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Abstract

In order to support spacecraft proximity operations, such as on-orbit servicing and spacecraft forma-
tion flying, several vision-based techniques exist to determine the relative pose of an uncooperative orbiting
object with respect to the spacecraft. Depending on whether the object is known or unknown, a shape
model of the orbiting target object may have to be constructed autonomously by making use of only optical
measurements. In this paper, we investigate two vision-based approaches for pose estimation of uncooper-
ative orbiting targets: one that is general and versatile such that it does not require a priori knowledge of
any information of the target, and the other one that requires knowledge of the target’s shape geometry.
The former uses an estimation algorithm of translational and rotational dynamics to sequentially perform
simultaneous pose determination and 3D shape reconstruction of the unknown target, while the latter relies
on a known 3D model of the target’s geometry to provide a point-by-point pose solution. The architecture
and implementation of both methods are presented and their achievable performance is evaluated through
numerical simulations. In addition, a computer vision processing strategy for feature detection and match-
ing and the Structure from Motion (SfM) algorithm for on-board 3D reconstruction are also discussed and
validated by using a dataset of images that are synthetically generated according to a chaser/target relative
motion in Geosynchronous Orbit (GEO).
Keywords: Vision-based Navigation, Spacecraft, Pose Determination, 3D Reconstruction
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1 Introduction

Many of 15,000 known and catalogued orbiting
objects are classified as uncooperative objects [1]. In
addition to the ones catalogued, there are also a sig-
nificant number of other orbiting objects too small to
be tracked by ground stations whose geometric ap-
pearance is unknown. For example, by using radar
and optical sensors in the Space Surveillance Network
(SSN), the US military can only track objects larger
than 1 m in size in GEO (Geosynchronous Earth Or-
bit) or larger than 5-10 cm in size in LEO (Low Earth
Orbit) [1].

In missions of On-Orbit Servicing (OOS), such
as manipulation, relocation, active debris removal
(ADR), or simply observation of these objects, it is
necessary to operate in close proximity and perform
relative navigation maneuvers. Communication de-
lays or simply poor coverage make the use of ground-

based control commands infeasible. Hence, rela-
tive navigation has to be performed autonomously,
without control from ground stations. The research
study [2] provides a review of the state-of-the-art
approaches and algorithms specifically developed for
on-board spacecraft pose determination, when pro-
cessing electro-optical (EO) sensor observations. EO
sensors include all devices able to collect radiation
in the optical spectrum (0.01 µm to 1000 µm).
For spacecraft pose determination, typically either
passive monocular/stereo camera or active LIDAR
(Light Detection and Ranging) systems are used.

Other works [3, 4, 5, 6, 7, 8] focus on Global
Navigation Satellites System (GNSS)–based or more
generally Radio Frequency (RF)–based relative nav-
igation, assuming that the orbiting target object is
equipped with a GNSS receiver and a communica-
tion link or respectively a RF transmitting and receiv-
ing antenna, which means it is actively cooperative.
As well as for OOS, the RF/GNSS-based approach
can actually be very convenient in Formation Flying
(FF) missions, where each spacecraft of the forma-
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Fig. 1: Vision-based pose determination steps.

tion can interact and exchange information with its
neighbor [9, 10].

In FF missions or in any mission where the or-
biting target has been already conceived to be in
proximity of a chaser, a passively cooperative target
equipped with artificial markers (e.g., LEDs, CCRs)
might be preferred to an actively cooperative target.
Artificial markers and a monocular camera could be
used in order to minimize power consumption, mass,
and volume of the on-board navigation system or
in deep-space missions where GNSS signals are not
available. When dealing with uncooperative targets
instead, such as space debris, asteroids, comets, or
any other object originally not designed to cooperate
with the chaser, EO sensors are currently the main
technology for pose determination.

A LIDAR measures the distance with the target
by illuminating it with a laser source and then pro-
cessing the backscattered radiation. Such informa-
tion is used to build a cloud of 3D points (i.e. to
perform 3D reconstruction) of the target, allowing
its pose estimation. Pose determination using LI-
DARs instead of stereo/monocular cameras is more
robust to poor illumination conditions; however, LI-
DAR systems have higher hardware complexity and
power consumption. Also, stereo cameras can pro-
vide 3D points of the target (2D coordinates in the
image frame as well as their distance from the target
through image rectification and disparity map com-
putation), in some conditions, denser than the ones
provided by a LIDAR. However, the ranging accuracy
achievable with stereo cameras is significantly limited
by the baseline between its two monocular cameras,
being acceptable only in close-proximity with the tar-
get, e.g. final approach and docking. For far and mid
range navigation monocular techniques can be used.

As illustrated in Fig. 1, following the process of
image acquisition performed by the on-board camera

system, the monocular-vision-based pose estimation
process includes mainly three steps [11]:

− Image processing and feature extraction;

− Feature matching;

− Estimation of the pose, as transformation be-
tween matched features.

In the image processing step, one or more input
images are computationally transformed into an en-
hanced image in order to extract some useful infor-
mation from it. For vision-based pose determination,
image processing is the foundation for the process of
feature extraction. The latter is needed to reduce
the amount of data in the images and extract the
useful information, the ‘features’. Features can be
scalars or vector quantities. As suggested in [11], it is
possible to extract region-features, line-features and
point-features. In the context of pose determination,
correspondence or feature matching is the problem of
matching the features extracted in one image of the
target with corresponding features of another image,
or identifiable points in a model when available. A
set of corresponding features can then be used to de-
termine the pose of the target with respect to the
camera and the host space vehicle.

In this paper, we focus on monocular-vision-
based pose determination as a suitable approach for
nanosatellites with low mass, low volume, and low
power consumption requirements, orbiting and ma-
neuvering in a wide range of distances from the tar-
get. In particular, we investigate the case of unknown
and known uncooperative targets.

1.1 Related Work

Different mono-vision-based approaches have
been proposed in the literature which depend on
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whether the target geometry is known or unknown.
If a target geometry is needed, a model can be built
before the mission and stored or it has to be built on
board. Many studies can be found on model-based
spacecraft pose determination, which assume a tar-
get uncooperative but known. In Section 4 of [2],
a complete review of the most relevant ones is pro-
vided. A fewer works exist in the literature, similar
to the one here proposed, on vision- based pose deter-
mination of uncooperative unknown orbiting objects.
In [12] an approach to estimate simultaneously kine-
matic state, geometry, and mass information of an
unknown target was proposed , however it relies on a
set of perfectly synchronized and cooperating 3D sen-
sors uniformly distributed around the target. A more
recent study, described in [13], proposes a feature-
based SLAM approach focusing only on the filtering
part and assuming already detected and tracked 3D
features. Moreover, the presented architecture, based
on the on-board acquisition of stereo-images, relies on
a relative dynamics linear model (between the chaser
and the target) which is only valid for circular orbits
and, in particular, does not include the estimation of
the unknown inertia matrix. An algorithm for real-
time pose estimation based on monocular vision-only
SLAM/SfM is presented in [14], where a Bayesian
filter is adopted for the relative rotational dynamics
with a simplified process model that assumes con-
stant rotational velocity. The inertia matrix of the
target is not estimated and the initial target pose is
assumed to be known. In [15], the RANSAC algo-
rithm is proposed in combination with an Extended
Kalman Filter (EKF)-SLAM filter, for segmenting
the resulting point cloud and reconstructing the tar-
get’s structure. Anyhow, the computing time for the
shape reconstruction of a few seconds does not allow
the use of the algorithm in real time. The iSAM (in-
cremental Smoothing and Mapping) method [16] is
proposed in [17] to estimate pose and inertia matrix
(up to a scale in absence of external torques) of a
spinning orbiting target, but only for offline imple-
mentations. The use of an Iterated EKF algorithm
is proposed in [18] to estimate the relative kinematic
state and the ratios of the inertia matrix components.
Finally in [19], an EKF-SLAM-based method for real-
time relative state estimation of uncooperative un-
known spinning targets using stereo vision is pro-
posed. Although the use of the Kalman filter and its
variations is popular among the SLAM and relative
navigation field, there are some prior works looking
into deriving a nonlinear observer for improved filter
stability and robustness with nonlinear dynamics and

measurement models [20, 21].

1.2 Research Objective

The goal of this study is to explore the main ap-
proaches for pose determination of uncooperative or-
biting targets. Looking for a versatile and flexible
solution which could be adopted in different mission
scenarios (from OOS to FF, ADR, and exploration of
asteroids), we first investigate a monocular pose esti-
mation approach that does not require any knowledge
of the target. For such a goal, the traditional EKF-
based SLAM (Simultaneous Localization and Map-
ping) architecture and algorithms (see [22, 23, 24, 25])
were modified to perform Simultaneous Estimation
of Pose and Shape, hereafter ”SEPS”. This method,
online, is suitable for real-time applications and valid
for any type of target, also completely unknown. In
addition, in the second part of the paper, we inves-
tigate an image-to-model approach that requires the
knowledge of a simplified geometric model of the tar-
get. This could be built before the mission if the
target’s geometry is known already. Alternatively,
if it is possible to safely orbit in proximity of the
target and acquire a number of images, enough tex-
tured and representative of its complete geometry,
the model could be reconstructed by processing those
images directly on board. The OpenSfM implemen-
tation is considered for this goal. A preliminary im-
plementation of both approaches validated with nu-
merical simulations is described in this paper for a
given chaser/target relative trajectory in GEO.

The paper is organized as follows. Following the
introduction, Section 2 details the architecture, the
image processing and the estimation steps derived
to perform SEPS. Section 3 presents the image-to-
model approach investigated as well as an on-board
offline 3D reconstruction method that makes use of
the Structure from Motion (SfM) implementation.
Section 5 reports preliminary simulated performance
of some of the described algorithms. Finally, in Sec-
tion 6, the conclusion is drawn.

2 Simultaneous Estimation of Pose and Shape
of an Unknown Target

The 3D reconstruction or mapping can be per-
formed simultaneously with the pose estimation.
This approach, typically adopted to locate a vehicle
with respect to an unknown stationary world, while
mapping it, is known as SLAM (Simultaneous Lo-
calization and Mapping). In case of pose determina-
tion of an orbiting target with respect to an orbiting
chaser (hosting the camera), the problem becomes
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Fig. 2: Monocular-vision-based pose determination of an unknown orbiting target.

more challenging since the target is not stationary
with respect to the world frame. In the following sec-
tions, we detail the architecture and implementation
of the SEPS filter for unknown targets.

2.1 Architecture

Figure 2 illustrates the architecture of the pro-
posed SEPS filter. Different functional blocks can be
identified.

Feature points are extracted from the images of
the target, acquired on board the chaser by a monoc-
ular camera system. For only one of the feature
points, also the depth measurement is provided for
example by a sinlge-segment LIDAR. The same depth
measurement is also used, with larger uncertainty,
as depth measurement of the other extracted feature
points. These are the observations of an EKF–based
system, adopted as a sequential estimator, suitable
for real time estimation, at relatively high rates. The
relative translational and rotational dynamics models
are used together with the absolute kinematic state of
the chaser (provided by its Attitude and Orbital De-
termination System (AODS) to predict the observed
feature points of the orbiting target. The observa-
tions of features already mapped and their predic-
tions are fused to provide a better estimate of the
relative pose between chaser and target, and at the

same time, to refine the current 3D reconstruction.
The observations of new features are initialized and
added into the 3D model and to the state vector. The
following sections characterize the image acquisition
and processing and the nonlinear filtering implemen-
tation.

2.2 Image Acquisition and Processing

At each time step, images are acquired sequen-
tially from an on-board monocular camera and con-
verted to grayscale if colored. For spacecraft applica-
tions images typically have high contrast, high resolu-
tion, and low signal-to-noise ratio, which presents the
separate challenge of processing them for meaningful
data.

With monocular images, image processing subsys-
tems may employ methods, such as image segmenta-
tion or feature detection, to break down an image into
information that can be analyzed and manipulated.
In feature detection methods, the most significant ge-
ometric features of the target object are extracted.
The most reliable features of the target visible in
space imagery are edges, corners, and blobs, which
can be detected more reliably than points, over large
distances between the chaser and the target, variable
illumination conditions, and degradation of objects
from prolonged space exposure [2, 26].
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A well-known edge and corner detection algorithm
is the Harris corner detector [27]. Several other fea-
ture detection algorithms are gradient-based tech-
niques, such as the Hough transform [28] and Canny
edge detector [29]. Applying these gradient-based
methods directly to real images may not be success-
ful since these methods are indiscriminate towards
background and foreground, so edges from other ob-
jects or areas of high frequency variation also may be
selected. Weak gradient elimination is introduced in
[30], as a technique that distinguishes the target from
the background so that a gradient-based method can
select the real edges of the spacecraft.

Computer vision techniques using features with
descriptors, such as SIFT [31], have also been intro-
duced in spacecraft applications. Both [2] and [26]
question SIFT’s viability for on-board computation,
noting heavy computational burden, ambiguity in
feature detection and matching against symmetrical
spacecraft, and conditions of high input image qual-
ity and low image noise for optimal performance. To
that end, there have been other feature descriptors,
such as SURF and ORB [32]), developed to lower
computational burden.

For this paper, synthetic images illustrated in
Fig. 3, were generated with the open source 3D suite
Blender [33] using an existing model of the Aura
spacecraft [34]. The camera was positioned at the
simulated chaser positions while the model was ro-
tated with the predetermined dynamics, according to
the relative trajectories defined in Section 4.1. As the
goal of this paper was not to propose new robust fea-
ture detection and tracking algorithms that are able
to deal with actual space imagery (characterized by
variable and unfavorable illumination conditions), a
parallel light source was used to simulate solar illu-
mination and the final images were rendered using
ray-tracing.

Fig. 3: Part of the synthetic images sequence generated
with the free and open source 3D creation suite Blender
[33] from the 3D model of the spacecraft [34].

In the block diagram shown in Fig. 2, observations
lead to feature selection and matching. At the very
first time step, there is only detection and initial-
ization of unmapped features. Thereafter, features
from an image can either be unmapped, or previ-
ously mapped and are used in the correction step of
the EKF. Detection of previously unmapped features
is implemented according to the following procedure
adapted from [35].

The 960× 540 sized image is partitioned into 100
subimages by defining a 10 × 10 cell grid, such that
each subimage corresponds to a grid cell. A grid cell
is randomly selected from the set of all unoccupied
grid cells (unoccupied meaning that no feature has
been detected from the subimage corresponding to
that cell). The subimage corresponding to the se-
lected grid cell is extracted from the original image.
Using the Harris algorithm [27], the strongest Harris
point is retrieved from the subimage. If the Harris
score satisfies a threshold value, then the 2D coordi-
nates of the point are stored as a measurement, and a
15×15 patch around the Harris point is stored as the
feature’s appearance. Feature matching is described
in Section 2.3 under the correction step.

Figure 6 shows an example of both newly detected
features and matched features after processing and
extracting Harris points from one of the synthetic
images. Extracted features are passed as inputs to
the filter.

2.3 Estimator Implementation

In our implementation, the state vector includes
relative states of the chaser with respect to the target,
positions of the features of the target, and the target’s
principal moments of inertia up to a scale:

x =
[
c>, s>,k>

]>
. (1)

Here, c is a vector of relative states of the chaser:

c =
[
(rTC/T )>, (vTC/T )>, q> (ωTC/T )>

]>
, (2)

where rTC/T and vTC/T are the relative position and ve-
locity vectors of the chaser with respect to the target
expressed in the target frame, q is a quaternion repre-
senting the relative attitude of the chaser with respect
to the target, and ωTC/T is the relative angular veloc-
ity of the chaser with respect to the target expressed
in the target frame. We used the subscripts C and T
to denote the chaser or target and the superscript T
to represent the target frame. Similarly, we will use
C and I to denote the chaser and the Earth-centered
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inertial (ECI) frames, respectively, hereafter. The di-
mension of c is 13.

Also, s =
[
ζ1, · · · , ζn

]>
is the target shape

state with n reconstructed features (or “landmarks”),
which includes the 3D coordinates of the recon-
structed target feature points, expressed in target
frame.

Finally, the vector k =
[
k1, k2

]>
includes two in-

ertia ratios of the target, used to parametrize its in-
ertia matrix, which also has to be estimated to prop-
agate the relative rotational dynamics. As proved in
[17], the inertia matrix is not fully observable if a
torque free motion is assumed and only two of three
degrees of freedom can be estimated. However, as
done also in [18], the following two components of
the inertia matrix, scaled with any scale factor, are
sufficient to propagate the rotational motion. We set

k1 = ln

(
Jx
Jy

)
and k2 = ln

(
Jy
Jz

)
. (3)

By adopting this parameterization, the normalized
target inertia matrix is

JT =

ek1 0 0
0 1 0
0 0 ek2

 . (4)

Therefore, when estimating the parametrized in-
ertia matrix, x is a 15 + 3n element vector. The
states are estimated by means of a nonlinear filter
(e.g., EKF) through the prediction and correction
processes, as well as the target’s features initializa-
tion process, where new features of the target are
detected and added to the current 3D reconstructed
model. The discrete time prediction and update steps
of an EKF can be expressed as follows [36]:

x̂−k = x̂+
k−1 +

∫ k

k−1
f(x, t)dt, (5)

P−k = Φk−1P
+
k−1Φ

>
k−1 +Qk−1, (6)

Kk = P−k H
>
k (HkP

−
k H

>
k +Rk)−1, (7)

x̂+
k = x̂−k +Kk(yk − h(x̂−k )) = x̂−k +Kkz

−
k , (8)

P+
k = (I −KkHk)P−k . (9)

Where

x̂−k is the a priori state estimate at a time
step k,

x̂+
k−1 is the a posteriori state estimate at

time step k − 1,

Φk−1 is the state transition matrix at a
time step k − 1,

P−k is the a priori estimate error covariance
at a time step k,

P+
k−1 is a posteriori estimate error covari-

ance at a time step k − 1,

Qk−1 is the discrete process noise covari-
ance a time step k − 1,

Rk is the discrete measurement noise co-
variance at a time step k,

Hk is the measurement matrix at a time
step k,

Kk is the Kalman gain at a time step k,

yk is the measurement vector at a time step
k,

z−k is the innovation measurement vector at
a time step k,

I is a unit matrix.

2.3.1 Prediction

The prediction step is performed by integrating
over time the relative dynamics between the chaser
and target. In general, a continuous-time system is
given as

ẋ = f(x,u,ws), (10)

where x is a vector of system states, f is a dynamics
model (nonlinear in general), u is a control signal, and
ws is the system noise vector, typically considered as
Gaussian with a certain covariance. In our case, we
assume u = 0 because there is no control involved.
The discrete time predicted state vector is given by
Eq. (5).

Among several relative translational and rota-
tional spacecraft dynamics models proposed in the
literature, we use the ones proposed in [37, 38] for
propagation of c. However, both formulations are de-
veloped in a chaser-centric manner, whereas in a typi-
cal SLAM framework, the estimation is done with re-
spect to the world frame where visual landmarks are
located, which, in our case, corresponds to the target
frame. For this reason, the dynamics in [38] are re-
derived from the target frame perspective. Also, we
note that the dot notation in Eq. (11) implies time
differentiation with respect to the target frame,

ẋ =
dx

dt

∣∣∣∣
T

=
d

dt

cs
k


|T

. (11)
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Note that ṡ = k̇ = 0. Therefore, we only need to
know ċ in order to propagate the relative dynamics.

The relative translational dynamics, when ex-
pressed in the chaser frame with respect to the chaser,
is independent of the relative attitude dynamics [38].
However, this is not true when the relative transla-
tional dynamics is expressed in the target frame with
respect to the target. This is because available in-
formation for the relative dynamics filter is absolute
states of the chaser given from its external absolute
navigation system and relative measurements of the
target seen from the chaser. Therefore, in order to
describe the relative dynamics in the target frame,
the knowledge of the chaser states and measurements
needs to be transformed into the target frame, which
requires the knowledge of the relative attitude dy-
namics. For this reason, we describe the relative ro-
tational dynamics first, and then present the relative
translational dynamics.

Let q = [qx, qy, qz, qw]> be a quaternion with
[qx, qy, qz]

> and qw being its vector and scalar compo-
nents, respectively, whose equivalent rotation matrix
transforms a vector in the chaser frame to the target
frame, hence denoted as RTC = R(q). Let ωCC and ωTT
denote angular velocities of the chaser and target, re-
spectively, as seen from the ECI frame and described
in their respective frames. The relative angular veloc-
ity is defined as ωTC/T = ωTC − ωTT = RTC ω

C
C − ωTT . In

our formulation, we assume ωCC is known from an ex-
ternal absolute navigation system of the chaser, but
ωTT is not known because the target is unknown. The
filter estimates q and ωTC/T , and ωTT is estimated from
these filtered states as

ωTT = RTC ω
C
C − ωTC/T . (12)

The quaternion kinematics is given as follows:

q̇ =
1

2
Q(q)ωTT/C , (13)

where ωTT/C = −ωTC/T and,

Q(q) =


−qw −qz qy
qz −qw −qx
−qy qx −qw
qx qy qz

 . (14)

In order to obtain the relative attitude dynamics
written in the target frame, consider the following
angular acceleration αTC/T :

αTC/T =

(
dωC/T

dt

∣∣∣∣
T

)T
= RTI

(
dωC/T

dt

∣∣∣∣
I

)I
− ωTT × ωTC/T ,

(15)

where the subscripts after vertical bars represent in
which reference frames differentiation is done. Notice
that(

dωC/T

dt

∣∣∣∣
I

)I
=

(
dωC
dt

∣∣∣∣
I

)I
−
(
dωT
dt

∣∣∣∣
I

)I
, (16)

RTI

(
dωT
dt

∣∣∣∣
I

)I
=

(
dωT
dt

∣∣∣∣
T

)T
= J−1T

(
mT − ωTT × JTωTT

)
, (17)

RTI

(
dωC
dt

∣∣∣∣
I

)I
= RTC

(
dωC
dt

∣∣∣∣
C

)C
= RTC

[
J−1C

(
mC − ωCC × JCωCC

)]
, (18)

where JC and JT are inertias of the chaser and target,
and mC and mT are external moments applied to
the chaser and target, respectively. By substituting
Eqs. (16), (17), and (18) into Eq. (15), we obtain the
following desired result:

αTC/T = RTC
[
J−1C

(
mC − ωCC × JCωCC

)]
− J−1T

(
mT − ωTT × JTωTT

)
− ωTT × ωTC/T , (19)

where Eq. (12) can be used to fully expand the ex-
pression.

Let us now consider the relative translational dy-
namics. Let rCC and rTT be positions of the chaser and
target with respect to the origin of the ECI frame
described in their respective frames. The relative po-
sition is defined as rTC/T = rTC − rTT = RTC r

C
C − rTT .

We assume rCC = [rC , 0, 0]> is given from an exter-
nal absolute navigation system of the chaser with

rC =
aC(1−e2C)
1+eC cos θC

, where aC is the semimajor axis,
eC is the eccentricity, and θC is the true anomaly of
the chaser. However, rTT is not known and it is es-
timated from the knowledge of rCC and estimations
of rTC/T and RTC . The relative velocity vTC/T in the
target frame is defined as

vTC/T =

(
drC/T

dt

∣∣∣∣
T

)T
=

(
drC/T

dt

∣∣∣∣
I

)T
−ωTT ×rTC/T

= RTCR
C
I

(
drC/T

dt

∣∣∣∣
I

)I
−(RTC ω

C
C−ωTC/T )×rTC/T ,

(20)

where we used Eq. (12) in the last equality. The
relative acceleration aTC/T in the target frame is com-
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puted as

aTC/T =

(
d2rC/T

dt2

∣∣∣∣
T

)T
=

(
d2rC/T

dt2

∣∣∣∣
I

)T
− 2ωTT × vTC/T

+

(
dωT
dt

∣∣∣∣
T

)T
× rTC/T + ωTT × (ωTT × rTC/T ).

(21)
Note that(

d2rC/T

dt2

∣∣∣∣
I

)T
=

(
d2rC
dt2

∣∣∣∣
I

)T
−
(
d2rT
dt2

∣∣∣∣
I

)T
,

(22)
and also that the absolute accelerations of the chaser
and target with respect to the ECI frame are(

d2rC
dt2

∣∣∣∣
I

)T
= − µ

r3C
RTC r

C
C , (23)

(
d2rT
dt2

∣∣∣∣
I

)T
= − µ

‖RTC rCC − rTC/T ‖3
(RTC r

C
C − rTC/T ).

(24)
By substituting Eqs. (22), (23), and (24) into
Eq. (21) and using Eq. (17), we obtain the desired
relative translational dynamics expressed in the tar-
get frame as

aTC/T = − µ

r3C
RTC r

C
C

+
µ

‖RTC rCC − rTC/T ‖3
(RTC r

C
C − rTC/T )

+ J−1T
(
mT − ωTT × JTωTT

)
× rTC/T

− 2ωTT × vTC/T + ωTT ×
(
ωTT × rTC/T

)
,

(25)

where Eq. (12) can be used to fully expand the ex-
pression. In this work, both mC and mT are zero.

To summarize, c propagates as follows:

ċ =
dc

dt

∣∣∣∣
T

=
d

dt


rTC/T
vTC/T
q

ωTC/T


|T

=


vTC/T
aTC/T

1
2Q(q)ωTT/C
αTC/T

 . (26)

2.3.2 Correction

The correction step includes the following sub-
steps. The implementation of the correction is modi-
fied from the methods proposed by Joan Solà in [35].

i. Selection of feature observations to correct

ii. Feature matching

iii. Nonlinear filtering execution

iv. Correction of feature parameters out of the filter

v. Feature re-parameterization and feature deletion
in case of corruption

Step i. In the filter structure, the feature observations
are processed in the EKF filter one by one. In order
to select the 3D feature points to correct, the ones
estimated previously have to be projected onto the
2D camera measurement space according to the pre-
dicted pose.

First, each feature point pT in the target frame is
expressed in chaser frame, by means of the predicted
pose from the previous pose estimate (RCT , r

T
T/C).

pC = RCT (pT − rTC/T ) (27)

Then, it is projected onto the image plane.
A perspective monocular camera associates points

in 3D space, pC =
[
xc yc zc

]>
, with points in the

2D image plane, P =
[
X Y

]>
, by means of the

projection process. As illustrated in Fig. 4, a simple
pin-hole camera model is adopted here, characterized
by an optical center, O, and optical axis, and an im-
age plane, perpendicular to the optical axis, situated
at a distance f from the optical center, named focal
length. The intersection of the optical axis in the
image plane is the principal point. We assume the
optical axis to be aligned with the local z axis, the
origin in the principal point and the other two axis.

The projection of the object point pC in the 3D
space corresponds to the intersection of the line OpC

with the image plane. The image point P is obtained
as follows:

X

f
=
xc
zc
,

Y

f
=
yc
zc

(28)

Therefore, the transformation from 3D space to
the 2D local coordinate frame of the camera is

P =

[
X
Y

]
=

[
xc
yc

]
· f
zc
, (29)

where zc is the depth of the object point.
The point P can be expressed in pixel units [pix]

instead of metric units [m], as follows:

u = u0 + suX, v = v0 + svY (30)

where
[
su sv

]>
are the horizontal and vertical pixel

density in [pix/m] and
[
u0 v0

]>
the pixel coordi-

nates of the principal point in [m]. Among all the
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Fig. 4: Pin-hole camera model.

Fig. 5: Projected point into the image plane in metric
and pixel units.

projected points, only the ones visible (i.e. in the
field of view of the camera) are considered.

The continuous time measurement model can be
written as

y = h(x) +wm (31)

where y is the noisy measurement, x is the state
vector, h(·) is a non-linear function, and wm is the
sensor’s noise, usually considered white Gaussian.
The sensor camera measurements can be expressed
in the chaser frame with a known rigid transforma-
tion (RCS , r

C
S/C), where S is used to denote the sensor

camera frame.
An observation yi is the measure of the i-th tar-

get feature in the camera frame. When actual images
are used, as described in Section 2.2, the features are
extracted from images of the target acquired by the
camera system and then are processed. Two com-
ponents of yi are the geometric parametrization of
the i-th feature in the camera measurement space, in
pixel (ui, vi). In our case, the monocular camera sys-
tem is a bearing only sensor and does not provide the
depth of the extracted feature point. In this study for
simplicity, we assume that the depth d is measured
by another sensor, e.g. a single-segment LIDAR sen-
sor. Assuming that the LIDAR frame coincides with

the camera frame, then yi also includes the depth of
the i-th feature as third component.

Once the positions of all previously mapped fea-
ture points are predicted in the camera frame, they
are sorted based on the expectation covariance ma-
trix (i.e. the uncertainty of the measurements), and
only the first N are selected.

Step ii. The selected 2D points in the image plane
(which are the selected predicted observed features)
are matched to the observed ones.

For feature detection and matching, a Harris-
based template matching approach is used. The pre-
dicted appearance of a visible landmark (or feature)
from time k − 1 is given as a 15 × 15 pixel patch
around the original 2D coordinates of that landmark
when first detected and initialized. This patch is slid
across a grey-scale image acquired by the monocular
camera at time step k, and a zero-normalized cross
correlation (ZNCC) score [39] is computed between
the two 15× 15 patches to quantify the similarity in
the subimages.

The patch in the new image yielding the highest
ZNCC score is considered the most optimistic poten-
tial match. If the ZNCC score exceeds a threshold
value, then a landmark at time k − 1 is successfully
matched to a feature in the image at time k, and the
pixel center coordinates of the best patch are stored.

Note that at each time step, a new image is pro-
cessed and extracted feature points are matched to
the predicted observed features of previously mapped
points. Points that are not matched are initialized as
new features. Figure 6 illustrates a set of points that
can be extracted from an image in one time step, ei-
ther by template matching or Harris point extraction.
Step iii. In this step, the innovation is computed, on

the basis of the difference between the new measure-
ment and the prediction.

At time k, the discrete-time innovation’s z−k and
innovation’s covariance matrix Z−k are the following:

z−k = yk − h(x̂−k ) (32)

Z−k = HkP
−
k H

>
k +Rk (33)

where the observation matrix (at time step k) Hk is
the Jacobian of the observation functions, given by
the equation

Hk =
∂h(x)

∂x

∣∣∣∣
x=x̂−k

(34)

Then, the Kalman gain can be calculated accord-
ing to Eq. (7), while the state vector and the covari-
ance matrix can be updated, respectively according
to Eqs. (8) and (9).
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Fig. 6: Multiple Harris points extracted from an image
(generated with the free and open source 3D creation
suite Blender [33]) of the 3D model of the Aura space-
craft [34]. Features matched to previously mapped fea-
tures are in red, and features previously unmapped and
newly initialized are in blue.

3D model of the 
target geometry

C

Image processing 
and feature 
extraction

2D-3D matching

3D points in target frame

2D points in image frame

2D-3D 
transformation

(PnP)

Pose 
estimate

Fig. 7: Monocular model-based pose determination of
known orbiting target.

Step iv. The EKF correction is performed, according
to Eqs. (5) and (6).

Step v. The feature points are corrected and
reparametrized. Then, they are deleted if either
the ratio between the matches or the inliers and the
searches is smaller than a threshold and if the number
of searches is higher than a threshold.

2.3.3 Initialization of New Features

Any extracted feature not yet part of the state
vector (of the current 3D reconstructed model) has
to be initialized and added in the state vector. This
operation results in an increase of the state vector’s
size from 15 + 3n to 15 + 3(n+ 1). For this goal, the
new feature points are re-projected onto the 3D cam-
era space, according to the last pose estimate, their
2D coordinates in the image plane and their depth
measurement or estimate. This is done by inverting
the observation function h(·) to compute pC . The

point pC in camera frame is transformed to the cor-
responding point in target frame ζ and then added
to the current 3D model s, part of the state vector.

3 Pose Estimation of a Known Target

If the target geometry is known, a detailed or sim-
plified model of it (e.g. see Fig. 8) can be built of-
fline and stored on board and model-based algorithms
can be used for pose estimation. In this case, as
illustrated in Fig. 7, adopting an “image-to-model”
approach and feature extraction and matching algo-
rithms, the pose can be estimated by matching the
geometrical natural features extracted from the ac-
quired images with the corresponding ones of the
model. Also in this case, several types of features
can be extracted, such as corners, curves, lines, de-
pending on the characteristics of the geometry and of
the acquired images. In pose acquisition (or initial-
ization) no information about the prior target pose
is available, while in pose tracking the pose is up-
dated based on the previous pose estimate and the
new acquired image. When using monocular cam-
era systems, feature-based algorithms can make use
of PnP (Perspective-n-Point) solvers.

Given a set of n 3D homogeneous points, πi =[
xi, yi, zi, 1

]>
with i = 1, 2, . . . , n in the tar-

get frame, their corresponding projected n 2D points

Πi =
[
ui, vi, 1

]>
in the camera image frame, and

the intrinsic camera parameters matrix K, solving
the PnP problem corresponds to computing the rota-
tion matrix from target frame to camera frame, RCT
and the translation vector from the origin of the tar-
get frame to the origin of the camera frame rCT/C , as
follows:

siΠi = K
[
RCT | rCT/C

]
πi, (35)

where si is a scale factor for the image point. The
camera matrix is

K =

fx γ u0
0 fy v0
0 0 1

 (36)

where fx and fy are the scaled focal lengths, γ is the
skew parameter, and u0 and v0 are the coordinates
of the principal point.

A comparative assessment of the most commonly
used PnP solvers is provided in [26] and [40]. In
this study, we adopt the PosIt PnP solver [41] for
both pose acquisition and pose tracking processes,
as it has lower computational burden than the accu-
rate Newton-Raphson Method, but it can deal bet-
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ter than the EPnP method with long distances along
the optical axis and pixel location noise [26]. PosIt
can estimate the pose between a set of at least four-
non-coplanar 3D points of the model and their cor-
responding 2D points in the image. It uses a Scaled
Orthographic Projection (SOP) to approximate the
true perspective projection for a first coarse pose es-
timation, then iteratively refined until convergence.
The SOP approximation linearizes Eq. (35) and pro-
vides a coarse RCT and rCT/C without the need of a
starting pose.

For the i-th correspondence, a scaled value si is
introduced and updated at the end of each iteration.
Initially the scaled value is set to 1 (si = 1). Scal-
ing each term of Eq. (35) by 1

rC
T/C

(3)
and initializing

with the SOP assumption si
rC
T/C

(3)
= 1, the first two

rows become a linear system of equations with eight
unknowns, which can be solved with n = 4. Then,

si
rC
T/C

(3)
can be computed from the estimated RCT and

rCT/C . The computation of RCT and rCT/C , given the
updated si, can be iterated until si is smaller than
a threshold or until a maximum number of iterations
has been reached.

Instead, to solve the correspondence problem (the
matching between the set of 3D points in the model
and the 2D points in the image frame), as proposed
in [42], we used the RANSAC algorithm [43] for pose
acquisition, and the Soft-Assign strategy [44] for pose
tracking (adopting the SoftPosit implementation of
[45]).

3.1 3D Model of Known Geometry

Fig. 8 illustrates a simplified geometrical model of
the target we used for model-based pose determina-
tion.

3.1.1 Model Built before the Mission

The model in Fig. 8 can be built before the mis-
sion (if possible) and stored on board the chaser.
Clearly, the more complex and rich of details is the
model, the higher the number of points that can be
matched (and potentially the achievable accuracy in
pose determination). However, the larger is the set
of 3D points, the higher is the computational burden
of the 2D to 3D matching process.

In particular, the model illustrated in Fig. 8,
was constructed by manually selecting representative
points of the AURA spacecraft 3D model [34], illus-
trated in Fig. 9. A more effective approach might be
building the model by using the same feature detec-
tor that will be used on board, in order to minimize

Fig. 8: Simplified geometrical model of the target space-
craft illustrated in Fig. 9.

and maximize respectively the number of outliers and
of inliers.

Fig. 9: A synthetic image of the Aura spacecraft, input
of the simulations carried out in Sec. 4, generated with
Blender [33], from the 3D model of the spacecraft [34].

Fig. 10: Reconstructed point cloud with OpenSfM using
150 images.
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3.1.2 Model Built On Board

With enough time and processing power, it is
possible to reconstruct the 3D model of the object
on board. Rather than doing frame-to-frame object
tracking, the camera can capture a set of discrete im-
ages and use offline processing. These algorithms are
usually exhaustive in searches for image correspon-
dences to minimize chances of failure and increase
accuracy. Time consuming nonlinear optimizations
are used in iterative reconstructions. To get a dense
3D model, costly matching algorithms are run on the
resulting relative camera positions.

A typical implementation of SfM starts by pro-
cessing and matching each pair of images to find key-
point correspondences, which are triangulated into
maps of 3D points. If the target is rotating rela-
tive to the chaser, it will generate images with large
relative view angles that allow for accurate point tri-
angulation. Once these correspondences are estab-
lished a bundle adjustment algorithm is run, taking
in the camera poses and 3D point locations as param-
eters to minimize the reprojected point errors. The
bundle adjustment is run iteratively, adding images
incrementally to the full reconstruction. After the
camera positions are recovered a template matching
algorithm such as ZNCC or NCC can then be run on
multiple views simultaneously to increase accuracy
and point density.

Note that the keypoint identification algorithm
used for live tracking may also be used with SfM. We
can then use the resulting map of tracked features
as a 3D model without needing to do a full dense
reconstruction.

Figure 10 shows the resulting point cloud from
running OpenSfM on the 150 images of the simulated
data. It took approximately 2 hours on an i7-3770K
CPU configured to run off of 8 threads using the HA-
HOG feature and descriptor combination. There are
some dense outliers, but overall the reconstruction is
accurate up to scale.

4 Simulated Performance

The approaches described in Sections 2 and 3 were
partially validated through numerical simulations.

4.1 Simulation Models and Assumptions

For both approaches we assumed the chaser and
target are orbiting in GEO (on the same orbit of Intel-
Sat [46]) with an initial separation of 15 m along the
boresight of the camera and an initial relative rota-
tion of 1 deg/s. The assumed camera intrinsic param-
eters are the following. f ·mx = f ·my = 300 where

f is the focal length and mx and my are the scale
factors relating image pixels to distance. The image
center is (480, 270) and the image size is (960, 540).

The SEPS approach was tested, following a coarse
tuning of the covariance matrices. As already high-
lighted in the previous sections, the image process-
ing strategy was validated using a sequence of im-
ages synthetically generated according to the prede-
termined relative trajectory.

4.2 Pose Estimation and 3D Reconstruction of an
Unknown Target

The following figures illustrate the target pose
(position and attitude) estimation error when adopt-
ing the SEPS approach described in Section 2, with
the assumptions of Section 4.1. In particular, Fig. 11
shows the norm of the relative 3D position estimation
error. Figure 12 displays the relative attitude esti-
mation error, as the angle describing the magnitude
of the rotation error in an axis angle representation.
Figures 13 and 14 show the norm of the relative 3D
velocity estimation error and the norm of the relative
3D angular velocity estimation error. All the filtered
state components converge. However, while the atti-
tude, velocity, and angular velocity estimations con-
verge to the true relative state, with an error smaller
than 1 deg, 0.3 m/s and 0.005 deg/s respectively, the
position estimation after convergence is affected by a
bias of approximately 2.5 m, due to the depth esti-
mation error.

4.3 Pose Estimation of a Known Target

Figures 15 and 16 display the pose estimation er-
ror (respectively the position and the attitude estima-
tion error) when adopting the model-based approach
described in Section 3, under the assumptions de-
scribed in Section 4.1. The knowledge of the target
geometry is an advantage in the process of pose esti-
mation, enabling the use of model-based algorithms,
without the need to also simultaneously perform 3D
reconstruction. Thanks to the knowledge of the ge-
ometry, both position and attitude are estimated with
higher accuracy than with the SEPS strategy.

5 Conclusion

In this paper, we investigated two main ap-
proaches for on-board pose estimation of uncooper-
ative orbiting targets: one general method suitable
also for unknown targets, which performs Simultane-
ous 3D Reconstruction and Pose Estimation (SEPS),
and a second one that can be adopted only when a
model of the target’s geometry is available on board.
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Fig. 11: Norm of the relative 3D position estimation er-
ror, with SEPS approach.

Fig. 12: Relative attitude estimation, with SEPS ap-
proach.

Fig. 13: Norm of the relative 3D velocity estimation er-
ror, with SEPS approach.

Fig. 14: Norm of the relative 3D angular velocity esti-
mation error, with SEPS approach.

Fig. 15: Norm of the relative 3D position estimation er-
ror, with model-based approach.

Fig. 16: Relative attitude estimation error, with model-
based approach.

For the first approach, a detailed description of
the architecture and implementation was provided,
as the proposed strategy aims at solving a more com-
plex and challenging problem still at a research stage
and (to the best of the authors’ knowledge) not yet
experimentally demonstrated. Indeed, the pose es-
timation of an unknown (and uncooperative) target,
also requires the simultaneous estimation of its iner-
tia matrix. Moreover, the level of complexity of the
architecture increases if the estimation process relies
on monocular instead of stereo images.

Then we described the second approach which in
our architecture adopts the well-known PosIt PnP
solver and the RANSAC and Soft Assign algorithms
for the 2D-3D feature matching. The possibility of
building a geometrical model of the target directly on
board from a batch of acquired images, rather than
before the mission, was also discussed. The described
approaches and algorithms were all tested by means
of numerical simulations, using the same dataset of
images, synthetically generated according to a realis-
tic chaser/target relative trajectory in GEO.

For future work, we plan to further investigate
the problem of feature extraction and tracking from
actual space images, characterized by low carrier-to-
noise ratios and high image contrast. Also, we will
fully validate the proposed SEPS method using a
spacecraft simulator testbed at Caltech.
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