of 

the developed robot was good, but the exploration-efficiency was not tested in this 

project, such as the time taken to conduct an exploration task to find all the defects in 

a room. 

2.2.6 Summary 

In summary, development of exploration robots for on-site inspection in power plants 

is a demanding area of research which is contributing the improve the reliability of 

these power plants. However, to provide a comprehensive analysis of these reviewed 

projects, a summarisation of these robots, such as their properties and their limitations 

against our investigation results from Section 2.1.4 (on-site inspection characteristics), 

are listed in Table 2.3. Overall, there is still room for improvement in these exploration 

systems from three aspects: 

(1) Versatility, such as some invented exploration robots are too professional for a 

particular place or device. This was observed from Cases 1, 2, 7, 11, 12, 15. These 
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robots are difficult to apply in other domains, especially as this project looks for 

an exploration system that has the capability to cover general on-site exploration 

works in power plants; 

(2) Effectiveness, the efficiencies of some reviewed exploration system were 

challenged when the robots had to face multiple inspection targets, and would 

worsen if the targets were laid out in large-scale power plants. This was observed 

from Cases 1-4, 6, 8-10, 14-15. As most projects attempt to use single robot 

platforms to conduct on-site exploration works, there is inefficiency in the 

exploration process when compared with multi-robots, thus increasing the 

difficulty for precise O&M for power plants; 

(3) In all reviewed case studies, the charging impact on the exploration system’s 

performance was not considered. Thus, there is a necessity to develop an 

appropriate charging/exploration mechanism for the improvement of the 

exploration system for the followed reasons. Firstly, as the ability of the cable 

support robot to conduct exploration restricts exploration flexibility, most 

projects use a battery to support the robot’s exploration. The issue in these 

reviewed projects is that they did not consider how to balance 

charging/exploration requests for exploration system optimisation, e.g. providing 

a suitable condition for the robot to charge itself during exploration, but as much 

as possible reducing the impacts from the charging process on the efficiency of 

the exploration system.  

Overall, from the review above, a multi-robot exploration method with the capability 

to undertake more complex tasks is an alternative solution to replace a single 

inspection platform. However, in the case of the limited robots and multiple 

exploration targets, there is a need to develop an optimal cooperative mechanism and 

a proper charging method for system optimisation. Thus, the next section will outline 

an optimal cooperative mechanism for the development of a multi-robotics exploration 

system.   
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Table 2.3: Summary of the different robot exploration platforms. 

Case 

No. 

Power 

Plant 

Types 

Types of Robot 
Robot Numbers 

/ Mechanism 
Exploration Functions 

Limitations 

Usability Efficiency Power 

1 
Solar 

Power 

Plants 

Wheeled robot 

Single 

Autonomous Detect pipe leakages 
Poor 

Poor 

Battery 

2 Legged robot Manually Inspect health of the receiver panel Cable 

3 
Wheeled, and 

drones together 
N/A 

Monitor and clean photovoltaic 

surfaces 

Good 

Battery 

4 
Wind 

Farms 

Rail-based robot Manually 

Explore health of the wind turbine 

Cable 

5 
N/A 

Multiple N/A Good 
N/A 

6 

Single 

N/A Poor 

7 
Nuclear 

Power 

Plants 

Wheeled robot Manually Inspect the steam-generator Poor Good Cable 

8 Drones 

Autonomous 

General exploration of the plant 

Good Poor Battery 9 
Wheeled robot 

Monitoring of radiological materials 

10 
Thermal 

Power 

Plants 

General inspection of the plant 

11 Legged robot N/A Inspection of the Boiler Water Wall 
Poor 

Good 

Cable 

12 
Wheeled robot 

Autonomous 

Detection of the fuel feeding system 

Battery 
13 Robot 

Platforms 

for 

Exploration 

Multiple General inspection of substations 
Good 

14 Legged robot 
Single 

Exploration of harsh environments 
Poor 

15 Wheeled robot Inspection of the health of buildings Poor 
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2.3 Multi-robotics Exploration 

As power plants are large-scale and involve multiple exploration sites, this project 

considered using multi-robotic exploration system for power plant inspection. In terms 

of using a limited number of robots to explore these multiple targets, the main 

challenge of the exploration system was to separate the exploration tasks to these 

robots appropriately, such as the formulated exploration strategy with capability to let 

robot team with the minimum travelling cost. This problem was regarded as a 

combinatorial optimisation problem. This kind of problem can be solved by adapting 

the optimisation tool, and the overall calculation process can be split into seven general 

steps as shown below: 

 

Figure 2.15: The general process to solve the combinatorial optimisation problem.  
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Step One: Initialisation   

This is the first step to solve the combinatorial optimisation problem where the given 

conditions for multi-robot task allocation need to be collected. These conditions 

include the numbers of robots, tasks, and their positions.  

Step Two: Exploration Rule Setup 

This step clarifies the additional task details for the multi-robot system. For example, 

the robot exploration capability, the robot start location, exploration behaviours and 

so on. 

Step Three: Optimisation Goal Setup 

This step is based on setting up the optimisation goals for multi-robot task allocation. 

For example, the shortest exploration route for the exploration system, or minimum 

time consumption for exploration at every step of the exploration system.  

Step Four: Select Optimisation Tool 

At this stage, a suitable optimisation tool must be selected to solve this combinatorial 

optimisation problem – Multi-robot Exploration Task Allocation. The selection can be 

considered from two aspects: (1) determining the characters of the optimisation 

problem(s), e.g. local/global optimisation, computational cost; and (2) identifying the 

capabilities and drawbacks of the optimisation tools, e.g. convergence time required 

or usability against the conditions provided before. 

Step Five: Multi-robotic Exploration Task Allocation 

In this step, the conditions, exploration rules, optimisation goal and tool are ready. 

Thus, this step attempts to schedule an exploration strategy for the multi-robot system 

based on the limitations outlined above. The exploration strategy formulated can be, 

Robot #1 with Exploration Target 1, 3, 5, while Robot #2 with Exploration Target 2, 

4, 6. 

Step Six: Formulated Exploration Strategy Optimisation 

This step requires adjusting the formulated exploration strategy for optimisation. This 

step may face two conditions: (1) successfully formulate an exploration strategy for 

the multi-robot system, thus this step checks the performance of different formulated 

strategies by comparing them at the end of the calculation; and (2) failure to formulate 
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an exploration strategy several times, meaning improper conditions and optimisation 

goals are used, or a problem occurs in optimisation tool set up. Thus, it is necessary to 

re-assess the conditions used in Steps Two ~ Five to create a useful exploration strategy 

for the multi-robot system.  

Step Seven: Formulated Exploration Strategy Evaluation 

This step assesses each previous of the steps to optimise the overall multi-robot task 

allocation process. The improvement is based on evaluation of the final exploration 

strategy formulated for the multi-robot system. This step requires a comprehensive 

analysis of each step to find out the areas for improvement for multi-robot task 

allocation. For example, re-definition of boundary conditions, or improvement of the 

selected optimisation tool by modifying the framework or parameters. 

The methodology to solve combinatorial optimisation problem has been outlined 

before, so now we must check and select suitable optimisation tools to schedule an 

appropriate exploration strategy for the multi-robotic system. Thus, a general review 

of optimal task allocation methods for a multi-robot system was carried out. In total, 

five approaches were reviewed: (1) Simulated Annealing, (2) Particle Swarm 

Optimisation, (3) Ant Colony Optimisation, (4) Greedy algorithm, and (5) Genetic 

Algorithm. After a comprehensive review, the Greedy and Genetic Algorithms were 

selected to solve temporary and long-term exploration tasks in power plants.   

2.3.1 Simulated Annealing 

Method 1: Simulated Annealing (SA) is an approximate approach to solve 

combinatorial optimisation problems [35]. Technically, the annealing process includes 

heating and cooling a metal so that its internal structure reaches or approaches 

equilibrium status to obtain machined metals with the desired performance. SA 

simulates this process and the equilibrium status of the machined metal is determined 

from the procedure of its internal crystal formation. In general, a machined metal is 

heated to a temperature and then, at a very slow cooling rate, its internal atoms are 

rearranged from being irregularly laid-out to a more regular pattern. From there, the 

inside of the machined metal contains regular crystals with a high density and low 

energy properties. Therefore, the internal structures of this metal achieve equilibrium 

status and the annealing process can be seen as successful. This also means that the 
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optimal global solution has been found inside the SA. In contrast, if the cooling rate 

of the machined metal is too fast, the atoms of the machined metal are rearranged 

within a short period which may result in the internal structure of this machined metal 

being irregular. Therefore, the machined metal generally contains high energy non-

crystals, which means the system stays unstable and is a suboptimal solution inside 

the SA. In this unstable case, like the annealing operation, the SA will repeat the 

heating and cooling procedures for the machined metal to rearrange its internal atoms 

to formulate the regular crystals. This process will help the formation of the internal 

crystals of the machined metal approach equilibrium status and abandon the 

suboptimal solution.         

In [36], the combinatorial optimisation problem – single-model stochastic assembly 

line balancing of parallel stations – was solved by SA. However, one serious drawback 

of SA is it generally accepts inferior solutions which result in the repeat selection of 

past solutions, which wastes limited computation resources. 

2.3.2 Particle Swarm Optimisation 

Method 2: Particle Swarm Optimisation (PSO) is a swarm intelligence algorithm 

inspired by natural evolution [37]. One typical natural evolution process that has 

inspired PSO is the cooperation of birds when hunting to locate food. PSO models this 

kind of process and uses it to find the optimal solution in a group. In PSO, the problem 

is described in an n-dimensional space, and different particles (representing potential 

solutions) fly inside this space. These particles simulate human social behaviours, such 

as remembering the best solutions (the food’s location) during hunting with groups, 

and then share this information with other particles. Most importantly, particles will 

learn from others to adjust their run status for purchasing global optimal solution that 

can be used to benefit all the group members. For instance, changing direction or flight 

speed to approach the current global optimal solution. The overall process will through 

serval iterations which contributes to keeping search the optimal global solution from 

every individual particle.   

In [38], this paper reviewed the improvement of 46 different PSO techniques. In a 

general PSO model, the parameter setup must be used very carefully. Otherwise, the 

PSO may easily track or identify partial optimism, thus leading to speed and 
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directional bias, ignoring the optimal global solution. For example, improper 

adjustment of the velocity of particles may lead all group members with the same 

velocity. As a result, the last global optimal solution recorded will also remain the 

same, meaning PSO will keep searching for solutions in the space, and will not 

converge in the local area.   

2.3.3 Ant Colony Optimisation 

Method 3: Ant Colony Optimisation (ACO) is a probabilistic approach for searching 

for optimal solutions in a party [39]. Similar to the PSO model, the ACO method is 

inspired by the hunting behaviour of ants, which, although almost blind, are able to 

establish the shortest route to find food and return to the nest. It was found that 

collective behaviours exist in an ant colony. For example, every individual ant will 

contribute to helping others ants hunting food via releasing pheromone trails. This 

information is then used as the guidelines to determine the further hunting direction 

for other ants. For example, food is found by the first ant, and during the search for 

food, different quantities of the pheromone will be released by this ant to the entire 

party. In this way, when another ant finds the pheromones left by the first ant, it will 

likely to follow this route, while releasing more pheromones to reinforce the trail for 

others. Therefore, the probability of finding food with the shortest path is increased 

and the entire population of ants benefits from this method of cooperation. 

In [40], a survey of  C ’s application, limitations and further research 

recommendations was conducted. ACO was found able to be used to solve many 

different combinatorial optimisation problems, such as the travelling salesman 

problem, or multiple knapsacks. However, in use of ACO, the computation processes 

for convergence an optimal solution is generally within an uncertain time. In addition, 

in areas of multi-objective problems, much more research is required, such as the 

evaluation functions of multiple objectives to increase the quality of the solution, or 

develop a parallel ACO for the optimisation of effectiveness.  

2.3.4 Greedy algorithm 

Method 4: The Greedy algorithm is a common method used to solve multi-robot task 

allocation problem [41]. As the name suggests, every operation in a Greedy algorithm 

is based on selecting the best solution, such as the shortest distance in global or the 
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minimum time in local, etc. In a Greedy algorithm, two steps are generally taken: (1) 

greedy selection of the best solutions, then removal of the solution selected from the 

list, and (2) iterating this process again, until all tasks are allocated to members to 

formulate an optimum solution.   

Due to the ease of implementation, the Greedy algorithm has generally been adopted 

to schedule an exploration strategy of a multi-robot system. In [42], the Greedy 

algorithm based multi-robot task allocation method was developed for industrial plant 

inspection. As a result of the greedy based exploration method for multi-robot task 

allocation, the computation times were saved by more than 10% in total. While in [43], 

a new multi-robot task allocation method – vacancy chain scheduling – was developed, 

where the tasks were allocated by a greedy selection of the optimal interaction 

behaviours of robots.   

2.3.5 Genetic Algorithm 

Method 5: Genetic Algorithm (GA) is a heuristic search scheme that simulates 

biological evolution processes to solve combinatorial optimisation problems [44]. In 

simple terms, GA abandons unqualified solutions and picks the best for further 

evolution to determine optimal solutions. The GA generally consists of five steps: (1) 

generating random solutions in a gene format; (2) checking the performance of these 

solutions by different evaluation metrics (also called fitness function); (3) evolution 

of these processes to generate a smarter population; (4) elimination of unqualified 

solutions; and (5) repetition of the previous processes until the acceptable answer 

emerges.  

Use of the GA to solve combinatorial optimisation problems is beneficial from 

multiple perspectives [45]. For instance, GA reduces the possibilities of local 

minimum trapping due to its parallel computation mechanism. In addition, GA 

evaluates the solution by itself via a function called ‘fitness’ so that no requirement to 

use the auxiliary functions. GA has shown good performance and has been widely 

adapted for multi-robot system development. For example, in a previous study [46], 

GA was used to schedule an exploration strategy of a multi-robot system for 

manufacturing process exploration. While in [47], GA was adapted for planning 

exploration paths of a centralised multi-robot system in continuous environments. 
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Finally, in [48], GA was applied to solve coverage path planning problem for the 

multi-robot system, the completion time is minimised. 

2.3.6 Summary 

This section provides a summary of the different technologies which can be used to 

solve the combinatorial optimisation problem. To easily compare these methods, 

Table 2.4 below demonstrates their usability, and limitations.  

Table 2.4: Summary of the reviewed optimisation technologies. 

Problem Method 

Usability in 

Multi-robot 

development 

Key Notes 

Combinatorial 

optimisation 

problems 

SA 

Poor 

SA generally accepts inferior solutions 

[36], which wastes limited 

computation resources 

PSO 

PSO may easily track or identify partial 

optimism to ignore the optimal global 

solution [38] 

ACO 

the computation processes for 

convergence an optimal solution is 

generally within an uncertain time [40] 

Greedy 
Good 

[41][42][43] 

Support both local/global optimisation, 

and easy implementation  

GA 
Good 

[46][47][48] 

GA reduces the possibilities of local 

trapping opportunities due to its 

parallel computation mechanism [45] 
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Overall, SA, PSO and ACO methods have their own limitations which significantly 

impacts the computation process and results. Thus, it is difficult to create a stable 

exploration system by using these methods without carefully setup. In contrast, 

Greedy and GA methods are deemed most adaptable in temporary and long-terms 

exploration modes for a power plant, for the following reasons. 

Greedy for Temporary Exploration: 

Firstly, two places are worth mentioning in the case of temporary exploration: (1) 

inspection efficiency request: in this case, exportation robots are better suited to 

provide the best exploration efficiency as every additional inspected target will reduce 

the possibility of power plant shutdown; and (2) the robot may be left with limited 

power but has to satisfy unscheduled temporary exploration requests for the power 

plant, thus the exploration capability of the robot is limited in this case.    

Therefore, it is very clear that an exploration system for temporary exploration 

requires a robot with high exploration efficiency but based on a limited amount of 

battery. Thus, the Greedy method is suitable for temporary exploration compared with 

the other four reviewed technologies, for the following reasons:  

(1) SA, PSO, ACO, or GA methods are all customisable for complex problems. 

Thus, using these methods for temporary exploration may waste computation 

resources. In addition, these methods may be able to schedule a global optimal 

exploration strategy for robots, but they may require robots to travel long-

distances in some steps, thus these methods can not 100% guarantee more 

inspected targets in a short period of time compared to the Greedy method.   

(2) In contrast, using the Greedy method to purchase local steps optimisation will 

allow the robots to as quickly as possible convert their limited energy to the 

exploration targets. The Greedy method allows the robot to examine, with little 

energy consumption, one zone after the other. Therefore, in addition to 

guaranteeing more inspected targets in a short period of time, the Greedy 

method is also able to systematically diagnose faults for power plants zone-by-

zone.  
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GA for Long-term Exploration: 

In terms of long-term exploration, two places are worth mentioning: (1) the 

exploration strategy is under scheduled, and exploration behaviours cover general on-

site inspection tasks for an overall power plant; (2) the robot exploration system is 

continuously deployed on-site for maximum protection of device health. 

A long-term exploration mode requires the exploration system to conduct on-site 

exploration tasks periodically. Therefore, it is necessary to formulate an optimal 

exploration strategy that means the exploration robots travel minimal distances to save 

energy consumption. Thus, the GA method should be used in a long-term exploration 

system for the following reasons: 

(1) The GA method is widely adopted in other multi-robot developments, see 

Section 2.3.5 and Table 2.4 for examples; 

(2) Of the reviewed global optimisation methods – SA, PSO, ACO, Greedy, and 

GA – the advantages of the GA method are obvious compared with the other 

four methods. For example, the GA method has the capability to parallel 

calculate the solution to reduce the local trapping opportunities. In addition, 

the GA method evaluates the solution by itself via a function called ‘fitness’ 

so that there is no requirement to use auxiliary functions.   

However, as the exploration robot development requirements summarised in Section 

2.2.6, in the selected Greedy and GA methods, the charging impact on the exploration 

robot performance was not considered. Thus, there is a necessity to develop a system 

with the capability to conduct both exploration and charging tasks for further 

optimisation. Also, there is a necessity to analysis of the performance of Greedy-based 

or GA-based exploration systems when they work for temporary exploration mode 

and long-term exploration mode. This analysis can be used as a judgement for further 

switching the suitable exploration strategy to satisfy different situations, such as using 

temporary exploration mode for rescuing an engineer zone-by-zone inside a power 

plant, or using long-term exploration mode for robot accomplish exploration tasks 

with high performance in energy-saving, effective exploration efficiency.  
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2.4 Robot Simulation Software 

As the implementation of a robotic system is a time-consuming and costly process, a 

computer simulation was selected to develop the multi-robotic exploration system in 

this project. Three simulation packages were reviewed: (1) Microsoft Robotics 

Developer Studio (MRDS), (2) Gazebo, and (3) V-REP. Following a comprehensive 

review, the justifications for selecting the V-REP in this project are summarised as 

follows:  

Simulator 1: MRDS is a Windows-based programming environment simulator for 

constructing robotic applications [49]. The main functions of MRDS are 3D 

simulation, visual programming, access to robot components (actuators, or sensors) 

for creation, control and debugging. The default programming language is C#. In 

addition, the implementation of the developed system on a real robot is available via 

the MRDS framework [50]. However, as of March 2012, there is no update or patch 

available for MRDS. 

Simulator 2: Gazebo is an open-source tool for simulating robots running in indoor 

and outdoor environments [51]. It can be used to control a robot, relative sensor 

devices, and the dynamic environment. 3D simulation is allowed in Gazebo, and a 

physical engine has been developed to guarantee more realistic simulation. In addition, 

Gazebo is specially developed for single robot interaction in an environment, which 

would otherwise require plenty of time for the development of a multi-robot system 

[52].     

Simulator 3: V-REP is a Coppelia Robotics product for developing a robot system. It 

is an open-source package for education and can be run in Windows, Linux or Mac 

environments. Seven programming languages are supported in V-REP, and there are 

two simulation modes allowed: (1) general, and (2) accelerated. The accelerated mode 

helps to reduce time-consumption in experiments. There are 48 different types of 

robots available in V-REP’s library for different applications. Most importantly, the 

different number and types of robots can be run simultaneously in V-REP [53]. 
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Thus, V-REP was selected in this project to develop the multi-robotic exploration 

system, for the following reasons: 

(1) It was tested by [54], and compared with Gazebo, the simulation performance of 

V-REP outperformed Gazebo.  

(2) It is a versatile and scalable simulation framework with the capability to satisfy 

the requirements of the development of a complex system [55]. 

(3) Plugins are allowed by its integrated Application Programming Interface (API) 

function. The API function allows the user to easily implement or customise a 

simulation by themselves [56].   

2.5 Summary  

This chapter has reviewed different exploration techniques and robot simulation 

software. In Section 2.1, a brief review of manual exploration in the different power 

plant was presented. The characteristics of on-site exploration tasks in different power 

plants and the significance of using exploration robots were discussed in this section. 

In Section 2.2, the most recent exploration robots were reviewed and the limitations 

of these project were discussed according to the on-site exploration characteristics 

summarised in Section 2.1.4. The alternative solution – a multi-robotics system – was 

selected compared with a signal robot system due to the multi-robotics system’s 

capabilities to finish multiple, various inspections tasks in a short time. The 

performance of the multi-robot system can be improved from two aspects: (1) 

scheduling of an optimal exploration strategy, and (2) appropriate charging control. In 

Section 2.3, five multi-robotic exploration methods were reviewed and justifications 

were provided for exploration robots using the Greedy and GA methods to conduct 

exploration in temporary and long-term modes. In Section 2.4, after reviewing three 

simulation packages, the justifications for using V-REP as the simulation platforms 

were outlined. In the next chapter of this paper, considering the temporary and long-

term exploration modes, and combining with different exploration and charging 

methods, three multi-robotic exploration approaches will be demonstrated in detail.        
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Chapter 3  
 

Methodology 

 

In this chapter, the multi-robotic exploration approaches that have been developed will 

be presented. This chapter mainly consists of five sections: Firstly, Section 3.1 

presents the exploration scenario of the development exploration robot system. Next, 

Section 3.2 describes the two different charging methods. Then, Section 3.3 and 3.4 

explain the applications of Greedy and GA methods for temporary and long-term 

exploration modes for power plant exploration, before, finally, Section 3.6 summaries 

the chapter. 

3.1 Exploration Scenario 

Research Assumptions: In all developed exploration approaches, three assumptions 

are proposed: 

(1) the map and target information are known in advance, without consideration of 

obstacles, and the task allocation process for the multi-robot system is in a static 

environment,  

(2) the levels of priority of the exploration tasks and the change of exploration 

sequences are ignored,  

(3) every exploration robot has the same number of inspection tasks, and every task 

can only be checked by one robot at a time. 

Exploration Targets: In the investigated power plants, the main subsystem for power 

generation consists of a boiler, turbine, and electrical and auxiliary units. Generally, 

human inspectors carrying out an exploration go through these main subsystems. In 

this project, in the same way as a human inspector, the exploration robots are designed 

to undertake monitoring tasks for these different zones. To be more specific, the 

exploration robots are designed to inspect ten and twenty randomly laid out targets 

(from Table 2.2) in a scenario. These developed exploration scenarios are illustrated 

in detail in Section 4.4.3.   
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Figure 3.1: The sample configuration of the experiments. 

 

Definition of Robot Exploration and Charging Tasks: The sample configuration of the 

experiments is presented in Figure 3.1. Two exploration robots are shown as R1 and 

R2; the charging station is presented as C; and the sample exploration targets are 

illustrated as T1~T6. These targets are required to be continuously monitored by the 

exploration robots. The tasks of these robots when deployed on-site are pre-defined 

with four sequenced steps, which are as follows:  

(1) the exploration robots start from an initial place, and then head towards the 

targets to conduct their exploration,  

(2) the exploration robots go to the charging station if their remaining battery is 

lower than the threshold value (this value is based on the two developed 

charging methods, which will be demonstrated in the next section),  

(3) the exploration robots are designed to return to their initial places after 

finishing their periodic exploration tasks,  

(4) go back to step (1). 
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3.2 Robot Charging Methods 

In terms of the robots’ charging operation, their past-path length is used to manage the 

robots, stopping their exploration and return for charging after a certain point. Thus, 

once the past-path lengths of the exploration robots go over the threshold value, the 

inspection tasks switch to a charging task. In this project, the movement capability of 

the exploration robots was limited to 100 metres (for an explanation of this, see Section 

5.1). In addition, to check the energy consumption of these robots at different times, 

the method in [57], for converted the robots’ past-path lengths to their energy 

consumption is used here, which demonstrated as the following formula (3.1):                                                     

                                                                       𝐸𝑚 = 𝑚 ∙ 𝑇𝑑 ,                                                  (3.1) 

where m is the running cost of the selected exploration robot, 1.43 J/m [57] in this 

project, 𝑇𝑑 is the past-path lengths of the exploration robot in metres. 

3.2.1 General Charging Method  

This method is a general charging method. In more detail, the exploration robot is 

required to charge itself until its amount of energy stored in battery is only able to 

support its return to the charging station. This works based on monitoring the distances 

between the exploration robot and the charging station (for details of the distance 

estimation modules, see Section 4.3.3). For example, as described in Figure 3.2, if a 

robot is conducting exploration from Target 1 to Target 2, the charging task of the 

exploration robot will commence when the amount of energy stored in battery (Db) 

can only satisfy the charging requirements (Drc). After charging, the robot will then 

head towards Target 2 from the Charging station (Dnc). 
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Figure 3.2: A schematic of the proposed General Charging Method.  

   

3.2.2 Predicted Charging Method  

This method is a predicted charging method. This method was inspired by [58], 

whereby the effective prediction of the energy consumption of a robot will benefit 

decision making for the formulation of a potential optimal strategy. In the general 

charging method proposed above, a problem may occur where the inspection tasks are 

interrupted in the middle of the inspection as the exploration robots run out of power. 

Thus, in this situation, as illustrated in Figure 3.2, the energy requirement for the 

continual exploration of Target 2 is, Dr1+Drc+Dnc.  

The predicted charging method is based on the same conditions as mentioned 

previously, but in this scenario, the exploration robot is designed to hold at Target 1, 

and then head towards the Charging station directly. This means that the robots’ 

energy consumption for accomplishing inspection tasks is, Drc+Dnc. As we can see, 

in addition to the energy consumption from Charging station to Target 2 (Dnc), the 

travelling consumptions of the Robot to the Charging stations in predicted charging 

method is Drc, which is always smaller than the general charging method, of Dr1+Drc. 

As a result, every charging operation of a robot using the predicted charging method 

will help the robot retain a certain amount of energy stored in battery when it returns 

to the Charging station. In contrast, the charging operation of a robot using the general 
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Figure 3.3: A schematic of the proposed Predicted Charging Method.  

 

charging method will cause the robot to run out of power when the robot returns to the 

Charging station. Therefore, in theory, the predicted charging method outperforms the 

general charging method in terms of the avoidance of energy waste. 

The implementation of the predicted charging method is illustrated in Figure 3.3. 

Assuming the exploration robot has finished its inspection task at Target 1 and holds 

at that position to judge whether to go to the Charging station or keep exploring Target 

2, the charging task of the exploration robots will commence if two conditions are met: 

(1) if Db <  D1, where Db  is the exploration robots’ remaining amount of energy 

stored in battery, D1 is the summed robot’s energy consumption of Dn and Dnc, 

Dn is the exploration consumption of the robots to the next target, and Dnc is the 

charging consumption of the robots after inspection of the next target,    

(2) if Db > Drc , where Db  is the exploration robots’ remaining amount of energy 

stored in battery, Drc is the real-time charging consumption from exploration robot 

to the Charging station. 
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3.3 Temporary Exploration using the Greedy algorithm 

Temporary exploration contributes to finding potential problems in a power-plant as 

quickly as possible. Thus, the goal of the robot system is to as quickly as possible 

debug the faults in the power plant zone-by-zone. In this case, at every step, the nearest 

target to the exploration robot was selected by the Greedy algorithm and set as a goal 

for inspection. An advantage of this design is that limited robot sources will be 

concentrated in a certain area of a power plant to be able to diagnose faults zone-by-

zone.  

3.3.1 Principle of Greedy-based Temporary Exploration 

In order to clarify the proposed Greedy-based temporary exploration, mathematical 

formulation has been implemented as follow.  

Given Conditions, and Exploration Behaviours: 

a) Robot team, 𝑅 = {𝑅1, 𝑅2,  𝑅3, … ,  𝑅𝑝}; 

b) Exploration tasks, 𝑇𝑡𝑜𝑡𝑎𝑙 = {𝑇1,  𝑇2,  𝑇3, … , 𝑇𝑞}, 𝑇𝑞 > 𝑅𝑝 and 𝑅𝑝|𝑇𝑞; 

c) Each exploraiton task 𝑇𝑞, can be checked by one robot 𝑅𝑝 at a time, and each 

exploration robot 𝑅𝑝 has the same exploration capabilities, which means the 

number of exploration tasks for each robot is 𝑛 =
𝑇𝑞

𝑅𝑝
; 

d) Robot team 𝑅 are required to explore all tasks listed in 𝑇𝑡𝑜𝑡𝑎𝑙 to complete one 

exploration cycle; 

e) Each robot starts/stops its exploration from the same place; 

Optimisation Objective — Local Optimal, and Methodology: 

a) Local optimal allows each robot  𝑅𝑝  to arrive at an exploration task with 

minimum time; 

b) The Greed-based task allocation method for multi-robots, which requires each 

robot 𝑅𝑝 to select the nearest exploration task (from task list 𝑇𝑅𝑝
) as the next 

exploration target.  

Mathmatical fromulation of the Greedy-based task allocation method for multi-robots:  

1. Based on the given conditions, the known maximum number of exploration tasks 
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for each robot is 𝑛, thus, the Greedy-based method allocates 𝑇𝑅1
 exploration tasks 

to 𝑅1 robot, the details of which are as follows: 

a) Define the start/end place as target 𝑎′;    

b) Robot 𝑅1  starts its exploration from target 𝑎′ ; estimates the distance from 

target 𝑎′ to all remaining targets 𝑛 − 1; selects the nearest target from target 

𝑎′ as the next exploration target for 𝑅1 robot, and defines this selected target 

as target 𝑏1
′
; thus, the travlling distance of Robot 𝑅1 in this step can be stated 

as 𝑑𝑎′,𝑏1
′ ;  

c) Robot 𝑅1  continues its exploration from target 𝑏1
′
; estimates the distances 

from target 𝑏1
′
 to all remaining targets 𝑛 − 2; selects the nearest target from 

target 𝑏1
′
 as the next exploration target, and defines this selected target as 

target 𝑐1
′; thus, the travlling distance of Robot 𝑅1 in this step can be stated as 

𝑑𝑏1
′ ,𝑐1

′;  

d) ….. 

e) The same mechansim is used to allocate the remaining targets for 𝑅1 robot. 

Robot 𝑅1 continues its exploration from target 𝑗1
′; estimates the distance from 

target 𝑗1
′to all remaining targets 𝑛 − 𝑗1; selects the nearest target from target 

𝑗1
′ as the next exploration target, and defines this selected target as target 

(𝑗1 + 1) ′; thus, the travlling distance of Robot 𝑅1 in this step can be stated as 

𝑑𝑗1
′, (𝑗1+1)′;    

f) Again, the travlling distance of Robot 𝑅1  from target (𝑛 − 1) ′  to the last 

exploration target 𝑛′ is can be stated as 𝑑(𝑛−1)′, 𝑛′;       

g) Finally, the travlling distance of Robot 𝑅1 when it returns to target 𝑎′ from 

target 𝑛′ can be stated as 𝑑 𝑛′,𝑎′; 

h) Therefore, the exploration task list 𝑇𝑅1
 is fully allocated to Robot 𝑅1 ; the 

overall travlling distance of Robot 𝑅1 , 𝐿𝑇𝑅1
 can be calculated using the 

followed formula (3.2):   

𝐿𝑇𝑅1
= 𝑑𝑎′,𝑏1

′ + ∑ 𝑑 𝑗1
′, (𝑗1+1)′ + 𝑑𝑛′,𝑎′

𝑛−1

𝑗1=𝑏1

 

(3.2) 

2. According to the same task allocation mechansims methioned in Step 1, the 
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Greedy-based method allocates 𝑇𝑅𝑖
 tasks for Robot 𝑅𝑖 which are the same as the 

tasks allocated for Robot 𝑅1. Thus, the overall travelling distance of Robot 𝑅𝑖, 

𝐿𝑇𝑅𝑖
, can be calculated using the followed formula (3.3):  

𝐿𝑇𝑅𝑖
= 𝑑𝑎′,𝑏𝑖

′ + ∑ 𝑑 𝑗𝑖
′, (𝑗𝑖+1)′ + 𝑑𝑛′,𝑎′

𝑛−1

𝑗𝑖=𝑏𝑖

 

(3.3) 

Notes: 

a) 𝑖 = (1, 2, 3, … , 𝑝);  

b) The maximum number of exploration tasks 𝑛 for Robot 𝑅1, 𝑅2, 𝑅3…or 

any Robot 𝑅𝑝  are the same, each exploration robot 𝑅𝑝 has the same 

exploration capabilities; 

c) The exploration task 𝑇𝑡𝑜𝑡𝑎𝑙, which includes every individual robots’ task 

list 𝑇𝑅1
, 𝑇𝑅2

, 𝑇𝑅3
, … , 𝑇𝑅𝑝

, thus, 𝑇𝑡𝑜𝑡𝑎𝑙 = (𝑇𝑅1
, 𝑇𝑅2

, 𝑇𝑅3
, … , 𝑇𝑅𝑝

); In addition, 

as every exploration task in 𝑇𝑡𝑜𝑡𝑎𝑙 can be only examined by one robot at a 

time, each individual robots’ task list 𝑇𝑅1
, 𝑇𝑅2

, 𝑇𝑅3
, … , 𝑇𝑅𝑝

 is different;   

3. Overall, in terms of using the Greedy-based task allocation method for a robot 

team, the overall travelling consumptions 𝐿𝑇𝑔𝑟𝑒𝑒𝑑𝑦 𝑡𝑜𝑡𝑎𝑙
 of robot team 𝑅  to 

complete an exploration cycle of the exploration task 𝑇𝑡𝑜𝑡𝑎𝑙, can be stated by the 

followed formula (3.4): 

𝐿𝑇𝑔𝑟𝑒𝑒𝑑𝑦 𝑡𝑜𝑡𝑎𝑙
= ∑(𝑑𝑎′,𝑏𝑖

′ + ∑ 𝑑 𝑗𝑖
′, (𝑗𝑖+1)′ + 𝑑𝑛′,𝑎′

𝑛−1

𝑗𝑖=𝑏𝑖

)

𝑝

𝑖=1

 

(3.4) 

Where 𝑖 = (1, 2, 3, … , 𝑝). 

3.3.2 Implement of Greedy-based Temporary Exploration 

To avoid all nearest targets being examined by a single robot, the task assignment 

process of these robots is alternated. This means that after one task is allocated to 

Robot #1, task assignment will be transferred to Robot #2. This process continues until 

all tasks are allocated to the robots. The overall Greedy-based multi-robotic 

exploration process for the temporary exploration mode is described in detail in Figure 

3.4, and split into four main steps:   
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Figure 3.4: The Greedy-based multi-robotic exploration system for temporary 

exploration. 

 

Step One: Loading the map and calculating the travel distances 

Map information is loaded to generate travel consumption information, which is the 

distances between the exploration robots, the exploration targets and the charging 

station. Pythagorean theorem is used to calculate the travel consumption for two 

reasons: (1) the map and target information are known in advance, and (2) as stated in 

the hypothesis, obstacles in the map are ignored. 
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Step Two: Task allocation for Robot #1 

The nearest inspection-target is selected by Robot #1, and removed from the 

exploration task list to avoid repeat selection by Robot #2. Then, Robot #1 virtually 

updates its location to the currently selected target position to prepare for selection of 

the next exploration target. 

Step Three: Task allocation for Robot #2 

This step allocates the next exploration task to Robot #2. At this time, Robot #1 stops 

calculating its exploration task and the same task selection process as described in Step 

Two is followed for Robot #2, allocating it the nearest inspection target, while updating 

its location to the currently selected target position. 

Step Four: Best strategy searching for exploration system 

In the final step, the Greedy algorithm checks the remaining tasks. If there are 

exploration tasks left, calculation processes are repeated from the first step of this 

process; if all tasks have been allocated to the multi-robotic exploration system, the 

exploration plan is then sent to these exploration robots. 

The Greedy-based temporary exploration system developed in this study attempted to 

purchase local optimisation rather than purchase global optimisation for exploration 

system. The contribution differences between the developed Greedy-based temporary 

exploration system comparing with other projects, such as [42] is that additional 

charging impact to exploration optimisation has been considered in this project. 

In terms of the multi-robotic exploration system’s development, it is necessary to think 

about how to balance different objectives and to explore the relationships behind these 

different optimisation objectives. For example, will minimum travel for an exploration 

system have minimum maintenance risks for a power plant. 
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3.4 Long-term Exploration using the Genetic Algorithm  

Long-term exploration means using an exploration system to service a power plant 

over a long time period. Thus, the goal of a long-term exploration system is for the 

robots to use their limited onboard energy to service as many of the inspected targets 

as possible. In this case, the Genetic Algorithm is used to schedule an overall optimal 

inspection strategy for the multi-robotics system.  

3.4.1 Principle of GA-based Long-term Exploration 

Again, like the Greedy-based temporary exploration mode, to demonstrate the GA-

based long-term exploration mode, mathematical modelling works for the overall GA 

multi-robot task allocation process. The given conditions and exploration behaviours 

of the multi-robot are the same as for the Greedy-based temporaray exploration. 

Optimisation Objective — Global Optimal, and Methodology： 

a) Global optimal allows robot team 𝑅 with a minimum travelling consumption 

𝐿𝑇𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡
 to complete one exploration cycle of exploration task 𝑇𝑡𝑜𝑡𝑎𝑙. 

b) As multiple exploration tasks can be allocated to different robots, this means 

that many different task allocation methods exist, thus, all possibile task 

allocation methods are defined into 𝐾𝑡𝑜𝑡𝑎𝑙 ; the GA-based task allocation 

method attampts to attempt all methods listed in 𝐾𝑡𝑜𝑡𝑎𝑙, to allow robot team 𝑅 

with a minimum travelling consumption 𝐿𝑇𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡
 complete one exploration 

cycle of exploration task 𝑇𝑡𝑜𝑡𝑎𝑙;   

Mathmatical formulation of the GA-based task allocation method for multi-robots：   

1. Based on the given conditions, the known maximum number of exploration tasks 

for each robot is 𝑛, thus, the GA-based method allocates 𝑇𝑅1
 exploration tasks to 

𝑅1 robot, the details of which are as follows:  

a) Define the start/end place as target 𝐴′； 

b) Robot 𝑅1 starts its exploration from target 𝐴′ and randomly selects the next 

exploration target from all reamining targets  𝑛 − 1 ; and then defines this 

selected target as target 𝐵1
′; thus, the travelling distance of Robot 𝑅1 in this 

step can be stated as 𝑑𝐴′,𝐵1
′;  
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c) Robot 𝑅1 starts its exploration from target 𝐵1
′; then randomly selects the next 

exploration target from all remaining targets 𝑛 − 2; and defines this selected 

target as target 𝐶1
′; thus, the travelling distance of Robot 𝑅1 in this step can be 

stated as 𝑑𝐵1
′, 𝐶1

′; 

d) ….. 

e) Following the same task allocation mechanism ， Robot 𝑅1  starts its 

exploration from target 𝐽1
′; then randomly selects the next exploration target 

from all remaining targets 𝑛 − 𝐽1; and defines this selected target as target 

(𝐽1 + 1)′; thus, the travelling distance of Robot 𝑅1 in this step can be stated as 

𝑑 𝐽1
′, (𝐽1+1)′;  

f) Again, as in the last exploraiton task where Robot 𝑅1 travelled from target 

(𝑛 − 1) ′  to target 𝑛′ , the travelling distance of Robot 𝑅1  can be stated as 

𝑑(𝑛−1)′, 𝑛′;       

g) Finally, the travlling distance of Robot 𝑅1 when it returns to target 𝐴′ from 

target 𝑛′, can be described as 𝑑 𝑛′,𝐴′;   

2. According to the same task allocation mechansims methioned in Step 1, the GA-

based method allocates 𝑇𝑅𝑖
 tasks for Robot 𝑅𝑖  which is the same as the task 

allocation for Robot 𝑅1;  

3. Repeating Step 1 and 2 to generate a group of task allocation method 𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙  for 

robot team 𝑅 ; thus these different methods can be defined as, 𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =

{𝐾1,  𝐾2,  𝐾3, … , 𝐾𝑣}；Note, as the maximum number of exploration tasks in 

𝑇𝑡𝑜𝑡𝑎𝑙 is 𝑇𝑞，therefore, in terms of all possibile task allocation methods 𝐾𝑡𝑜𝑡𝑎𝑙 for 

robot team 𝑅 is 𝑇𝑞! , which means 𝐾𝑡𝑜𝑡𝑎𝑙 = {𝐾1,  𝐾2,  𝐾3, … , 𝐾𝑇𝑞!}; However, 

the GA method only generates a subset of task allocation method 𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙 for robot 

team 𝑅  when compared with 𝐾𝑡𝑜𝑡𝑎𝑙 , thus 𝐾𝑣 < 𝑇𝑞! , this means that 𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∈

𝐾𝑡𝑜𝑡𝑎𝑙 ;    

4. As it is clear that different task allocation methods in 𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙 are known, this step 

calculates the overall travelling distance of robot team 𝑅, 𝐿𝑇𝑡𝑜𝑡𝑎𝑙
, for the different 

task allocation methods in 𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙:   

a) The maximum number of exploration tasks for 𝑅1  is 𝑛，thus, the overall 

travelling distance of Robot 𝑅1, 𝐿𝑇𝑅1
 can be stated in the following formula 
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(3.5):  

𝐿𝑇𝑅1
= 𝑑𝐴′,𝐵1

′ + ∑ 𝑑 𝐽1
′, (𝐽1+1)′ + 𝑑𝑛′,𝐴′

𝑛−1

𝐽1=𝐵1

 

(3.5) 

b) Again, the overall travelling distance of Robot 𝑅𝑖, 𝐿𝑇𝑅𝑖
 can be stated in the 

following formula (3.6):   

𝐿𝑇𝑅𝑖
= 𝑑𝐴′,𝐵𝑖

′ + ∑ 𝑑 𝐽𝑖
′, (𝐽𝑖+1)′ + 𝑑𝑛′,𝐴′

𝑛−1

𝐽𝑖=𝐵𝑖

 

(3.6) 

     Where 𝑖 = (1, 2, 3, … , 𝑝).    

c) Overall, the overall travelling distance of robot team 𝑅, 𝐿𝑇𝑡𝑜𝑡𝑎𝑙
, which is based 

on one task allocation method 𝐾𝑣, and can be calculated by following formula 

(3.7): 

𝐿𝑇𝑡𝑜𝑡𝑎𝑙
= ∑(𝑑𝐴′,𝐵𝑖

′ + ∑ 𝑑 𝐽𝑖
′, (𝐽𝑖+1)′ + 𝑑𝑛′,𝐴′

𝑛−1

𝐽𝑖=𝐵𝑖

)

𝑝

𝑖=1

 

(3.7) 

     Where  𝑖 = (1, 2, 3, … , 𝑝). 

d) However,  the formula disscussed in Step c) only describes one task allocation 

methods’ travelling distance of robot team 𝑅; thus, to evaluate the performance 

of different task allocation methods, here, we import the variable 𝑥 to represent 

the ID of different task allocation methods; therefore, the overall travelling 

distance of robot team 𝑅 is 𝐿𝑇𝑡𝑜𝑡𝑎𝑙
, which is based on different task allocation 

methods 𝐾𝑣, and can be calculated by using the following formula (3.8): 

𝐿𝑇𝑡𝑜𝑡𝑎𝑙𝑥
= ∑(𝑑𝐴′,𝐵𝑖

′
𝑥

+ ∑ 𝑑 𝐽𝑖
′, (𝐽𝑖+1)′

𝑥
+ 𝑑𝑛′,𝐴′

𝑥

𝑛−1

𝐽𝑖=𝐵𝑖

)

𝑝

𝑖=1

 

(3.8) 

Where 𝑥 = (1, 2, 3, … , 𝑣).  

5. In this stage, every task allocation methods in 𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙  and theirs 𝐿𝑇𝑡𝑜𝑡𝑎𝑙𝑥
 are 

known, thus it is possibile to find out the best task allocation methods 𝐿𝑇𝑙𝑜𝑐𝑎𝑙 𝑏𝑒𝑠𝑡
 



Chapter 3. Methodology 

 

70 

 

in 𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙, the details of which are described in the following: 

a) Compare the overall travelling distances 𝐿𝑇𝑡𝑜𝑡𝑎𝑙𝑥
 of each task allocation 

methods  𝐾𝑣 in 𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙;  

b) Identify the best task allocation methods 𝐿𝑇𝑙𝑜𝑐𝑎𝑙 𝑏𝑒𝑠𝑡
 in 𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , where 

𝐿𝑇𝑙𝑜𝑐𝑎𝑙 𝑏𝑒𝑠𝑡
 is able to allow robot team 𝑅  to travel a minimum distance to 

complete exploration task lists 𝑇𝑡𝑜𝑡𝑎𝑙, thus this comparation can be carried out 

using the following formula (3.9): 

𝐿𝑇𝑙𝑜𝑐𝑎𝑙 𝑏𝑒𝑠𝑡
= min

1≤𝑥≤𝑣
∑(𝑑𝐴′,𝐵𝑖

′
𝑥

+ ∑ 𝑑 𝐽𝑖
′, (𝐽𝑖+1)′

𝑥
+ 𝑑𝑛′,𝐴′

𝑥

𝑛−1

𝐽𝑖=𝐵𝑖

)

𝑝

𝑖=1

 

(3.9) 

Where:  

           𝑖 = (1, 2, 3, … , 𝑝); 

           𝑥 = (1, 2, 3, … , 𝑣). 

6. This step aims to optimise the best task allocation strategy 𝐿𝑇𝑙𝑜𝑐𝑎𝑙 𝑏𝑒𝑠𝑡
, as 𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙 

only attempts a part of the task allocation methods from 𝐾𝑡𝑜𝑡𝑎𝑙 , which means 

𝐿𝑇𝑙𝑜𝑐𝑎𝑙 𝑏𝑒𝑠𝑡
 may not be the best task allocation method 𝐿𝑇𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡

:  

a) Based on the current best task allocation method 𝐿𝑇𝑙𝑜𝑐𝑎𝑙 𝑏𝑒𝑠𝑡
 and G ’s own 

evaluation mechansim, GA is able to generate more adaptable task allocation 

methods 𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙′. This work is carried out in Steps 1~3; 

b) Based on the G ’s evaluation mechansim, G  then selects some all of the task 

allocation methods from 𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙′, and using these selected methods, GA  can 

then replace the old task allocation methods generated which are listed in 

𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙;  

c) GA identifies the best task allocation method 𝐿𝑇𝑙𝑜𝑐𝑎𝑙 𝑏𝑒𝑠𝑡 Ι
 from different 

iteration Ι = (1, 2, 3, … , 𝜇) , and then GA generates a group of new task 

allocation methods 𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙′, This work is carried out in Steps 6, a) and b);   

7. Finally, GA repeats the overall process from Steps 1~6 to try all possbile task 

allocation methods in 𝐾𝑡𝑜𝑡𝑎𝑙 = {𝐾1,  𝐾2,  𝐾3, … , 𝐾𝑇𝑞!} to find the best task allocation 

method 𝐿𝑇𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡
.    
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3.4.2 Implement of GA-based Long-term Exploration 

In terms of the construction of the GA, a classical GA framework developed in [59] 

was adopted in this project. The adapted GA was split into five steps, details of which 

can be seen in Figure 3.5.   

Step One: Loading the map and calculating the travel distances  

In this case, GA uses the overall shortest distance of the robot team as evidence for 

exploration strategy selection. Like the Greedy-based exploration method, the travel 

consumption distances between the exploration robots, the exploration targets and the 

charging station are required. Thus, as outlined in Step One in Figure 3.5, the 

positional information of the robots and exploration targets are collected in advance, 

and used with the Pythagorean theorem to compute the travel distances of the 

exploration robots.  

Step Two: Initialisation of the exploration strategies of the robot team 

This step intends to formulate a group of inspection strategies randomly for the multi-

robotic exploration system. These strategies are coded in a digital format inside the 

GA. An example of the coding of an inspection strategy is according to Step Two in 

Figure 3.5. Every exploration target is then pre-defined with an ID, such as exploration 

Target 1, marked as T1. If Robot #1’s exploration started from T0, before inspecting 

T1, T2, T5, and finally returning to T0, Robot #1’s exploration strategy is coded as 

0,1,2,5,0 inside of GA. The same mechanism is used for Robot #2, its exploration 

strategy coded as 0,3,4,6,0. Thus, the overall inspection strategy of the exploration 

system, in this case, is 0,1,2,5,0,0,3,4,6,0, and this kind of formulated strategy is called 

Chromosomes in GA. For example, Chromosome 1 is demonstrated as C1 in Step Two 

of Figure 3.5. Different Chromosomes (C1, C2, C3, C…) formed one group, called 

Population in GA, which is used to represent a group of exploration strategies for a 

multi-robot system.  

Population size is one important parameter, which has significant effects on the GA 

results [60]. For instance, a smaller population size results in fast convergence; in 

contrast, a larger population size results in wasted computational resources. In [61], 

increasing the size of the population from 5 to 100 significantly improved the GA  
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Figure 3.5: The GA-based multi-robotic exploration system for long-term exploration. 
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results. The accuracy of the results of the GA was almost the same when the population 

size was larger than 100 or around 100. Thus, in this project, an initial population size 

of 80 was selected.    

Step Three: Evaluation of the formulated exploration strategies 

The goal of this step is to determine the best exploration strategy for the current group 

(of the 80 different randomised strategies, as mentioned in Step Two). This is 

determined by selecting the minimum travel consumption of the multi-robotic 

exploration system. Inside GA, this evaluation work is based on a ‘fitness function’ as 

shown in Step Three of Figure 3.5; which attempts to add together all the travel 

distances for the multi-robotic exploration system. The overall travel distances 

calculated in this project refer to one exploration cycle of the robot system, which 

includes the robots travelling to exploration targets and charging station and returning 

to initial their position. Thus, the best exploration strategy in the current group can be 

selected, which is then recorded for further comparison. 

Step Four: Optimisation of the formulated task allocation strategies 

This step involves simulating the natural evolution process to generate an optimal 

exploration strategy for the multi-robotic system. This process mainly involves three 

stages:  

(1) the formulated exploration strategy (C1, C2, C3, C…) from Step Two is separated 

into different groups, see Step Four (a) in Figure 3.5,  

(2) the best exploration strategy from every group is selected for evolution, see Step 

Four (b) in Figure 3.5, 

(3) the evolution operation is based on rearranging the target exploration sequence for 

these selected strategies. An evolution example for exploration strategy C1 can be 

observed in Step Four (c) of Figure 3.5. In this case, four evolution operations on 

C1 (0,1,2,5,0,0,3,4,6,0) are adopted: (1) retaining the original (0,1,2,5,0,0,3,4,6,0), 

(2) flipping (0,5,2,1,0,0,3,4,6,0), (3) swapping (0,1,2,5,0,0,6,4,3,0), and (4) sliding 

(0,1,2,5,0,0,6,4,3,0).  

These new generated exploration strategies are then used to replace the first 

randomised population for further evaluation. 
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Step Five: Best strategy search 

This step aims to search for the best exploration strategy among the different 

populations. This is achieved by repeating the previous steps and comparing the best 

strategy in every iteration until the designed iterations times are achieved. In [62], 

another combinatorial optimisation problems – multiple tasks being allocating to 

multicore processors – was solved by GA, in which 5,000 iterations were 

recommended in the calculation process. Thus, a 5,000 times iteration was used in this 

project.        

3.5 Summary 

This chapter has mainly outlined the details of the proposed exploration approaches in 

this study. Firstly, this chapter clarified the exploration scenarios and functions of the 

exploration robot in Section 3.1. The robots are deployed into environments for 

continuous monitoring of targets and are able to switch between exploration and 

charging tasks as required. Secondly, two charging methods were proposed in Section 

3.2: (1) a general charging method, whereby the robots only go for charging when 

their remaining battery can only support their back to the charging station; and (2) a 

predicted charging method, whereby the system will consider whether the remaining 

battery is adequate to support both inspection and charging requirements; if it isn’t, 

the robots will return to the charging station. Thirdly, the Greedy-based multi-robotics 

system for temporary exploration in a power plant, was explained in Section 3.3. This 

method contributes to a diagnosis of faults in the power plant zone-by-zone. Fourthly, 

the GA-based multi-robotics system for long-term exploration in a power plant, as 

described in Section 3.4. This method aims to iterate the overall optimal inspection 

routes for the robot team. Therefore, based on the different exploration and charging 

methods, three exploration methods were developed: (1) A, which uses Greedy and 

the general charging method for temporary exploration, (2) B, which uses GA and the 

general charging method for long-term exploration, and (3) C, which uses GA and the 

predicted charging method for exploration robot improvement. In the next chapter, 

details of the implementation of these three exploration approaches will be presented.  
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Chapter 4  
 

Experimental Setup 

 

This chapter outlines the configuration of the experiments. This chapter is organised 

in the following five parts: Firstly, Section 4.1 describes the simulation setup. Next, 

Section 4.2 and Section 4.3 presents the multi-robot control framework and 

exploration robots configurations, respectively. Then, Section 4.4 and Section 4.5 

explain the evaluation scenarios and metrics, before, finally, Section 4.6 summaries 

the chapter.    

4.1 Simulation Setup 

The simulation work of the robot system is separated into two pieces of software: (1) 

MATLAB, and (2) V-REP. The reasons for using both of these packages are as follows: 

(1) The first application of MATLAB is for control engineering, and its interface and 

the coding environment is very easy for developers [63]. In terms of the 

development of the exploration method, MATLAB can be used to schedule an 

exploration strategy for the multi-robot system. The problem for developing and 

testing the proposed exploration methods is, MATLAB lacks easy-to-use 3D 

physical simulations [64], meaning it is difficult to observe the performance of the 

proposed exploration approaches visually. 

(2) In contrast, in terms of implementation of the exploration scenarios or the overall 

evaluation of the system, V-REP can be as an alternative solution because it 

supports 3D dynamic simulation [53]. In addition, it is possible to develop a 

charging management algorithm for exploration robot in MATLAB, but V-REP 

provides a more convenient means to do so. For instance, using V-REP, we can 

develop a simple sensor for recording the robots’ past-path lengths to manage the 

exploration and charging tasks of the exploration robot. 
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Figure 4.1: The simulation setup for the development of the multi-robotic exploration 

system. 

 

As a result, the overall simulation setup is presented in Figure 4.1. MATLAB was 

selected for scheduling of the exploration strategy of the multi-robot system while V-

REP was selected to simulate the multi-robotic exploration, charging, and exploration 

system test. The feasibility of using both MATLAB and V-REP was provided by [56], 

that is, the API function in V-REP allows data exchange between V-REP and other 

packages.  

4.2 Control Framework 

In terms of selecting a centralised multi-robot control mechanism for multi-robot 

control, this project aimed to develop an on-site exploration system to assist a power-

plant control centre in recognising potential problems so that the task management of 

robots can be controlled by the power plant control centre. This control architecture 

will benefit both the power plant control centre and exploration robots. For example, 

the control centre can receive on-site data directly from the robots and adjust the 

exploration plan. In terms of the robots, each robot can use limited energy and 

processors to compute other tasks such as collecting information and route planning. 
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Figure 4.2: Work-load management of the developed robot. 

  

The main functions of the control framework are threefold: (1) scheduling an 

exploration strategy for robots, (2) sending and separating the formulated exploration 

plan to robots, and (3) monitoring the robot battery in real-time and managing the 

robot for charging or exploration. As a result, three levels of robot behaviours – high, 

middle and low – were developed as presented in Figure 4.2.  

(1) The high-level behaviours in MATLAB formulate an exploration strategy for the 

multi-robotic exploration system. This formulated strategy is then sent to V-REP 

via the API bridge.  

(2) The middle-level behaviours in V-REP separate the exploration tasks to the 

different robots and manage their exploration tasks. For example, the middle-level 

behaviours manage a robot heading to Target 1 and, after it finishes Target 1, it 

guides the robot to explore Target 2.  

(3) The low-level behaviours in V-REP functions to help the exploration robot begin 

its movement for inspection or charging tasks. The robots’ motion is achieved by 
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using V-REP’s official path-planning module. In addition, this behaviour is also 

used to share the robots’ real-time status (arrival at exploration target or charging 

station) with the middle-level behaviours, and then ask for new tasks.   

At the executive-level (exploration robots), the robot’s motion management is 

received from the low-level behaviours, but there is a requirement of these robots to 

feedback its real-time status to the low-level behaviours, so that it is going to an 

exploration task or finishing charging. Therefore, the next section will detail the 

configuration of the robot exploration platforms to satisfy these requirements.  

4.3 Robot System Formulation 

This section presents the configurations of the developed exploration robots. The 

realisation of the exploration platform in this section is split into three stages: (1) the 

requirements of the exploration platform for on-site inspection at power plants are 

discussed, (2) the selected exploration robot model is explained, and (3) the developed 

auxiliary sensors are presented.  

4.3.1 Robot System Requirements 

In the case of on-site exploration of a power plant, exploration robots may face several 

complicated situations, such as various obstacles, faulty mechanisms, and so on. Thus, 

this section discusses the general requirements of an exploration robot for inspection 

of power plants. Based on the on-site characteristics of power plant exploration 

outlined in Section 2.1 and 2.2, the exploration platform used in this project was 

required to satisfy the following factors: 

(1) Small and flexible so that the exploration robot can cover small areas, 

(2) An open platform that allows various types of sensors to be added, 

(3) A cheap platform for investors that allows a short payback time when these 

robots real deployed in power plants,  

(4) Easy recovery for low maintenance. 
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(a)                                                                 (b) 

Figure 4.3: The schematic of the Pioneer p3-dx robot. (a) real Pioneer p3-dx robot. 

(b) the dimensions of the Pioneer p3-dx robot platform, adapted from [65]. 

 

4.3.2 Robotic Platform 

In this project, the Pioneer p3-dx robot was selected as the exploration platform, and 

the real robot and its dimensions can be seen in Figure 4.3. The advantages of using 

the Pioneer p3-dx robot as the exploration platform are as follows: 

(1) It is a platform with ready-to-use because it integrates with basic sensing systems, 

e.g. sonar sensors for locating targets. In addition, the robot’s movement 

capabilities are 1.2 m/s. Thus, exploration time can be controlled within 30 

minutes in the case of exploration of a power plant sized 500 m2 of which the 

exploring path is 4×500 m.  

(2) An open platform designed on its topside, which allows the robot to be integrated 

with various sensors for different applications. For example, in [66], a radar 

mapping system and relative support were integrated into the Pioneer p3-dx robot.  

(3) The Pioneer p3-dx robot is priced at $4000 dollars [67], which represents the 

monthly earning of three human inspectors at an investigated power-plant. After 

setup, the robot can work continually to undertake exploration tasks. 

(4) The Pioneer p3-dx robot is a light and small robot (9 kg). For the relative 

dimensions of the Pioneer p3-dx robot platform, see Figure 4.3 (b). The robot 

size in length and width are 45.5×38.1 cm2  meaning it is easy recovery and 

suitable for exploration of narrow spaces.   
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Figure 4.4: The developed sensing system on-board the Pioneer p3-dx robot, prepared 

in robot simulators, V-REP. 

 

4.3.3 Auxiliary Sensor Development 

This auxiliary sensor development work is because the Pioneer p3-dx robot model 

provided in V-REP simulator is a ‘pure’ model, the robot model is equipped with 

nothing on-board. Thus, three types of sensors were developed in this study to 

accomplish three objectives:  

(1) Objective 1: real-time sensing of other robots to avoid collisions, this is due to 

the path crossing problem when these robots continuously deploy in scenarios;  

(2) Objective 2: real-time recording of the robot’s past-path lengths in two places 

using: (1) the past-path lengths as evidence for switching between charging or 

exploration tasks for the robots, and (2) checking the energy consumption of 

these robots at different times for system evaluation; 

(3) Objective 3: real-time measuring of the distances between robot and 

exploration targets/charging station to assist the low-level behaviours 

understanding the real-time robot’s status.   

For details of these developed sensors for achieving Objectives 1, 2 and 3, see the 

following descriptions:   
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Objective 1: Proximity sensor 

This work was necessary as there was a chance that the robots could collide with each 

other as the exploration strategy did not consider the path crossing problem. Therefore, 

these robots are suggested to have a front obstacle detection sensor to avoid collisions. 

This sensor (a proximity sensor) was configured with a detection range of 0.5 m in 

front of the robot and a 60° detection angle, which can be seen in Figure 4.4.  

Objective 2: Encoder  

This sensor was designed to record the robot’s past-path lengths. This sensor is used 

in two places:  

(1) To manage the charging and exploration tasks for the exploration robots. In this 

case, the movement capability of the exploration robots was limited to 100 metres 

(this was because the overall test took place in a small size map, see Section 5.1), 

meaning the exploration robots had to be charged before the battery ran out every 

100 metres. In this case, the following formula 4.1 was used to calculate the robot’s 

past-path lengths: 

                                                 𝑇𝑑 = 𝐿𝑝𝜋𝐷𝑤 ,                                                                        (4.1) 

where 𝑇𝑑 is the real-time past-path length of the exploration robot in metres, 𝐿𝑝 is 

real-time motor shafts revolutions, and 𝐷𝑤  is the diameter of the exploration 

robot’s wheels in metres. 

(2) To evaluate the energy consumption of these robots at different times. In more 

detail, the real-time past-path lengths of the exploration robots were converted to 

energy consumption. This was done using formula 4.1 and formula 3.1.     

The developed encoder was based on two parts as shown in Figure 4.4: (1) one 

detectable trigger was fixed on the motor shafts which turned with the motor shafts, 

and (2) two proximity sensors were separately laid out at a certain distance. Once the 

trigger arrived at the middle point between these two proximity sensors and was 

detected by the sensors, one revolution (𝐿𝑝) was added in the recording system.  
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Objective 3: Distance Estimation Modules (DEM) 

The objective of the DEM development was to help the low-level behaviours 

recognise the real-time robot’s status (exploration or charging). To be more specific, 

the DEM continuously measures the distance from the exploration robot to the 

targets/charging station. Once the distance between the exploration robot and 

target/charging station is less than 0.5/0.8 metres, the status of the robot in its 

exploration or charging is regarded as finished. Following that, the exploration robot 

will conduct its next task(s) and the movement capability of robots after charging is 

then resettled to 100 metres as when fully charged. The development of the DEM was 

based on a V-REP’s official distance-measuring modules.   

4.4 Multi-robotic Exploration Scenarios 

This section presents the developed scenarios for three experiments: 

(1) a scenario for the computer performance test. This test was carried out as we 

intended to evaluate the proposed exploration systems into a more realistic 

environment, such as a large size scenario laid out to replicate a real power 

plant. The problem is the computer’s computation performance is unknown 

when the V-REP simulating robot runs in small or large size map; 

(2) a scenario to test the accuracy and reliability of the developed encoder. This 

test was conducted to examine the encoder’s accuracy and reliability, as the 

accuracy is critical for the successful completion of robot routine activities, e.g. 

record travelling path and plan the charging and/or exploration tasks; 

(3) a scenario to evaluate the developed multi-robotic exploration system. This test 

was used to check the feasibility of using developed two exploration systems 

(Greedy-based, GA-based) for temporary exploration mode and long-term 

exploration mode in a power plant, and analysis the performance when 

exploration system using predicted charging method or general charging 

method. 
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Figure 4.5: The configuration for the computer performance test, (a) 25×25 𝑚2 

configuration, and (b) 300×250 𝑚2 configuration. 

 

4.4.1 Computational System Performance 

This work attempted to verify the feasibility of using V-REP to simulate the operation 

of the robot system in a large size map. The setup of the computer for these 

experiments was Windows 10 - 64bits with the following hardware: Intel Core i7 6-

core CPU @3.2-4.6 GHz, 16.00GB RAM, and Nvidia Quadro P400 2GB graphics. In 

this experiment, computer performance was judged by one factor: does the deployed 

computer have the capability to calculate a useful path for the exploration robot in a 

small and large size map. Nineteen path-planning algorithms from the V-REP official 

library were adopted, and every algorithm was tested five times each in the small and 

large size maps. The details of these maps are as follows:    

(1) A 25×25 m2 map within a closed space, with irregular walls, see Figure 4.5 

(a). There were at least one or more routes available for a robot.   

(2) A 300×250 m2 map within a closed space, with only one obstacle, see Figure 

4.5 (b). The obstacle was located in front of the goal target; thus, one or more 

potential paths could be calculated.   
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Figure 4.6: The developed power plant for robot exploration, (a) 25×25 𝑚2 

configuration with 10 exploration places, (b) 25×25 𝑚2  configuration with 20 

exploration places, (c) 300×250 𝑚2 configuration with 10 exploration places, and (d) 

300×250 𝑚2 configuration with 20 exploration places. 

 

4.4.2 Encoder Feedback Test 

The accuracy and reliability test work of the encoder were split into two parts: 

(1) the accuracy test of the developed encoder. One robot was deployed in a maze as 

presented in Figure 4.5 (a), where this robot was required to head to the goal target 

from an initial place. The total past-path length of this robot to the goal target was 

recorded.  

(2) the reliability test of the developed encoder. Two robots were deployed in Figure 

4.6 (a) and (b), where three developed exploration methods A, B and C were 

adapted for these robots. These robots are designed to continuous exploration of 

10 or 20 targets and returned for charging as required. The energy consumptions 

of these robots were recorded at different times via formula 4.1 and formula 3.1.  

 



Chapter 4. Experimental Setup 

 

85 

 

4.4.3 Multi-robotic Exploration System  

In this case, every test was attached with two exploration robots and one charging 

station. The tasks of these robots were performed as described in Section 3.1, where 

robots were required to continuously explore the targets, while properly switching 

between charging and exploration by themselves. To verify the robustness of these 

exploration methods, four maps were prepared:   

(1) The first two configurations were based on a 25×25 m2 map within a closed space, 

with 10 and 20 random exploration samples, see Figure 4.6 (a) and (b); 

(2) The last two configurations were based on a 300×250 m2 map within a closed 

space, with 10 and 20 random exploration samples, see Figure 4.6 (c) and (d).    

4.5 Metrics 

The evaluation metrics, for the proposed experiments, were consists of three: (1) 

metrics for examination of the computer performance, (2) metrics for verifying the 

accuracy and reliability of the developed encoder, and (3) metrics for evaluating the 

performance of the developed multi-robotic exploration methods.  

4.5.1 Computational System Performance 

In this test, the path-planning performances of the exploration robots were considered 

as the metrics for computer evaluations. The quality of a generated path for a robot 

may have faced three situations: (1) the right path, which could be used for the robots’ 

exploration; (2) an incomplete path; and (3) an incorrect path, which may cause the 

robots to collide with obstacles. 

4.5.2 Encoder Feedback 

Accuracy test: The V-REP official path-length computation module was not adopted 

as the software cannot calibrate the robot-path recording in real-time. Although the 

robot path is recorded continuously, the record is updated by the software only when 

the robot has arrived designated areas. Thus, an adaptive robot management, i.e. 

continuous examination of charging and task exploring, is impossible to be achieved 

using V-REP official module. In this test, V-REP official module is used to examine 
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the measurement accuracy of the developed encoder, i.e. the final travel distance of 

the robot recorded by the encoder is compared to the that by V-REP official module. 

Reliability test: In this test, the robot’s past-path lengths recorded by the encoder were 

converted to the relative energy consumption at different times. This was achieved by 

using formula 4.1 and formula 3.1. This reliability test was based on comparing the 

energy consumption of these robots at the same time. In theory, energy consumption 

at every stage in these exploration systems – A, B and C – should have been the same. 

This is because the robots are designed to continuously explore targets without a rest. 

In this case, the energy consumption of each robot was counted every 10 minutes, up 

to a total of 60 minutes.  

4.5.3 Multi-robotic Exploration System 

The evaluation of the developed exploration systems A, B and C was based on the 

small size map (see reasons for this in Section 5.1). These system tests were separated 

into two parts:    

Inspection efficiency: Multi-robot evaluation by testing the number of inspected 

targets at different times. This test helped analysis the performance of the Greedy-

based temporary exploration system and the GA-based long-term exploration system. 

The total number of inspected targets by the exploration system was counted every 10 

minutes, up to a total of 60 minutes.  

Energy-saving performance: Multi-robot evaluation by testing the number of 

inspected targets with different charging times. This allowed for evaluating the 

performance impact from the developed general/predicted charging method on the 

exploration system. The total number of targets inspected by the developed 

exploration system were counted at every charging task of the exploration robot. This 

test stopped once the numbers of charging task of each robot had reached five times.  

4.6 Summary 

This chapter has presented the details of the experimental setup and relative tests 

metrics. To be more specific, Section 4.1 discussed the simulation setup. MATLAB 

and V-REP software were selected in this project with the aim of developing a multi-

robot exploration system with the capability to conduct inspection and charging tasks. 
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Section 4.2 described the robot’s control framework. Three-layered behaviours 

between MATLAB and V-REP were developed, which contributed to scheduling an 

exploration strategy, assignment of exploration tasks, and management of charging 

and inspection tasks for these robots. Section 4.3 demonstrated the developed 

exploration platform. To be more specific, the robot platform model was selected 

considering the characteristics of on-site power plant exploration as determined in 

Section 2.1.4. Auxiliary sensors were also developed to assist the robots 

accomplishing exploration and charging tasks. Section 4.4 provided evaluation 

scenarios for three types of experiments: (1) the computer performance test when V-

REP runs with small and large size maps, (2) the accuracy and reliability test of the 

developed encoder, and (3) the performance evaluation of the developed exploration 

methods. Finally, Section 4.5 presented the relative evaluation metrics of these 

experiments. In the next chapter, the results and discussions of these proposed 

experiments will be presented.   
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Chapter 5  

 
Results and Discussion 

 

This chapter presents three types of results: (1) computer performance for robot path 

planning, (2) the accuracy and reliability of the developed encoder, and (3) the 

performance evaluations of the three developed multi-robotic exploration methods. 

The encoder's reliability and the performance of the proposed exploration methods are 

described in box-plot. In a box-plot, the boxes represent the data range between the 

first and third quartiles. Inside the box, a horizontal line is used to describe the median 

value in the group, and the whiskers on the top and lower side show the data range in 

the group, which represent the maximum and minimum values.  

5.1 Computational System Performance 

The computer was tested for path planning of the robots in both the small (25×25 m2) 

and large size maps (300×250 m2), see Figure 4.5 (a) and (b). In total, nineteen 

different path-planning algorithms (provided by V-REP) were adopted [68], and every 

algorithm was tested five times. Three different qualities of path are presented with 

three colours in Table 5.1: (1) green represents the right path generated, (2) red 

represents the incorrect path generated, and (3) orange represents the incomplete path 

generated.   

Based on the V-REP official recommended path planning module, for the small size 

map, the deployed computer was able to compute the correct path for a robot with a 

94.7% success rate. In contrast, for the large size map, the deployed computer found 

it difficult to compute the right path for a robot. For example, wrong and incomplete 

paths were generated in 51 out of 95 experiments. In conclusion, due to the limited 

computer configuration, the small size scenario was more suitable for simulations of 

the developed exploration system conducting exploration tasks. In further usage of the 

V-REP simulation robot in the small and large size scenario, two suggestions can be  
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Table 5.1: The results of the computer performance test against standard algorithms 

provided by the Open Motion Planning Library in V-REP [68].  

  Map size     

Test ID 1 2 3 4 5 1 2 3 4 5 

Algorithms Path generation results 

BKPIECE1 [69]                     

BiTRRT [70]                     

EST [71]                     

KPIECE1 [69]                     

LazyPRM [72]                     

LazyPRMstar [73]                     

LazyRRT [74]                     

LBKPIECE1 [69]                     

LBTRRT [75]                     

PDST [76]                     

PRM [77]                     

PRMstar [77]                     

RRT [74]                     

RRTConnect [74]                     

RRTstar [73]                     

SPARS [78]                     

SPARStwo [79]                     

STRIDE [80]                     

TRRT [81]                     

  

 Right path  Wrong path  Incomplete 

  

made: (1) in the small size scenario, using scaled parameters to approach reality should 

be considered, such as the robots’ running speed; and (2) in case of the large size 

scenario, the experimental configurations should be carefully decreased to lower the 

computer hardware requirements, such as properly reducing the exploration targets. 

However, whether using small or large size maps, there was no effect on the multi-

robots’ evaluation in this project, which was because all robots were configured with 

the same parameters.   

 

25 × 25 m2 300 × 250 m2  
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5.2 Encoder Feedback 

 

Figure 5.1: The results of the developed encoder test. 

       

Accuracy test: A robot was equipped with a developed encoder, and tested 30 times in 

a 25×25 m2 map, as presented in Figure 4.5 (a). The accuracies of the developed 

encoder were verified by comparing the difference(s) of the last total past-path lengths 

from the developed encoder and the V-REP official path-length computation module. 

This test results can be seen in Figure 5.1. The blue coloured line and red coloured 

line represent the results of the developed encoder and the V-REP official module.  

From the results, it can be seen that the developed encoder was able to record the 

robot’s past-path lengths with an acceptable error rate. Compared with the V-REP 

path-length computation module, 29 experiments out of 30 had an accuracy of more 

than 90%. The highest accuracy of the developed encoder was up to 99.89%. Errors 

occurred due to repeat counting when the robot adjusted its heading direction. To be 

more specific, the wheel (the one attached with encoder) would possibly move forward 

and backwards during testing, which may have triggered repeat counting by the 

detectors in some instances.  

 

Developed encoder

  REP path length computation module

1  13 1 2 3 

              

2 

3 

 1
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Reliability test: Two exploration robots were equipped with the developed encoder, 

and deployed into the 25×25 m2 map, as shown in Figure 4.6 (a) and (b). Three multi-

robotic exploration systems, A, B and C, were placed in 10 different initial positions 

and explored 10 and 20 targets in the map. The energy consumption of each robot was 

counted every 10 minutes. The total time allowed for the experiments was one hour, 

and the time error was controlled within ±0.01 s. Error control was achieved by a 

programme available in V-REP. The test results of the energy consumptions of each 

robot at different times can be seen in Figure 5.2 and Figure 5.3.   

From the results, it can be seen that the energy consumption of each robot increased 

proportionally over time. In addition, whether 10 or 20 exploration targets, or Robot 

#1 and Robot #2, the average energy consumption at a certain time in these different 

systems was almost same. From the data, in a total of 720 tests (every picture with 18 

groups, and every group containing ten tests), comparing the average energy 

consumption of every exploration system with the overall average energy 

consumption of the three systems together at the same time, the maximum differences 

between these systems was 3.34%. This means the developed encoder is reliable in 

most cases for recording the past-path lengths of the robots. 
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Figure 5.2: The energy consumptions results of individual robot, A: which used the 

Greedy and general charging method, B: which used the GA with general charging 

method, and C: which used GA with predicted charging method, (top) Robot #1 and 

(bottom) Robot #2 for 10 exploration targets. 
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Figure 5.3: The energy consumptions results of individual robot, A: which used the 

Greedy and general charging method, B: which used the GA with general charging 

method, and C: which used the GA with predicted charging method, (top) Robot #1 

and (bottom) Robot #2 for 20 exploration targets. 
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5.3 Inspection Efficiency  

Three multi-robotic exploration methods, A, B and C, were tested for inspection of 10 

and 20 targets. The robot teams were placed in 10 different initial positions in the 

experiments, and each test was one-hour in total, with the number of inspected 

locations counted every ten minutes. Time error was controlled within ±0.01 s, which 

was achieved by a programme available in V-REP. The results of the inspection 

efficiency of these developed exploration methods can be seen in Figure 5.4.     

Greedy for temporary exploration mode: This inspection efficiency tested to evaluate 

the Greedy-based exploration system for temporary exploration mode, which had two 

limitations: (1) the evaluation metrics were not suitable. The original idea for the 

development of an exploration system for temporary exploration mode was that a 

robot team was designed to help the power-plant main station diagnosis faulty devices 

zone-by-zone. This means that evaluation work should focus on determining what 

percentage of exploration areas were checked by these proposed exploration systems 

at a certain time. In this study, we checked the exploration efficiency of this system in 

terms of the number of inspected targets rather than the percentage of exploration area 

cleaned by the system; in addition (2) the exploration tasks should halt after one 

complete exploration cycle. In theory, when these robots finished an exploration cycle 

task, these robots should be able to help the power plant find faulty devices. However, 

in this test, exploration method A was continuously deployed on-site when these 

robots finished one full exploration cycle.  

In terms of further evaluating exploration method A, in the same way as for manual 

inspection operations, the exploration tasks in a power plant should be split into 

different zones. These different zones can be defined via the distances from the robot’s 

initial location to the exploration targets. For example, Zone 1, with two exploration 

targets (1 % exploration area), is far from the robot’s initial location at less than 1 m; 

Zone 2, with four another exploration targets (means 25% exploration area), is far from 

the robot’s initial location at less than 20m (except Zone 1), and so on for other Zones. 

Thus, the performance of the Greedy-based temporary exploration method can be 

evaluated further by comparing the percentage of exploration areas serviced by these 

different exploration methods at a certain time.       
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Figure 5.4: The results of robot team-work exploration efficiency, A: which used the 

Greedy and general charging method, B: which used the GA with general charging 

method, and C: which used the GA with predicted charging method, (top) Robot team 

for 10 exploration targets, (bottom) Robot team for 20 exploration targets. 



Chapter 5. Results and Discussion 

 

96 

 

However, in addition to inspection efficiency, the use of the Greedy-based exploration 

method (A) for temporary exploration mode was suitable compared with the GA-

based exploration method (B), because robots used limited energy to debug faults for 

all the nearest targets zone-by-zone. In an application domain, this method can be 

adapted for emergency fault diagnosis.   

GA for long-term exploration mode: From the results, in the same charging method, 

using the GA-based exploration method (B) for long-term exploration was more 

suitable compared to use of the Greedy-based exploration method (A). As we can see, 

whether these systems explored 10 or 20 targets, the mean number of inspected targets 

from exploration method B outperformed exploration method A after 50 minutes of 

testing. From the data, we can see that in terms of the mean number of inspected targets, 

every hour test, exploration method B guaranteed 4~6 more inspected targets 

compared with exploration method A. This advantage will be more obvious if these 

exploration methods are deployed in a power plant for continuous tasks. Therefore, 

the GA-based exploration method (B) should be adopted for long-term exploration 

tasks in a power plant.  

Charging method evaluation: From the results, exploration method C using the 

predicted charging method, outperformed exploration method A and B that used the 

general charging method. The average number of inspected targets in exploration 

method C was always higher than in exploration methods A and B since starting the 

tests. This advantage persists and becomes more obvious as the exploration target 

increases from 10 to 20. Therefore, this indicates that the developed predicted charging 

method is better than the general charging method for increasing the exploration 

robot’s efficiency.  
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5.4 Energy-Saving Performance 

This test used the same experimental configurations as explained in Section 5.3. Two 

robots were required to continuously explore 10 and 20 targets. In each test, the 

exploration robots were placed in 10 different initial positions. The relationship 

between charging times and exploration efficiency of the robot teams was examined 

in this test. To be more specific, every charging task of the exploration robot was used 

to count the number of targets inspected. This test stopped once the numbers of 

charging task of each robot had reached five times. The results of this energy-saving 

performance test for these exploration methods are presented in Figure 5.5.  

Exploration methods evaluation: From the results, as the time and target number 

increased, whether 10 or 20 targets, the exploration efficiency of system B was better 

than that of system A. This has proved the long-term exploration strategy planning 

capability of GA outperformed the Greedy method. The Greedy-based exploration 

method may require robots to travel a long exploration cycle compared to the GA-

based exploration method. This is because the travel consumption of the robot in the 

later exploration tasks may be too long compared with the GA-based exploration 

method, meaning the formulated exploration strategy is a suboptimal solution. In 

contrast, the optimal exploration strategy formulated by the GA is these robots to be 

separated and head in two different directions to finish exploration tasks in their own 

exploration areas. Therefore, the GA-based exploration method is suitable for long-

terms exploration in a power plant, as it outperforms the Greedy-based exploration 

method in terms of its capability to allow these robots to effectively cooperate with 

each other, and scheduling a global optimal exploration strategy.   
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Figure 5.5: The different charging method results of multi-robot, A: which used the 

Greedy and general charging method, B: which used the GA with general charging 

method, and C: which used the GA with predicted charging method, (top) Robot team 

for 10 exploration targets, (bottom) Robot team for 20 exploration targets. 
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Charging method evaluation: From the results, it can be seen that the average number 

of inspected targets in exploration method C always outperformed exploration method 

A and B since starting the tests.  

In the case of 10 exploration targets, after these robots finished five charging tasks, 

the extra exploration efficiency (the average numbers of inspected target) for 

exploration method C was guaranteed at 102.7% and 109.8% compared with 

exploration methods B and A. This advantage persists and becomes more obvious as 

the numbers of exploration targets increases from 10 to 20. In the case of 20 

exploration targets, after these robots finish five charging tasks, the extra exploration 

efficiency (the average numbers of inspected targets) from exploration method C can 

be guaranteed at 111.0% and 114.1% compared with exploration methods B and A. 

This directly proves that the developed predicted charging method can help the 

exploration robots save energy. The predicted charging method and general charging 

method both use the same limited energy for exploration, but the predicted charging 

method guarantees more numbers of inspected targets compared with the general 

charging method as the mean charging time increases. Therefore, an effective predict 

the energy consumptions of robots for properly switching the robot’s exploration tasks 

to charging tasks, that can help robot avoid unnecessary energy waste, and improve 

the overall inspection efficiency of the exploration system.   

5.5 Summary 

This chapters presented three types of experimental results: (1) Section 5.1 

demonstrated the feasibility of using V-REP simulation of robotic exploration on 

small and large size power plants; with the results of using small size scenarios most 

suitable based on the computer’s limited configurations; (2) Section 5.2 tested the 

accuracy and reliability of the developed encoder; whereby it was found that the 

developed encoder was reliable for recording the robot past-path lengths within an 

acceptable error rate; and (3) Section 5.3 and 5.4 presented the evaluation results of 

the developed multi-robotic exploration methods; it was found that the Greedy-based 

method can be adopted for temporary exploration tasks with diagnosed faults zone-

by-zone; the GA is more suitable for long-term exploration tasks with good 

exploration efficiency compared with the Greedy-based method; the predicated 
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charging method has obvious advantages for optimising the inspection efficiencies 

and saves energy for the exploration system compared with the general charging 

method.  
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Chapter 6  

 

Conclusion and Future Work 

 

This project has recognised the gaps in existing on-site monitoring in various power 

plants, and has provided an effective multi-robotics exploration approach for further 

precision O&M at power plants. The exploration scenario considered in this paper 

used a limited number of robots to explore multiple targets. Two on-site exploration 

modes were proposed in this paper: (1) a temporary exploration mode where robots 

are required to diagnosis faults zone-by-zone in a power plant; and (2) a long-term 

exploration mode where robots are required to use limited energy to guarantee the 

inspection of more targets in long-term exploration.    

In the development of these exploration systems, this project considered two factors 

for optimal efficiency: (1) scheduling of an optimal exploration strategy for these 

robots, and (2) appropriate charging control. Consequently, three multi-robotic 

exploration approaches were developed based on a combination of different 

exploration strategies (Greedy/GA) and charging methods (general/predicted). 

Implementation of these approaches are based on two works: (1) a multi-layered 

control framework was developed between MATLAB and V-REP for scheduling the 

exploration and managing the exploration/charging tasks of the multi-robot system; 

and (2) an exploration platform with auxiliary sensing devices (obstacle avoidance 

sensor, encoder) were developed in V-REP for exploration simulation and evaluations.   

These systems were evaluated via three steps: (1) the feasibility of the V-REP 

simulated exploration robots in a mock-up power plant; (2) the accuracy and reliability 

of the developed encoder was evaluated, and (3) the developed multi-robotics 

exploration approaches for temporary and long-term exploration were analysed. From 

the results, it was found that using small scenarios for evaluation of the developed 

exploration systems was more suitable due to the computer’s limited configurations. 

The developed encoder was reliable for recording the robot’s past-path lengths with 

acceptable errors. This method has provided an approach to real-time monitoring of 

the robots’ past-path lengths in V-REP. The Greedy-based exploration method was 
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found to be suitable for a temporary exploration task for diagnosing faults in a power 

plant zone-by-zone. The developed GA-based exploration method is suitable for long-

term exploration tasks, which can guarantee more targets are expected after a certain 

period of time compared with the Greedy-based exploration method. In terms of the 

proposed general and predicted charging method’s impact on the exploration system 

performance, an effective prediction of the energy consumption of the exploration 

robot for properly switching its charging and exploration tasks, that is able to save 

energy and increasing the inspection efficiency for the exploration system.   

This project is a prototype work, but contributes to the overall body of knowledge in 

research of the development of a multi-robotic exploration system for a power plant. 

6.1 Limitations and Future Work 

However, the multi-robotics exploration approaches proposed in this study are not 

perfect, and the limitations of these methods and direction for future research are 

summarised as follows:   

(1) An optimal exploration strategy may not emerge in both the Greedy-based and 

GA-based exploration method. In terms of the Greedy-based exploration method, 

it will be challenging for a robot selecting the nearest exploration target for 

exploration tasks if the robot is equally far from two exploration targets. In further, 

the exploration details of these targets should be considered, such as these targets' 

exploration priority, the route, and so on. In terms of the GA-based exploration 

method, the evolution process of the GA is not fully optimised. In this case, 

different mutation processes can be attempted in future research to generate a more 

adaptable exploration strategy based on the proposed evaluation function.  

(2) The scheduled exploration strategy of GA cannot be said to be representative in 

terms of long-term exploration. The GA-based exploration method only 

considered the first inspection loop for a static environment. Furthermore, there 

was a requirement to consider the travel consumption of robot teams from multi-

inspection loops, or attempts on Artificial Intelligence (AI) techniques for 

exploration strategy scheduling of multi-robotic system in dynamics. 



Chapter 6. Conclusion and Future Work 

 

103 

 

(3) Two different levels of behaviours separately manage the exploration and charging 

tasks. In future, the robot’s travel consumption for charging tasks can be integrated 

into the exploration strategy scheduling stage.   

(4) The accuracy and reliability of the encoder still have space for improvement. In 

future, based on current encoder design, one additional trigger-detection sensor 

can be established on opposite sides to avoid repeated counting, or counting should 

stop within a certain time after one detection.  

(5) The developed predicted charging method does not consider the remaining battery 

before the robots’ return to charge, and the remaining battery can be used to 

guarantee the additional number of inspected targets in further exploration.      
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Appendix A  

 

Investigation Details of The Real Power Plant  

 

Table A.1: The interview details, as summarised from interviews with engineers.  

Enterprise list 
Scale 

(Mw) 

Support 

Capability 

(4186 

kWh/Year per 

person [82]) 

Approximate 

People hiring Investigator 

Sichuan Taipingyi 

Power Station, China 

Huaneng Group 
320 

600k users an 

hour 160 Investigator 1 

Douhe Power Station, 

China Datang 

Corporation 
1550 

3000k users an 

hour 2600 

Investigator 2 

Investigator 3 

Investigator 4 

Huarun Power 

Station, CR Power 

Group 
4600 

9000k users an 

hour 580 Investigator 5 

Hami Coal Electricity 

Co. Ltd, Shenhua 

Guoneng Group 
2640 

5100k users an 

hour 450 Investigator 6 

Shouguang Power 

Station, China 

Shenhua Guohua 
2000 

3900k users an 

hour 1260 Investigator 7 

Xibaipo Power 

Station, Hebei 

Xibaipo Electricity 

Co. Ltd. 

2400 
4700k users an 

hour 1680  Investigator 8 

Hubei Jingmen Power 

Station 
1840 

3600k users an 

hour 1608 Investigator 9 

Hebei Wangtan Power 

Station, China Datang 

Corporation 
1200 

2300k users an 

hour 960 
Investigator 

10 

Datang Lusi Port 

International Power 

Generation Co. Ltd, 

DTP 

2640 
5100k users an 

hour N/A 
Investigator 

11 

 


