17 research outputs found

    Monocular-Based Pose Determination of Uncooperative Known and Unknown Space Objects

    Get PDF
    In order to support spacecraft proximity operations, such as on-orbit servicing and spacecraft formation flying, several vision-based techniques exist to determine the relative pose of an uncooperative orbiting object with respect to the spacecraft. Depending on whether the object is known or unknown, a shape model of the orbiting target object may have to be constructed autonomously by making use of only optical measurements. In this paper, we investigate two vision-based approaches for pose estimation of uncooperative orbiting targets: one that is general and versatile such that it does not require a priori knowledge of any information of the target, and the other one that requires knowledge of the target's shape geometry. The former uses an estimation algorithm of translational and rotational dynamics to sequentially perform simultaneous pose determination and 3D shape reconstruction of the unknown target, while the latter relies on a known 3D model of the target's geometry to provide a point-by-point pose solution. The architecture and implementation of both methods are presented and their achievable performance is evaluated through numerical simulations. In addition, a computer vision processing strategy for feature detection and matching and the Structure from Motion (SfM) algorithm for on-board 3D reconstruction are also discussed and validated by using a dataset of images that are synthetically generated according to a chaser/target relative motion in Geosynchronous Orbit (GEO)

    Monocular-Based Pose Determination of Uncooperative Space Objects

    Get PDF
    Vision-based methods to determine the relative pose of an uncooperative orbiting object are investigated in applications to spacecraft proximity operations, such as on-orbit servicing, spacecraft formation flying, and small bodies exploration. Depending on whether the object is known or unknown, a shape model of the orbiting target object may have to be constructed autonomously in real-time by making use of only optical measurements. The Simultaneous Estimation of Pose and Shape (SEPS) algorithm that does not require a priori knowledge of the pose and shape of the target is presented. This makes use of a novel measurement equation and filter that can efficiently use optical flow information along with a star tracker to estimate the target's angular rotational and translational relative velocity as well as its center of gravity. Depending on the mission constraints, SEPS can be augmented by a more accurate offline, on-board 3D reconstruction of the target shape, which allows for the estimation of the pose as a known target. The use of Structure from Motion (SfM) for this purpose is discussed. A model-based approach for pose estimation of known targets is also presented. The architecture and implementation of both the proposed approaches are elucidated and their performance metrics are evaluated through numerical simulations by using a dataset of images that are synthetically generated according to a chaser/target relative motion in Geosynchronous Orbit (GEO)

    Monocular-Based Pose Determination of Uncooperative Known and Unknown Space Objects

    Get PDF
    In order to support spacecraft proximity operations, such as on-orbit servicing and spacecraft formation flying, several vision-based techniques exist to determine the relative pose of an uncooperative orbiting object with respect to the spacecraft. Depending on whether the object is known or unknown, a shape model of the orbiting target object may have to be constructed autonomously by making use of only optical measurements. In this paper, we investigate two vision-based approaches for pose estimation of uncooperative orbiting targets: one that is general and versatile such that it does not require a priori knowledge of any information of the target, and the other one that requires knowledge of the target's shape geometry. The former uses an estimation algorithm of translational and rotational dynamics to sequentially perform simultaneous pose determination and 3D shape reconstruction of the unknown target, while the latter relies on a known 3D model of the target's geometry to provide a point-by-point pose solution. The architecture and implementation of both methods are presented and their achievable performance is evaluated through numerical simulations. In addition, a computer vision processing strategy for feature detection and matching and the Structure from Motion (SfM) algorithm for on-board 3D reconstruction are also discussed and validated by using a dataset of images that are synthetically generated according to a chaser/target relative motion in Geosynchronous Orbit (GEO)

    Monocular-Based Pose Determination of Uncooperative Space Objects

    Get PDF
    Vision-based methods to determine the relative pose of an uncooperative orbiting object are investigated in applications to spacecraft proximity operations, such as on-orbit servicing, spacecraft formation flying, and small bodies exploration. Depending on whether the object is known or unknown, a shape model of the orbiting target object may have to be constructed autonomously in real-time by making use of only optical measurements. The Simultaneous Estimation of Pose and Shape (SEPS) algorithm that does not require a priori knowledge of the pose and shape of the target is presented. This makes use of a novel measurement equation and filter that can efficiently use optical flow information along with a star tracker to estimate the target's angular rotational and translational relative velocity as well as its center of gravity. Depending on the mission constraints, SEPS can be augmented by a more accurate offline, on-board 3D reconstruction of the target shape, which allows for the estimation of the pose as a known target. The use of Structure from Motion (SfM) for this purpose is discussed. A model-based approach for pose estimation of known targets is also presented. The architecture and implementation of both the proposed approaches are elucidated and their performance metrics are evaluated through numerical simulations by using a dataset of images that are synthetically generated according to a chaser/target relative motion in Geosynchronous Orbit (GEO)

    underwater SLAM: Challenges, state of the art, algorithms and a new biologically-inspired approach

    Get PDF
    Abstract-The unstructured scenario, the extraction of significant features, the imprecision of sensors along with the impossibility of using GPS signals are some of the challenges encountered in underwater environments. Given this adverse context, the Simultaneous Localization and Mapping techniques (SLAM) attempt to localize the robot in an efficient way in an unknown underwater environment while, at the same time, generate a representative model of the environment. In this paper, we focus on key topics related to SLAM applications in underwater environments. Moreover, a review of major studies in the literature and proposed solutions for addressing the problem are presented. Given the limitations of probabilistic approaches, a new alternative based on a bio-inspired model is highlighted

    Visual Tracking and Motion Estimation for an On-orbit Servicing of a Satellite

    Get PDF
    This thesis addresses visual tracking of a non-cooperative as well as a partially cooperative satellite, to enable close-range rendezvous between a servicer and a target satellite. Visual tracking and estimation of relative motion between a servicer and a target satellite are critical abilities for rendezvous and proximity operation such as repairing and deorbiting. For this purpose, Lidar has been widely employed in cooperative rendezvous and docking missions. Despite its robustness to harsh space illumination, Lidar has high weight and rotating parts and consumes more power, thus undermines the stringent requirements of a satellite design. On the other hand, inexpensive on-board cameras can provide an effective solution, working at a wide range of distances. However, conditions of space lighting are particularly challenging for image based tracking algorithms, because of the direct sunlight exposure, and due to the glossy surface of the satellite that creates strong reflection and image saturation, which leads to difficulties in tracking procedures. In order to address these difficulties, the relevant literature is examined in the fields of computer vision, and satellite rendezvous and docking. Two classes of problems are identified and relevant solutions, implemented on a standard computer are provided. Firstly, in the absence of a geometric model of the satellite, the thesis presents a robust feature-based method with prediction capability in case of insufficient features, relying on a point-wise motion model. Secondly, we employ a robust model-based hierarchical position localization method to handle change of image features along a range of distances, and localize an attitude-controlled (partially cooperative) satellite. Moreover, the thesis presents a pose tracking method addressing ambiguities in edge-matching, and a pose detection algorithm based on appearance model learning. For the validation of the methods, real camera images and ground truth data, generated with a laboratory tet bed similar to space conditions are used. The experimental results indicate that camera based methods provide robust and accurate tracking for the approach of malfunctioning satellites in spite of the difficulties associated with specularities and direct sunlight. Also exceptional lighting conditions associated to the sun angle are discussed, aimed at achieving fully reliable localization system in a certain mission

    Towards autonomous localization and mapping of AUVs: a survey

    Get PDF
    Purpose The main purpose of this paper is to investigate two key elements of localization and mapping of Autonomous Underwater Vehicle (AUV), i.e. to overview various sensors and algorithms used for underwater localization and mapping, and to make suggestions for future research. Design/methodology/approach The authors first review various sensors and algorithms used for AUVs in the terms of basic working principle, characters, their advantages and disadvantages. The statistical analysis is carried out by studying 35 AUV platforms according to the application circumstances of sensors and algorithms. Findings As real-world applications have different requirements and specifications, it is necessary to select the most appropriate one by balancing various factors such as accuracy, cost, size, etc. Although highly accurate localization and mapping in an underwater environment is very difficult, more and more accurate and robust navigation solutions will be achieved with the development of both sensors and algorithms. Research limitations/implications This paper provides an overview of the state of art underwater localisation and mapping algorithms and systems. No experiments are conducted for verification. Practical implications The paper will give readers a clear guideline to find suitable underwater localisation and mapping algorithms and systems for their practical applications in hand. Social implications There is a wide range of audiences who will benefit from reading this comprehensive survey of autonomous localisation and mapping of UAVs. Originality/value The paper will provide useful information and suggestions to research students, engineers and scientists who work in the field of autonomous underwater vehicles
    corecore