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Abstract

Vision-based methods to determine the relative pose of an uncooperative orbiting object are investigated
in applications to spacecraft proximity operations, such as on-orbit servicing, spacecraft formation flying,
and small bodies exploration. Depending on whether the object is known or unknown, a shape model of the
orbiting target object may have to be constructed autonomously in real-time by making use of only optical
measurements. The Simultaneous Estimation of Pose and Shape (SEPS) algorithm that does not require a
priori knowledge of the pose and shape of the target is presented. This makes use of a novel measurement
equation and filter that can efficiently use optical flow information along with a star tracker to estimate the
target’s angular rotational and translational relative velocity as well as its center of gravity. Depending on
the mission constraints, SEPS can be augmented by a more accurate offline, on-board 3D reconstruction of
the target shape, which allows for the estimation of the pose as a known target. The use of Structure from
Motion (SfM) for this purpose is discussed. A model-based approach for pose estimation of known targets
is also presented. The architecture and implementation of both the proposed approaches are elucidated and
their performance metrics are evaluated through numerical simulations by using a dataset of images that are

synthetically generated according to a chaser/target relative motion in Geosynchronous Orbit (GEO).

Keywords: Vision-based Navigation, Space-

craft, Pose Determination, 3D Reconstruction

1 Introduction

Many of more than 22,000 known and catalogued
orbiting objects are uncooperative [1]. In addition,
there are also a significant number of other orbiting
objects whose geometric appearance is unknown. In
missions of On-Orbit Servicing (OOS), such as ma-
nipulation, relocation, active debris removal (ADR),
or simply observation of these objects, as well as in
missions of small body exploration, it is necessary to
operate in close proximity and perform relative nav-
igation maneuvers. Communication delays or sim-
ply poor coverage do not permit the use of ground-
based control commands. Hence, relative navigation
has to be performed autonomously, without control
from ground stations. The recent study [2] provides
a review of the state-of-the-art approaches and algo-
rithms specifically developed for on-board spacecraft
pose determination using electro-optical (EO) sensor
measurements. EO sensors include all devices that
are able to collect radiation in the optical spectrum
(0.01 pm to 1000 pm). For spacecraft pose deter-
mination, typically either passive monocular/stereo
camera or active LIDAR (Light Detection and Rang-

ing) systems are used.

Other prior works [3, 4, 5, 6, 7, 8] focus on Global
Navigation Satellites System (GNSS)-based or more
generally Radio Frequency (RF)-based relative nav-
igation, assuming that the orbiting target object is
equipped with a GNSS receiver and a communica-
tion link or respectively a RF transmitting and re-
ceiving antenna, which means it is actively coopera-
tive. The RF/GNSS-based approach can actually be
very convenient in Formation Flying (FF) missions,
where each spacecraft of the formation can interact
and exchange information with its neighbor [10, 11].
In FF missions or in any mission where the orbiting
target has been already conceived to be in proximity
of a chaser, a passively cooperative target equipped
with artificial markers (e.g., LEDs and CCRs) might
be preferred to an actively cooperative target. Arti-
ficial markers and a monocular camera could be used
in order to minimize the power consumption, mass,
and volume of an on-board navigation system or to
support deep-space missions where GNSS signals are
not available. In addition, in order to overcome in-
dividual limitations and to provide a more accurate
and robust navigation solution, GNSS/RF-based sys-
tems and Vision-based systems can be synergistically
integrated as proposed in our recent [9].
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Fig. 1: Vision-based pose determination steps.

When dealing with uncooperative targets instead,
such as space debris, asteroids, comets, or any other
objects originally not designed to cooperate with the
chaser, EO sensors are currently the main technology
for pose determination. A LIDAR measures the dis-
tance with the target by illuminating it with a laser
source and then processing the backscattered radia-
tion. Such information is used to build a cloud of 3D
points (i.e., to perform 3D reconstruction) of the tar-
get, allowing its pose estimation. Pose determination
using LIDARs instead of stereo/monocular cameras
is more robust to poor illumination conditions; how-
ever, LIDAR systems have higher hardware complex-
ity and power consumption. Also, stereo cameras can
provide 3D points of the target (2D coordinates in the
image frame as well as their distance from the target
through image rectification and disparity map com-
putation), in some conditions, denser than the ones
provided by a LIDAR. However, the ranging accuracy
achievable with stereo cameras is significantly limited
by the baseline between its two monocular cameras,
being acceptable only in close-proximity with the tar-
get, e.g. final approach and docking. For far and mid
range navigation monocular techniques can be used.

As shown in Fig. 1, following the process of im-
age acquisition performed by the on-board camera
system, the monocular-vision-based pose estimation
process includes mainly three steps [13]: (a) image
processing and feature extraction; (b) feature match-
ing; and (c) estimation of the pose, as transformation
between matched features.

In the image processing step, one or more input
images are computationally transformed into an en-
hanced image in order to extract some useful infor-
mation from it. For vision-based pose determination,
image processing is the foundation for the process of
feature extraction. The latter is needed to reduce the
amount of data in the images and extract the useful
information, the ‘features.’” Features can be scalars

or vector quantities. It is possible to extract region
features [25], line or curve features [12], and point
features [13]. In the context of pose determination,
correspondence or feature matching entails the prob-
lem of matching the features extracted in one image
of the target with corresponding features of another
image, or identifiable points in a model when avail-
able. A set of corresponding features can then be
used to determine the pose of the target with respect
to the camera and the host space vehicle.

In this paper, we focus on monocular-vision-based
pose determination of uncooperative orbiting objects
as a suitable approach for small satellites with low
mass, low volume, and low power consumption re-
quirements, orbiting and maneuvering in a wide range
of distances from the target. In particular, we con-
sider both the cases of unknown and known uncoop-
erative targets.

1.1 Related Work

Various monocular-vision-based approaches exist
in the literature, and key distinctions can be made
as to whether the target geometry is known or un-
known. Many studies can be found on model-based
spacecraft pose determination, which assume a target
to be uncooperative with known model parameters.
In Section 4 of [2], a complete review of the most re-
lated work is provided, in conjunction with proposed
approaches.

Fewer prior studies on vision-based pose deter-
mination of uncooperative unknown orbiting objects,
similar to the one here proposed in Section 2, exist in
the literature. In [14], an approach to simultaneously
estimate the kinematic state, geometry, and mass in-
formation of an unknown target was proposed. How-
ever it relies on a set of perfectly synchronized and
cooperating 3D sensors uniformly distributed around
the target. A more recent study [15] proposes a
feature-based SLAM (Simultaneous Localization and
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Mapping) approach focusing only on the filtering part
and assuming already detected and tracked 3D fea-
tures. Moreover, the presented architecture, based on
the on-board acquisition of stereo-images, relies on a
linear relative dynamics model (between the chaser
and the target) which is only valid for circular orbits
and, in particular, does not include the estimation of
the unknown inertia matrix. An algorithm for real-
time pose estimation based on monocular vision-only
SLAM or Structure from Motion (SfM) is presented
in [16], where a Bayesian filter is adopted for the rel-
ative rotational dynamics with a simplified process
model that assumes constant rotational velocity. The
inertia matrix of the target is not estimated and the
initial target pose is assumed to be known.

In [17], the RANSAC algorithm is proposed in
combination with an Extended Kalman Filter-SLAM
filter, for segmenting the resulting point cloud and
reconstructing the target’s structure. Anyhow, the
computing time for the shape reconstruction of a few
seconds does not allow the use of the algorithm in real
time. The iISAM (incremental Smoothing and Map-
ping) method [18] is proposed in [19] to estimate pose
and inertia matrix (up to a scale in absence of exter-
nal torques) of a spinning orbiting target, but only for
offline implementations. The use of an Iterated EKF
algorithm is proposed in [20] to estimate the relative
kinematic state and the ratios of the inertia matrix
components. Finally in [21], an EKF-SLAM-based
method for real-time relative state estimation of un-
cooperative unknown spinning targets using stereo vi-
sion is proposed. Although the use of the Kalman fil-
ter and its variations is popular among the SLAM
and relative navigation field, there are some prior
works looking into deriving a nonlinear observer for
improved filter stability and robustness with nonlin-
ear dynamics and measurement models [24, 25].

1.2 Contribution

This paper is an updated and extended version
of our previous work [22]. The objective is to ex-
plore the main approaches for pose determination of
uncooperative orbiting targets. Looking for a versa-
tile and flexible solution which could be adopted in
different mission scenarios (from OOS to FF, ADR,
and exploration of small bodies), we first investigate
a monocular pose estimation approach that does not
require any knowledge of the target.

For such a goal, the filter-based SLAM archi-
tectures and algorithms (see [26, 27, 28, 29]) were
modified to perform robust Simultaneous Estimation
of Pose and Shape, hereafter “SEPS.” This method

is suitable for real-time applications and for targets
completely unknown.

Being a monocular camera a bearing-only sensor,
it is generally not possible to measure the distance of
the extracted features and therefore recover the scale
of the reconstructed map. To solve this limitation,
in addition to monocular images, a single beam LI-
DAR measurement is also assumed. Unlike the other
techniques proposed in the literature, SEPS does not
propagate the attitude dynamics of the target but
only its kinematics, thereby estimating its angular
velocity from optical flow. As a consequence, the esti-
mation of the inertia matrix of the target is no longer
required, eliminating the risk of divergence due to the
additional uncertainty introduced in the estimation
process.

In addition, we derive a novel measurement equa-
tion and filter that can efficiently use optical flow in-
formation along with a star tracker to estimate the
target’s relative angular and translational velocity
vectors, and its center of gravity.

Pose and shape of the target may or may not be
estimated simultaneously; if it is possible to safely
orbit in proximity of the target and acquire a num-
ber of adequately textured images representative of
the target’s complete geometry, the shape could be
reconstructed from scratch or refined after SEPS by
processing those images offline directly on board. A
SfM implementation is considered for this goal. Once
the shape of the target has been constructed, the pose
can be estimated with a model-based approach. Such
an approach is adopted for the pose estimation of a
known target as it requires the knowledge of a sim-
plified model of its geometry.

Both approaches were implemented and tested
with numerical simulations using the same dataset of
images in input, synthetically generated for a given
chaser /target relative trajectory in GEO and a given
target spacecraft.

The paper is organized as follows. Following the
introduction, Section 2 elucidates the architecture,
the image processing, and the estimation steps de-
rived to perform pose estimation of an unknown tar-
get. Section 3 presents the image-to-model approach
investigated for pose estimation of known targets.
Section 4 reports the simulated performance of the
described algorithms. Section 5 discusses the use of
the described pose determination methods in differ-
ent phases of a rendezvous mission. Finally, in Sec-
tion 6, the conclusion is given.
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Fig. 2: Monocular-vision-based pose determination of an unknown orbiting target.

2 Pose and Shape Estimation of an Unknown
Target

2.1 Simultaneous Estimation of Pose and Shape of
an Unknown Target

The 3D reconstruction or mapping can be per-
formed simultaneously with the pose estimation.
This approach, typically adopted to locate a vehicle
with respect to an unknown stationary world, while
mapping it, is known as Simultaneous Localization
and Mapping (SLAM). In case of pose determina-
tion of an orbiting target with respect to an orbiting
chaser (hosting the camera), the problem becomes
more challenging since the target is not stationary
with respect to the world frame. In the following sec-
tions, we detail an architecture and implementation
of the SEPS filter for unknown targets, developed for
this study.

2.1.1 Architecture

Figure 2 illustrates the architecture of the SEPS
filter. Different functional blocks can be identified.
Feature points are extracted from the images of the
target, acquired on board the chaser by a monocular
camera system, as 2D coordinates in pixels. These
serve as the observations in the correction step of
our nonlinear SEPS filter, adopted as a sequential
estimator, suitable for real time estimation, at rel-
atively high rates. Although the architecture relies
mainly on a monocular camera, the use of an addi-
tional low power single-segment LIDAR is assumed

at each time step to determine the distance of one
of the feature points, tracked over consecutive im-
ages. This depth measurement is then used to re-
cover the scale of the reconstructed map. The same
depth measurement is also used, with a larger un-
certainty, as initial depth guess (prior) of the new
extracted feature points, which are not part of the
reconstructed map. The relative translational and
rotational motion models are used together with the
absolute kinematic state of the chaser provided by its
Attitude and Orbital Determination System (AODS)
to predict the observed feature points of the orbiting
target. The observations of features already mapped
and their predictions are fused to provide a better
estimate of the relative pose between chaser and tar-
get, and at the same time, to refine the current 3D
reconstruction. The observations of new features are
initialized and added into the 3D model and to the
state vector. The following sections characterize the
image acquisition and processing and the nonlinear
filtering implementation.

2.1.2 Image Acquisition and Processing

For this paper, synthetic images, shown in Fig. 3,
were generated with the open source 3D suite
Blender [43] using an existing model of the Aura
spacecraft [44], according to the relative trajectories
defined in Section 4.1. Since the main goal of this
study is to investigate different pose estimation ap-
proaches (given a number of detected and matched
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features), in order to simplify the problem of feature
detection, a single parallel light source was used to
simulate only the solar illumination. The final im-
ages were rendered using ray-tracing.

At each time step, images are acquired sequen-
tially and converted to grayscale. In the block dia-
gram shown in Fig. 2, observations lead to feature
detection and matching. The image processing sub-
system has to break down the images into informa-
tion that can be analyzed and manipulated. In fea-
ture detection methods, the most significant geomet-
ric features of the target object are extracted. For
simplicity, in the present paper, we adopt the well-
known algorithm Harris corner detector [36]. Figure 4
shows an example of both newly detected features
and matched features after processing and extract-
ing Harris points from one of the synthetic images.
Extracted features are passed as inputs to the filter.

It is important to note that actual spacecraft im-
ages can have high contrasts, low resolution, and low
signal-to-noise ratio, which presents a separate chal-
lenge of processing them for meaningful data. In that
case, using the simple Harris corner detector may not
be effective.

Instead of a corner detector or in addition to it,
other image processing algorithms can be used for
an effective feature extraction. Some of these are
gradient-based for example, such as the Hough trans-
form [37] and Canny edge detector [38].

Computer vision techniques using features with
descriptors, such as SIFT [40], have also been in-
troduced in spacecraft applications. The existing
work [2, 35] questions the viability of SIFT for on-
board computation, noting its heavy computational
burden, ambiguity in feature detection and match-
ing against symmetric spacecraft, requirements of
high input image quality and low image noise for op-
timal performance. Hence, there have been other
feature descriptors, such as SURF, AKAZE, and
ORB [41, 42] developed to lower the computational
burden.

However, in general, applying only one of these
methods directly to real images may not be successful
since these methods are indiscriminate towards back-
ground and foreground. As suggested in our prior
work [59], a combination of different methods should
be used.

In [59], we proposed a new robust feature detec-
tion algorithm able to deal with actual space imagery,
characterized by variable and unfavorable illumina-
tion conditions. The proposed strategy is based on a
gradient based filter for background elimination, on

Fig. 3: Part of the synthetic image sequence generated
with the open source 3D creation suite Blender [43]
from the 3D model of the Aura spacecraft [44].

Fig. 4: Multiple Harris points extracted from an image.

the use of three multiple processing streams and on
the synthesis of polylines to reduce the number of
outliers.

2.1.3 Estimator Implementation

In our implementation, the state vector x includes
relative position, relative velocity, and relative atti-
tude of the chaser with respect to the target as well
as 3D positions of the extracted features of the tar-
get. Unlike in the state-of-the-art approaches, here
all components of the state are expressed in the tar-
get frame. In addition (also in contrast to the im-
plementation described in our previous work [22]),
in the proposed formulation, we do not estimate the
relative angular velocity between chaser and target
as part of the filter state, but instead we determine
it from optical flow [23], as explained in Section 2.2.
The advantage, with respect to the state-of-the-art, is
that in this case there is no need to estimate the tar-
get’s principal moments of inertia (parametrized and
up to a scale [19]), whose uncertainty significantly af-
fects the robustness of the filter estimate. Another
benefit of this approach is that the size of the fil-
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ter state is smaller with a consequent reduction in
computational burden. Therefore, the state vector is
defined as follows.
x = [c—r,s—'—]—r . (1)
Here, ¢ is a vector of relative states of the chaser with
respect to the target:
T

e= L) 0L @] @
where rg T and vg /7 are respectively the relative po-
sition and velocity vectors of the chaser with respect
to the target expressed in the target frame.

In general, we will use the following rule for the
notation of vectors and frames throughout the work:
vf{ /B Tepresents a vector describing a physical quan-
tity v of the frame A measured with respect to the
frame B and expressed in the frame C.

In Eq. (2), we used the subscripts C and T to
denote the chaser or target and the superscript T to
represent the target frame. Similarly, we will use I
to denote the Earth-centered inertial (ECI) frame.

qg is a quaternion representing a frame rotation
from the target to the chaser; equivalently, the ro-
tation matrix RL, = R(ql) associated with this
quaternion acts as a vector coordinate transforma-
tion from the chaser frame to the target frame, e.g.,
vl = Rgvc. With the latter interpretation in mind,
the subscript and superscript of quaternions and ro-
tation matrices will represent where the vector is ro-
tated from and where it is rotated to, respectively,
throughout the work.

The dimension of ¢ is 10. In our previous imple-
mentation described in [22], ¢ also included w}, /7> the
relative angular velocity of the chaser with respect to
the target, and two inertia ratios of the target used
to parameterize its inertia matrix (only observable up
to a scale in case of torque free motion).

The vector s = [Cl, ceey Cn] T is the target shape
state with n reconstructed features (or “landmarks”),
which includes the 3D coordinates of the recon-
structed target feature points, expressed in the target
frame.

Therefore, when not estimating the relative an-
gular velocity wg /T and the parameterized inertia
matrix,  is a 10 + 3n element vector instead of a
15 4+ 3n. The states are estimated by means of a
nonlinear filter through the prediction and correction
processes, as well as the target’s features initialization
process, where new features of the target are detected
and added to the current 3D reconstructed model. In
this paper, we use the well-known Extended Kalman

Filter (EKF), however any nonlinear filter might be
used.
Suppose we have a continuous-time system

= f(w,u,ws),

where x is a system state vector defined in Eq. (1),
f is a dynamics model (nonlinear in general), u is
a control signal, and w; is the system noise vector,
typically considered as Gaussian with a certain co-
variance. In our case, we assume u = 0 because
there is no control involved.

The discrete time prediction and update steps of
an EKF can be expressed as follows:

&, =&+ k f(x, t)dt, (3)
k—1

Py =%, P/, ®] | +Qi 1, (4)

K, = P, H/ (H,P_ H/ + R;)"", (5)

& =& + Ki(ye — h(&)) = & + Kiz, (6)

P = - K,H;)P, . (7)

where subscript & indicates the k-th time step. Also,
superscripts 4+ and — respectively denote a priori and
a posteriori estimates or error covariance matrices.
The Py, Qi, Ry, ®i, and Hy matrices denote the
estimate, process noise, and sensor noise convariance
matrices, the state transition matrix, and the mea-
surement matrix, respectively. Finally, K} is the
Kalman gain while y, is the measurement vector and
z,, is the innovation measurement vector.

2.1.4 Initialization

At the very first time step, there is only detection
of unmapped features. The filter has to be initialized
with a certain pose, as well as with the coordinates
of the first extracted features and of the center of
gravity (CG) of the target to be used as the origin of
the target frame.

By extracting and tracking at least 5 feature
points between subsequent frames, we determine
their relative pose by solving a 2D to 2D matching
problem, as well as their 3D coordinates up to a scale.
A detailed description and formulation of this initial-
ization approach is provided in the previous study of
some of the authors [33], where the 5-point Stewenius
algorithm [34] is used with random sample consensus
(RANSAC) to determine inliers, followed by least-
square optimization, and use of star tracker data to
determine the relative positions in the ECI frame.
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If the target has a principal axis rotation, only
one axis will be determined and the filter can be ini-
tialized with the CG of the target anywhere on that
axis. In case the target has a non-principal axis ro-
tation, then a different axis can be determined in a
subsequent frame and intersected with the first so-
lution to determine the CG. The initialized CG can
be then corrected with the filter described in Section
2.2.2.

It is important to observe that in case of high ro-
tational dynamics of the target, the image acquisition
rate must be high enough to match at least 5 distinct
features in two consecutive images. Depending on
the on-board computational resources, the minimum
time between two consecutive images with at least 5
common landmarks might be too short for perform-
ing on board feature extraction and matching. As a
consequence, for a successful initialization, it is fun-
damental to maximize the on-board computational
resources and minimize the computational load.

2.1.5 Prediction Step

The prediction step is performed by integrating
over time the relative dynamics between the chaser
and target as in Eq. (3). Note that the dot notation in
this section implies time differentiation with respect
to the target frame,

%’T =4 E] , (8)where the subscript T'
after vertical bars reprTesent the reference frame in
which differentiation is done. Note that § = 0
because the landmarks are stationary in the target
frame. Therefore, we only need to know ¢ in order to
propagate the relative dynamics.

Among several relative translational and rota-
tional spacecraft dynamics models proposed in the
literature, our model is based on the ones proposed
in [46, 47| for propagation of e. In [47], relative dy-
namics between a leader and follower were developed,
and the propagation of translational dynamics re-
quired the knowledge of several orbital parameters
of the leader, which is not available from an uncoop-
erative target. Hence, we chose the chaser to serve
as the leader and the target as the follower and as-
sumed the required orbital parameters of the leader
(or chaser) is provided by an external absolute navi-
gation system of the chaser.

In a typical SLAM framework, the estimation is
done with respect to the world frame where visual
landmarks are located, which, in our case, corre-
sponds to the target frame. On the other hand, the

states propagated in the derived equations of [47] are
all expressed in the leader frame, which is the chaser
frame in our case, hence they are not directly applica-
ble to our formulation. For this reason, we re-derive
the relative dynamics equations from the follower-
centric perspective, which corresponds to the target-
centric perspective in our case, such that they can be
used in the prediction step of the EKF.

The relative translational dynamics, when ex-
pressed in the chaser frame with respect to the chaser,
is independent of the relative attitude dynamics [47].
However, this is not true when the relative transla-
tional dynamics is expressed in the target frame with
respect to the target. This is because available in-
formation for the relative dynamics filter is absolute
states of the chaser given from its external absolute
navigation system and relative measurements of the
target seen from the chaser. Therefore, in order to
describe the relative dynamics in the target frame,
the knowledge of the chaser states and measurements
needs to be transformed into the target frame, which
requires the knowledge of the relative attitude dy-
namics. For this reason, we describe the relative ro-
tational dynamics first, and then present the relative
translational dynamics.

Let ¢& = [gx,4y,q>,qw]’ denote a quaternion
vector with [g.,qy,¢.]" and g, being its vector and
scalar components, respectively, whose equivalent ro-
tation matrix transforms a vector in the chaser frame
to the target frame, hence denoted as RL = R(ql).

In our formulation, we assume wg o is determined
from optical flow as described in Section 2.2.3. Then
the filter estimates g& by making use of the quater-
nion kinematics, given as follows:

9)

. 1
qE = iﬂ(w%/c)qg,

where ""%1/0 = fwg/T and
0 W, —Wy —Wy
| ~wy 0 Wy  —Wy o
Qw) = oy —we 0 (10)for w =
Wy Wy Wy 0

o w0y .|

Let us now consider the relative translational dy-
namics. Let rg ; and r% ; be positions of the chaser
and target with respect to the origin of the ECI frame
described in their respective frames.

The  relative  position is  defined as
T  _ T T _ pT,C T
TC/T—TC/I*TT/I—RCTC/I*TT/I' We as-
sume rg/I = [rc,0,0]T is given from an external
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absolute navigation system of the chaser with
ro = % where ac is the semimajor axis, ec
is the eccentricity, and f¢ is the true anomaly of the
chaser. However, r% /1 of an uncooperative target is
not known and it is estimated from the knowledge of

76, and estimations of v/, and RE. The relative
velocity vg T in the target frame is defined as

)T _ ( droyr
T dt
T, ,C T T
) —(Rowc ) —we r)Xror,
I
(11)
where the angular velocity of the uncooperative tar-
get can be estimated by w%/] = nggﬂ — wg/T. In
the above, (27| 4)? refers to a time differentiation of
7 with respect to the frame A, whose components are

expressed in the frame B. The relative acceleration
ag /T in the target frame is computed as

T . dT'C/T
UC/T - dt

dr
_ pT pC c/T
= R-R; ( 7

Pre r d?r
T _ /T _ /T T T
ac/T—( a2 T) —( a2 1) _2wT/I><'UC/T.
dwr)1
—( dt/ > x Tg/T - w%/] X (wg/l X Tg/T)-
T
(12)
Note that
T T T
dQTC/T - dQ’I“C/I B dQ’I“T/[
a2 |,) \ dt? |, ez |,)
(13)

and also that the absolute accelerations of the chaser
and target with respect to the ECI frame are

d2’l"C/[ T . R
( 72 1) = CT'C/Ia (14)
(der/z )T _ RCTC/I Ly (15)
de* |, ||RC""C/1 Tg’/T”S.

By substituting Eqgs. (13)—(15) into Eq. (12), we
obtain the desired relative translational dynamics ex-
pressed in the target frame as

T,.C _.T
RCTC/I Tcyr

||Rc7°0/1

T B o1 C
ac/r =— g Roretn T
¢ Tor

T
T
) XTor
T

(16)

dwTI
f2w%/l X v(T;/T — < dt/

- “-’%/I X (w%:/l X Tg/T) :

T T
) W XToyr
I

In the above, all of the quantities to compute
ag o are available either from the filter states or
the absolute navigation system of the chaser except

(dwT/1| ) that can be computed by numerically

differentiating wg: Nz
To summarize, ¢ propagates as follows:

T
de d ros Ve
_ = el = al (17
dt |, %T 1 %/T )
2§ ""T/c

2.1.6 Correction Step

The correction step includes the following sub-
steps. The implementation of the correction is modi-
fied from the methods proposed by Joan Sola in [45].

i. Selection of predicted feature observations to
correct

ii. Feature matching with observations
iii. EKF state and covariance correction

iv. Feature deletion in case of corruption

Step i. In the filter structure, the feature observa-
tions are processed in the EKF one by one. In order
to select the 3D feature points to correct, the ones
estimated previously have to be projected onto the
2D camera measurement space according to the pre-
dicted pose.

First, each feature point p” in the target frame is
expressed in chaser frame, by means of the predicted
pose from the previous pose estimate (RS, r% /C).

=R7(p" - Tg/T) (18)
Then, it is projected onto the image plane.

A perspective monocular camera associates points
in 3D space, p© = [z. e ZC]T, with points in the
2D image plane, P(p®) = [X Y] " by means of the
projection process. As illustrated in Fig. 5, a simple
pin-hole camera model is adopted here, characterized
by an optical center, O, and optical axis, and an im-
age plane, perpendicular to the optical axis, situated
at a distance f (focal length) from the optical cen-
ter. The intersection of the optical axis in the image
plane is the principal point. We assume the optical
axis to be aligned with the local z axis, the origin in
the principal point and the other two axis.

The projection of the object point p© in the 3D
space corresponds to the intersection of the line Op®
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Fig. 5:  Pin-hole camera model.
u [pix]
y = (. [v]) X [m]
volpin] Y Iml

Fig. 6: Projection of points onto the image plane in met-
ric and pixel units.

with the image plane. The image point P is obtained
as follows:
X _ %

Y
T I _¥ (19)
f Ze f Ze
Therefore, the transformation from 3D space to
the 2D local coordinate frame of the camera is

PeS) = |3 =[] L o

yC Z(;
where z. is the depth of the object point.
The point P(p®) can be expressed in pixel units
[pix] instead of metric units [m], as follows:

u=1uy+ s,X, v=1g+8,Y (21)

where [su sv] T are the horizontal and vertical pixel
density in [pix/m] and [ug UQ]T are the pixel coor-
dinates of the principal point in [m] (Fig. 6). Among
all the projected points, only the visible ones (i.e. in
the field of view of the camera) are considered.

Once the positions of all previously mapped fea-
ture points are predicted in the camera frame, they
are sorted based on the determinant of expectation
covariance matrix (proportional to the uncertainty of
the measurements), and only the first IV are selected.

Step ii. The selected 2D points in the image plane
(which are the selected predicted observed features)
are matched to the observed ones.

The continuous time measurement model can be

written as

y = h(z) +wy, (22)
where y is the noisy measurement, x is the state
vector, h(-) is a nonlinear function, and w,, is the
sensor’s noise, usually considered white Gaussian.
The sensor camera measurements can be expressed
in the chaser frame with a known rigid transforma-
tion (R§,7§,.), where S is used to denote the sensor
camera frame.

An observation y; is the measurement of the i-
th target feature in the camera frame. The features
are extracted from images of the target acquired by
the camera system and then are processed. The com-
ponents of y; are the geometric parameterization of
the i-th feature in the camera measurement space, in
pixel (u;, v;).

For feature detection and matching, a Harris-
based template matching approach is used. The pre-
dicted appearance of a visible landmark (or feature)
from time k£ — 1 is given as a 15 x 15 pixel patch
around the original 2D coordinates of that landmark
when first detected and initialized. This patch is slid
across a grey-scale image acquired by the monocular
camera at time step k, and a zero-normalized cross
correlation (ZNCC) score [48] is computed between
the two 15 x 15 patches to quantify the similarity in
the subimages.

The patch in the new image yielding the highest
ZNCC score is considered the most optimistic poten-
tial match. If the ZNCC score exceeds a threshold
value, then a landmark at time k& — 1 is successfully
matched to a feature in the image at time k, and the
pixel center coordinates of the best patch are stored.

Note that at each time step, a new image is pro-
cessed and extracted feature points are matched to
the predicted observed features of previously mapped
points. Points that are not matched are initialized
as new features. Figure 4 illustrates a set of ex-
tracted points and a set of matched points.. Features
matched to previously mapped features are in red,
and features previously unmapped and newly initial-
ized are in blue.

Step iii. In this step, the innovation is computed, on
the basis of the difference between the new measure-
ment and the prediction.

At time k, the discrete-time innovation z, and
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innovation covariance matrix Z, are the following:

(23)
(24)

z, = yr — h(Z;)

Z, = H,P_ H! + R,
where the observation matrix (at time step k) Hj, is
the Jacobian of the observation functions:

oh
4, Ohl)
ox —a;

x

(25)

Then, the Kalman gain can be calculated accord-
ing to Eq. (5), while the state vector and the covari-
ance matrix can be corrected, respectively according
to Egs. (6) and (7).

Step iv. The feature points are deleted if either the
ratio between the matches or the inliers and the
searches is smaller than a threshold and if the number
of searches is higher than a threshold.

2.1.7 Initialization of New Features

Features detected in an image can either be un-
mapped, or previously mapped and are used in the
correction step of the filter. Detection of previously
unmapped features was implemented according to the
following procedure adapted from [45]. The 960 x 540
sized image is partitioned into smaller subimages of
100 pixels by defining a 10 x 10 cell grid, such that
each subimage corresponds to a grid cell. A grid cell
is randomly selected from the set of all unoccupied
grid cells (unoccupied meaning that from the subim-
age corresponding to that cell no feature has been
matched to the predicted features). The subimage
corresponding to the selected grid cell is extracted
from the original image. Using the Harris algo-
rithm [36], the strongest Harris point is retrieved from
the subimage. If the Harris score satisfies a thresh-
old value, then the 2D coordinates of the point are
stored as a measurement, and a 15 x 15 patch around
the Harris point is stored as the feature’s appearance.
Feature matching is described in Section 2.1.6 under
Step ii.

Any extracted feature not yet part of the state
vector of the current 3D reconstructed model has to
be initialized and added in the state vector. This
operation results in an increase of the state vector’s
size from 10 + 3n to 10 4+ 3(n + 1).

For this goal, the new feature points are re-
projected onto the 3D camera space, according to the
last pose estimate, their 2D coordinates on the im-
age plane and an initial guess in depth used as prior
provided by the single beam LIDAR depth measure-
ment. The re-projection onto the 3D space is done

by inverting the observation function h(-) to compute
p©. The point p© in camera frame is transformed to
the corresponding point in target frame p” and then
added to the current 3D shape s, part of the state
vector, with higher covariance.

2.1.8 Scale Recovery

At each time step a single beam LIDAR, provide
one depth measurement. As long as relative position
of the LIDAR and camera is calibrated, the depth
provided can be used to determine where on the im-
age the measured feature was. This can then be
added as a custom feature, with a good depth mea-
surement, to be tracked frame-to-frame over time.
These custom features are enough to recover the scale
of the constructed map since their relative 3D posi-
tion covariance is much lower.

2.2 Estimation of Angular Velocity and Center of
Gravity

For a 3D landmark moving in the world, the op-
tical flow provides the corresponding pixel velocity
vector in the image. By using the velocity vectors of
the target’s rigid body points, it is possible to obtain
measurements of the relative rotational and trans-
lational velocities of the camera and target in the
camera frame. In this section we present novel mea-
surement equations and filter that can efficiently use
flow information along with a star tracker to estimate
the target’s rotation, relative velocity, and CG.

2.2.1 Measurements from Optical Flow

Previous implementations that use optical flow to
measure linear and rotational velocities combine all
relative motion between the target and camera into a
single measurement that assumes either a fixed cam-
era or fixed world [13]. In this implementation, we
break up the measurement into different inertial com-
ponents that allow us to separate out the camera’s
own motion from the target’s rotation and relative
velocity.

Consider a camera on board the chaser moving
relative to the target in the ECI frame with ve-

locity vé /T and the target rotating at a rate of

w% /1 If the chaser is controlled by reaction wheels

it will not have perfect pointing accuracy, and so
have some drift in the attitude between subsequent
frames. This will cause some movement in the im-
age and so the flow measurements will have a bias.
We assume that at time ¢ the attitude of the cam-
era, as measured by the star tracker, is RL(t). Then
the instantaneous rotational velocity of the chaser
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camera in ECI at ¢ = 0 can be either be approxi-
mated from two successive attitude measurements by
wg it = log(RY (t)RE(0)), where log is the standard
SO(3) logarithm, or by a combination of a gyroscope
(w§ /1) and attitude measurement such as from a star

tracker via wé /= Réwg Nz This gives the approxi-

I
mation RY () = e“c/1" RS (0).
Then a point on the target p’ can be measured
in the normalized image coordinates as

el

= P(RG(p" —v&0)(t)
= P(RY (RLp" — TIC/T))(t)

(26)
Taking the derivative and evaluating at t = 0 gives

0

_OP(°)
=
R?(wé/l x Rpp" — 'Ué‘/T))

(w&yr % (RY(REp™ —vlyp)+ 27

(wéyr % (RY(REP™ — vl )+

pC
Rlc(wé“/l x Rpp" — vé/T))(O)
dP(p©) I c., C c
= w X +w X
ap pc( c/1 X P T/1 X P

c c c
—wry X e —veyr))(0)

(28)

So the flow of p© is determined by the rotation of
the camera (w} / ;), the inertial rotation of the target
in the camera frame (w$ /1), the position of the cen-
ter of mass of the target in the camera frame (rg/c),
and the relative velocity in the camera frame (v§ /T).
Since w/, /1 18 known, we have a linear equation with
the 6 unknowns being wqq /1 and the combined quan-
tity RG(w,; X T80 +0E p) = Wi X750+ 067
As long as there is no degeneracy, 3 points will give
us 6 equations, allowing us measurements of these
unknowns. As long as there are dynamics in the ro-
tation, the varying w:IF /1 will make r} Ve observable
after multiple measurements over time. Otherwise

the CG is observable up to its position along a fixed
rotation axis.

2.2.2 Estimation of Center of Gravity

The CG and translational velocity of the target
in the ECI frame are estimated with a second filter,
independent from the main one described in Section

2.2. This filter relying on the measured optical flow
is characterized by the following state vector & and
measurement vector y.

€ = {(Tg/C)T7 (U%c)T}T

y= {w%, X r%c + Ug/T]

(29)
(30)

In our implementation, an EKF with the same formu-
lation described in Section 2.1.3 was adopted, using
the linear model proposed in [49] for the translational
dynamics required to propagate the state. The state
is initialized by using the translational velocity ob-
served from optical flow and the CG location as de-
scribed in Section 2.1.4. Fig. 7 shows the architecture
of the filter.

Initial guess

Initial State

Chaser AODS

Absolute kinematic state of chaser

r—— - = — — — =

Correction [«

Relative translational
dynamics

| ]

(Prediction

|

|

|

|

|

Motion prediction Update state vector and |
covariance |

]

CG and translational velocity
estimates

Observations

c c c
w5y XTrc+ Ve

Image processing

Optical Flow

Observations

Fig. 7: Filter architecture for estimation of CG (and rel-
ative velocity).

2.2.3 Integrating with SEPS

After filtering, we can compute the rotation re-
quired in Eq. (9) as well as the CG location of the tar-
get with respect to the camera in the target frame as

T RC(,.,I I y_,.,T T,.C  _ T
RGR] (weyp = wry) = woyr and Rery o = 776
respectively.

Therefore, the rotation rate wg /T estimated from
optical flow can be used to propagate the attitude
in the SEPS filter of Section 2.1.3 (see the output
of optical flow in Fig. 2). In addition, considering
that rg/T = —r%/c, the target CG location "“%/c
(and velocity vX /C) estimated from optical flow can
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be used to correct the CG of the target in the SEPS
filter (see the dashed connection line in Fig. 2) .

Note that without using the filter of 2.2.2 (“CG
EKF” in Fig. 2), in the SEPS filter, the CG does
not necessarily correspond to the origin of the target
frame where the feature points s = [Cl, ceey Cn]T
are defined. Indeed, when initializing the SEPS filter
as described in Section 2.1.4, the CG location could
be not observable or estimated with a large error due
to a slow rotation rate. This can be corrected with
the CG location estimate of the second independent
filter of Section 2.2.2. Since the feature points in the
SEPS filter are expressed in the target frame, when
updating the CG location in the camera frame their
positions do not need to be adjusted, which otherwise
could introduce instability.

Another advantage of having a separate and inde-
pendent estimation of the CG location and of the rel-
ative angular velocity, is that these can be estimated
at a higher rate than the output rate of the SEPS
filter. In fact the state estimation of the SEPS filter
is definitely more expensive computationally, consid-
ering the dimension of the state. A higher output
rate might be necessary to compute the optical flow
in case of higher relative rotational dynamics between
chaser and target.

2.3 On-Board Offline 3D Reconstruction

With enough time and processing power, it is
possible to reconstruct the 3D model of the object
on board. Rather than doing frame-to-frame object
tracking, the camera can capture a set of discrete im-
ages and use offline processing. These algorithms are
usually exhaustive in searches for image correspon-
dences to minimize chances of failure and increase
accuracy. Time consuming nonlinear optimizations
are used in iterative reconstructions. To get a dense
3D model, costly template matching algorithms are
run on the resulting relative camera positions.

A typical implementation of SfM starts by pro-
cessing and matching each pair of images to find key-
point correspondences, which are triangulated into
maps of 3D points. If the target is rotating relative
to the chaser, it will generate images with large rel-
ative view angles that allow for accurate point trian-
gulation. Once these correspondences are established
a bundle adjustment algorithm is run, taking in the
camera poses and 3D point locations as parameters
to minimize the reprojected point errors

ZHP(Rg:k(pT —1¢rn) —yHi, (31)

summed over the landmark observations y, where y
is an image feature position of landmark p? that was
observed at time step k£ and 2 the expected covari-
ance of the image feature measurements. To solve the
minimization problem a typical gradient descent al-
gorithm, such as Levenberg-Marquardt, is run until
a convergence criterion. Between convergences im-
ages are added incrementally to the full reconstruc-
tion and landmarks are retriangulated to detect and
remove outliers.

After the camera positions are recovered a tem-
plate matching algorithm such as ZNCC or NCC
(Normalized Cross Correlation) can then be run on
multiple views simultaneously to increase accuracy
and point density.

Note that the keypoint identification algorithm
used for live tracking may also be used with SfM.
We can use the resulting map of tracked features as
a 3D model without needing to do a full dense recon-
struction.

Figure 8 shows the resulting point cloud from run-
ning OpenSfM [32] on the 150 images of the simulated
data (see Fig. 9). It took approximately 2 hours on
an i7-3770K CPU configured to run off of 8 threads
using the HaHOG (Hessian Affine feature point de-
tector and HOG descriptor) combination. There are
some dense outliers, but overall the reconstruction is
accurate up to scale.

Once an accurate 3D model of the target has been
estimated, in theory the pose can be determined with
a model-based approach as the one described in Sec-
tion 3, exactly as in the case of a known target. How-
ever, for such a goal the 3D model created via SfM
or after several iterations of the SEPS filter should
be simple enough and consist of a limited number of
points to enable a fast 2D to 3D matching. One way
to ensure that, proposed in our previous work [59],
would be by robustly extracting only the points that
belong to high level geometric structures identifiable
in the target geometry, as polygons, or in general
polylines.

3 Pose Estimation of a Known Target

3.1 Pose Determination

If the target geometry is known, a detailed or sim-
plified model of it (see Fig. 11) can be built offline and
stored on board and model-based algorithms can be
used for pose estimation. In this case, as illustrated in
Fig. 10, adopting an “image-to-model” approach and
feature extraction and matching algorithms, the pose
can be estimated by matching the geometric natural
features extracted from the acquired images with the
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Fig. 8: Reconstructed point cloud with OpenSfM using
150 images.

Fig. 9: A synthetic image of the Aura spacecraft, input of
the simulations carried out in Section 6, generated with
Blender [43], from the 3D model of the spacecraft [44].

corresponding ones of the model. Also in this case,
several types of features can be extracted, such as
corners, curves, or lines, depending on the charac-
teristics of the geometry and of the acquired images.
In pose acquisition (or initialization) no information
about the prior target pose is available, while in pose
tracking the pose is updated based on the previous
pose estimate and the new acquired image. When
using monocular camera systems, feature-based al-
gorithms can make use of Perspective-n-Point (PnP)
solvers.

Given a set of n 3D homogeneous points, m; =
(2, yi, 2, 1] withi = 1,2,...,n in the tar-
get frame, their corresponding projected n 2D points
IL = [u;, s, 1]T in the camera image frame, and
the intrinsic camera parameters matrix K, solving
the PnP problem corresponds to computing the rota-
tion matrix from target frame to camera frame, RS
and the translation vector from the origin of the tar-
get frame to the origin of the camera frame 'rg /70 38
follows:

510 = K [Rg | T‘g/T} i, (32)

where s; is a scale factor for the image point. The
camera matrix is

fz v uo
K=|0 f, v (33)
0o 0 1

where f, and f, are the scaled focal lengths, 7 is the
skew parameter, and ug and vy are the coordinates
of the principal point.

A comparative assessment of the most commonly
used PnP solvers is provided in [35, 50]. In this
study, we adopt the PosIt PnP solver [51] for both
pose acquisition and pose tracking processes, as it
has lower computational burden than the accurate
Newton-Raphson Method, but it can deal better than
the EPnP method with long distances along the op-
tical axis and pixel location noise [35]. Poslt can
estimate the pose between a set of at least four-non-
coplanar 3D points of the model and their corre-
sponding 2D points in the image. It uses a Scaled
Orthographic Projection (SOP) to approximate the
true perspective projection for a first coarse pose es-
timation, then iteratively refined until convergence.
The SOP approximation linearizes Eq. (32) and pro-
vides a coarse R and 7§, without the need of a
starting pose.

For the i-th correspondence, a scaled value s; is
introduced and updated at the end of each iteration.
Initially the scaled value is set to 1 (s; = 1). Scal-
ing each term of Eq. (32) by —=1— and initializing

rg/T(3)

with the SOP assumption —=%:— = 1, the first two
TC/T(S)

rows become a linear system of equations with eight
unknowns, which can be solved with n = 4. Then,
—%i__ can be computed from the estimated RS and
"'C/T(3) T
rg/T. The computation of Rg and rg/p given the
updated s;, can be iterated until s; is smaller than
a threshold or until a maximum number of iterations
has been reached.

Instead, to solve the correspondence problem (the
matching between the set of 3D points in the model
and the 2D points in the image frame), as proposed
in [54], we used the RANSAC algorithm [55] for
pose acquisition, and the Soft-Assign strategy [56]
for pose tracking (adopting the SoftPosit implemen-
tation of [57]).

Note that, although not done in this study, it is
possible to refine the pose estimate by filtering it with
a translational and rotational model. A simple ap-
proach (loose integration) is fusing the vision-based
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pose (relative position and attitude) estimated with
a model-based approach with the corresponding pose
predicted using the dynamics models, through a non-
linear filter for example.

A more complex but more effective solution in-
stead is filtering directly the visual feature extracted
with the corresponding ones predicted by a dynamics
model (tight integration), which is essentially equiva-
lent to the filter formulation proposed in Section 2.1,
assuming a known 3D model of the target and there-
fore not including the reconstructed features s in the
state vector @ (in Eq. (1)) but only the pose state c.

It is important to highlight that the success of the
feature matching, most of all the one in acquisition
strongly depends on the illumination condition and
on the geometry of the target and its on-board model.

The problem of unfavorable lighting condition
is extensively discussed in our previous work [59].
Moreover, symmetry in the target geometry can lead
to a significant bias in pose acquisition (more specif-
ically in the attitude estimate), due to the existence
of more than one pose solution, given a certain set of
matched 2D to 3D features. If for example the target
has two opposite faces almost identical, the pose es-
timation could be affected by an error of 180 deg in
attitude.

For this reason to avoid any risk of ambiguity, it is
important to design an appropriate feature extraction
method (customized for the target geometry) able to
detect features (or more complex structures, combi-
nations of features) that exist only once in the geom-
etry and in the on-board model of the target, (e.g. an
antenna, an appendix, a nozzle, or a specific polyg-
onal structure, etc). In our previous work [59], we
propose an advanced and robust feature extraction
strategy to detect polylines, seen as higher level fea-
tures, combination of lower level features as segments
and points. In another work of the first author [52],
a Circular Hough transform is used to detect specific
target components.

It is also important to mention that alternative
completely different approaches not deterministic but
learning-based [53] have been proposed in the litera-
ture very recently that make use of a Convolutional
Neural Network to solve the problem of pose initial-
ization.

3.2 3D Model

Figs. 11 and 12 illustrate the points of a simpli-
fied geometric model of the target we used for model-
based pose determination. Such a model can be built
before the mission (if possible) and stored on board

the chaser. Clearly, the more complex and rich of
details is the model, the higher the number of points
that can be matched (and potentially the achievable
accuracy in pose determination). However, the larger
is the set of 3D points, the higher is the computa-
tional burden during the 2D to 3D matching process.

In particular, the model illustrated in Fig. 11
and 12, was constructed by manually selecting
representative points of the AURA spacecraft 3D
model [44], illustrated in Fig. 9. A more effective
approach might be building the model by using the
same feature detector that will be used on board,
in order to minimize and maximize respectively the
number of outliers and of inliers.

Another effective and complementary strategy to
reduce ambiguity in matching and to increase the
chance of successful feature extraction and matching
is to build the 3D model to be used on board based
on the feature extractor method that will be adopted
during the mission, which essentially means building
a 3D model of the features that most likely will be
extracted on board during the mission.

As highlighted in the previous section, a model
can be built directly on board, with several itera-
tions of SEPS or via SfM (as described respectively
in Sections 2.1 and 2.3).

4 Simulated Performance

The performance of the two approaches described
respectively in Sections 2 and 3 were simulated given
the same data set in input.

3D model of the
target geometry

.

3D points in target frameﬁ

2D-3D matching

l

2D-3D
transformation
(PnP)

I

Pose
estimate

Image processing
and feature
extraction

——2D points in image frame—»{

=

Fig. 10: Monocular model-based pose determination of
known orbiting target.
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Fig. 11: 3D points representing a simplified geometrical
model of the target spacecraft illustrated in Fig. 9.

Fig. 12: 3D points representing a simplified geometrical
model of the target spacecraft illustrated in Fig. 9.

4.1 Simulation Models and Assumptions

For both approaches we assumed the chaser and
target are orbiting in GEO (on the same orbit of In-
telSat [58]) with an initial separation of 15 m along
the boresight of the camera and an initial relative
rotation of 1 deg/s. The assumed camera intrinsic
parameters are the following: f-s, = f-s, = 300
where f is the focal length and s, and s, are the scale
factors relating image pixels to distance. The image
center is (480,270) and the image size is (960, 540).
Additional details are reported in Table 1. As al-
ready highlighted in the previous sections, as for in-
put of the image processing, we used a sequence of
images synthetically generated according to the pre-
determined relative trajectory.

4.2 Pose Estimation of an Unknown Target

The SEPS approach was tested, following a coarse
tuning of the covariance matrices. The following fig-
ures illustrate the target pose (position and attitude)
estimation error when adopting the SEPS approach
described in Section 2, with the assumptions of Sec-

Chaser Orbit GEO (IntelSat)

Target initial
separation

15 m along chaser
velocity axis

1 deg/s around
one principal axis

Target initial
relative rotation

Camera boresight aligned with

chaser velocity axis

Initial relative
position and velocity

estimation errors 5m and 0.1 m/s

Initial relative
attitude estimation error

10 deg

Table 1: Simulation assumptions.

tion 4.1. In particular, Fig. 13 shows the norm of
the relative 3D position estimation error. Figure 14
shows the relative attitude estimation error, as the
angle describing the magnitude of the rotation error
in an axis-angle representation. Figure. 15 shows the
norm of the relative 3D velocity estimation error.

The estimation convergence is proved for all kine-
matic components of the state. The attitude and ve-
locity estimates converge to the true relative state,
with an error smaller than 1 deg and 0.01 m/s re-
spectively, whereas the position estimate after con-
vergence is affected by a small bias of approximately
0.3 m.

As shown in Fig. 16 and Fig. 17 respectively, from
optical flow the angular velocity is estimated with an
error of approximately 0.01 deg/s, while the CG with
an error smaller than 0.3 m.

In SEPS, the average run time of one estimation
step, in MATLAB on a 1.8 GHz Intel Core i7-8550U
processor, for an average number of 147 extracted
points, is 0.3 s.

4.3 Pose Estimation of a Known Target

Figures 18 and 19 display the pose estimation er-
ror (respectively the position and the attitude esti-
mation error) when adopting the model-based ap-
proach described in Section 3, under the assumptions
described in Section 4.1.

The knowledge of the target geometry is an ad-
vantage in the process of pose estimation, enabling
the use of model-based algorithms, without the need
to also simultaneously perform 3D reconstruction.
Thanks to the knowledge of the geometry, both posi-
tion and attitude are estimated with higher accuracy
than in the SEPS strategy.

Note that velocity and angular velocity are not a
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Fig. 19: Relative attitude estimation error, with model-

based approach.

direct output of the PnP solver, which only estimates
the 3D to 2D transformation from target to camera
and does not include any information about how the
pose changes over time.

The average run time of one estimation step of
PoSit, in MATLAB on a 1.8 GHz Intel Core i7-8550U
processor, for an average number of 147 extracted
points, is 0.05 s. However, at the very beginning of
the pose estimation process, when no knowledge of
the target previous pose is available, to match the
2D points in the image plane with the 3D points of
the model, the RANSAC algorithm takes a relatively
long time, in our numerical simulations, about 200 s.

Moreover, it is important to highlight that when
extracting features from actual space images with
unfavorable illumination conditions, the ratio out-
liers/inliers might be significantly larger, resulting in
a longer convergence time for the PnP solver in both
acquisition and tracking.

5 Discussion

5.1 Space Rendezvous

Space rendezvous (and docking) is usually seen as
a proximity operation, where the chaser spacecraft
navigates in close proximity of typically passive and
uncooperative targets. In general the problem in-
cludes multiple stages.

As described in [30], the rendezvous mission can
be divided into different phases, depending on the
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type of activity, relative separation with the target,
and type of navigation data and hardware available
on board chaser and target as well.

At the very beginning of the mission (Phase I as
called in [30]), it is likely that the chaser is located
in a different orbit than that of the target, following
a launch phase or arriving from another planet. In
this case, the target is out of sight and out of contact
and in Phase II, the chaser has to transfer and drift
toward the orbit of the target (typically below and
behind it in a slightly lower orbit).

In Phase III, the target is in sight and/or in con-
tact and the chaser can get closer to it, possibly by
simply drifting or performing small maneuvers. This
drift phase may end into a first relative parking orbit,
at a certain safe distance from the target (100 m to
1 km), such that there is no risk of accidental colli-
sion.

In Phase IV, the chaser can start to approach the
target, now in proximity, typically horizontally along
the spacecraft velocity vector (V bar) or vertically
along the radial vector (R bar), making use of rel-
ative navigation sensors and very small thruster fir-
ings. This phase of 1 to 5 orbits duration ends into
a second parking orbit at smaller distance from the
target (100 m to 10 m).

Then different phases are possible, depending on
if the final goal of the rendezvous is docking with
the target, inspection, or the relative station keeping
for formation flying missions [30]. Table 2 reports
the different navigation approaches for each of the
first five phases and the corresponding chaser-target
initial separations (where Ay ayx is the maximum Earth
central angle from the spacecraft altitude).

In the first two phases the target is neither in sight
nor in contact and the chaser has to rely on a pre-
cise or approximate knowledge of its orbit and that
of the target, i.e., performing Absolute Navigation
(Abs Nav). As soon as the target is close enough to
not be obstructed by the Earth (or any other planet)
horizon, it is possible to start a coarse vision-based
Relative Navigation (Rel Nav), where the chaser can
see the target moving as a point of light. According
to [30], accurate relative navigation begins in Phase
IV on the way to a relative parking orbit, followed by
a closer range rendezvous in Phase V with low thrust
profile.

5.2 Monocular-based Relative Navigation

The approaches investigated in this paper on
monocular-based pose determination are essentially
relevant in Phases IV and V. If the target is unknown,

H Phase Initial Separation Navigation H
1 >10,000 km Abs Nav
1I > 2Amax Abs Nav
111 2Amax to 1 km Abs Nav or
Coarse Rel Nav
v 1 km to 100 m SEPS+BA or
Model-based
Pose Acquisition
v 100 m to 10 m Model-based
Pose Tracking

Table 2: Rendezvous phases and navigation approaches.

the SEPS approach described in Section 2 could be
adopted in Phase IV to safely reach the desired rela-
tive parking orbit. While in this orbit, the 3D model
of the target reconstructed with SEPS could be re-
fined via Bundle Adjustment (BA) as described in
Section 2.3. Making use of such refined 3D model
of the target geometry in Phase V and in the fol-
lowing phases, monocular pose estimation could be
performed with the more precise and less computa-
tional expensive model-based pose tracking approach,
as described in Section 3.

With respect to the classification of different mis-
sion phases in Table 2, we can see that the pose
and pose rate estimation errors of SEPS (shown in
Figs. 13-16) are small enough when the chaser is in
Phase IV on its way to a relative parking orbit with-
out risk of collision.

During Phase V, the accuracy achievable with a
model based approach (Figs. 18 and 19) also appears
to be high enough for performing an inspection.

The accuracy required in case of docking depends
on the adopted docking mechanism, but in most of
the cases it is still lower than the one reported in
Figs. 18 and 19. For example using a magnetic dock-
ing for CubeSats, the accuracy required ranges from
few centimeters to tens of centimeters for relative po-
sitioning and is of a few degrees for relative attitude
estimation [31].

The accuracy in model-based pose estimation can
be further improved by filtering the output of the PnP
solver (relative position and attitude) with a transla-
tional and rotational dynamics model, as briefly men-
tioned in Section 3.1 and as done in [54].
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6 Conclusion

In this paper, we investigated the main ap-
proaches for on-board monocular-based pose estima-
tion of uncooperative orbiting targets. In particular,
we described the algorithmic details of a filter pro-
posed for Simultaneous 3D Reconstruction and Pose
Estimation (SEPS) of unknown targets. Such a for-
mulation relies on monocular images, a single beam
LIDAR measurement and on the estimation of the
angular velocity and of the CG of the target, both
computed from the optical flow of the same acquired
images.

A novel derivation of the optical flow was pro-
posed that assumes that both world and camera are
moving. A second independent filter that estimates
CG and translational velocity based on optical flow
measurements was also proposed. We also outlined
a strategy based on SfM to refine the 3D model of
the target reconstructed with the SEPS algorithm,
or to directly reconstruct it from scratch on board
and offline. In addition, we described a model-based
approach that can be used when the target’s geom-
etry is known (or has been already reconstructed),
that estimates only its pose and relies on the use of
a simplified shape model of it.

These approaches and algorithms were all tested
by means of numerical simulations, using the same
dataset of images synthetically generated accord-
ing to a realistic chaser/target relative trajectory
in GEO. The accuracy achieved in simulations with
SEPS is less than a meter in relative positioning and
less than 1 deg in attitude estimation, while with the
model-based approach, is of a few centimeters and of
less than 1 deg, respectively.

Such levels of accuracy satisfy the navigation re-
quirements in different phases of a rendezvous mis-
sion. However experimental validation will be needed
to confirm the performance obtained in simulation.
Moreover, it is important to highlight that the achiev-
able performance might worsen when processing real
images of an orbiting target in unfavorable illumina-
tion conditions.

For future work, we plan to further focus on the
described strategies and rigorously validate our own
robust and original solutions to the problem of space-
craft pose estimation. These will be done using an ad-
vanced spacecraft simulator testbed available at Cal-
tech.

Acknowledgement

The first author was supported by the Swiss Na-
tional Science Foundation (SNSF). This work was
also supported in part by the Jet Propulsion Lab-
oratory (JPL). Government sponsorship is acknowl-
edged. The authors thank F. Y. Hadaegh, A. Rah-
mani, and S. R. Alimo.

References

[1] D. Wright, “Space debris by the numbers,”
https://www.esa.int/Our_Activities/Space_
Safety/Space_Debris/Space_debris_by_the_
numbers, accessed on June 5, 2018.

[2] R. Opromolla, G. Fasano, G. Rufino and
M. Grassi, “A review of cooperative and un-
cooperative spacecraft pose determination tech-
niques for close-proximity operations,” Progress in
Aerospace, vol. 93, pp. 53-72, 2017.

[3] P. Buist, P. Teunissen and P. Joosten, “GNSS-
Guided Relative Positioning and Attitude Deter-
mination for Missions with Multiple Spacecraft,”
in GPS/GNSS Symposium, Tokyo, 2013.

[4] S. D’Amico and O. Montenbruck, “Differential
GPS: An enabling technology for formation flying
satellites,” in 7th TAA Symp. Small Sat. Earth Ob-
serv., Berlin, Germany, 2009.

[5] R. Kroes, “Precise Relative Positioning of For-
mation Flying Spacecraft using GPS,” NCG, Ned-
erlandse Commissie voor Geodesie, Netherlands
Geodetic Commission, Delft, The Netherlands,
2006.

[6) M. Psiaki and S. Mohiuddin, “Relative Navi-
gation of High-Altitude Spacecraft Using Dual-
Frequency Civilian CDGPS,” in ION GNSS, Long
Beach, California, 2005.

[7] J. W. Mitchell, B. W. Barbee, P. Baldwin and
R. J. Luquette, “Expanding Hardware-in-the-loop
Formation Navigation and Control with Radio Fre-
quency Crosslink Ranging,” 2007.

[8] B. Sheard, G. Heinzel, K. Danzmann, D. A. Shad-
dock, W. M. Klipstein and W. M. Folkner, “Inter-
satellite laser ranging instrument for the GRACE
follow-on mission,” J. Geodesy, vol. 86, no. 12, pp.
1083-1095, 2012.

Page 18 of 21


https://www.esa.int/Our_Activities/Space_Safety/ Space_Debris/Space_debris_by_the_numbers
https://www.esa.int/Our_Activities/Space_Safety/ Space_Debris/Space_debris_by_the_numbers
https://www.esa.int/Our_Activities/Space_Safety/ Space_Debris/Space_debris_by_the_numbers

[9] V. Capuano, A. Harvard, Y. Lin, S.-J. Chung,
“DGNSS-Vision Integration for Robust and Accu-
rate Spacecraft Navigation,” in ION GNSS+ 2019,
Sept. 16-20, 2019, Miami, Florida.

[10] S. Bandyopadhyay, R. Foust, G. P. Subrama-
nian, S.-J. Chung, and F. Y. Hadaegh, “Review of
Formation Flying and Constellation Missions Us-
ing Nanosatellites,” J. Spacecraft Rockets, vol. 53,
no. 3, pp. 567-578, 2016.

[11] F. Y. Hadaegh, S.-J. Chung, and H. M.
Manohara, “On Development of 100-Gram-Class
Spacecraft for Swarm Applications,” IEEE Sys-
tems J., vol. 10, no. 2, pp. 673-684, June 2016.

[12] K. Meier, S.-J. Chung, and S. Hutchinson,
“Visual-Inertial Curve Simultaneous Localization
and Mapping: Creating a Sparse Structured World
without Feature Points,” J. Field Robotics, vol. 35,
no. 4, pp. 516-544, 2018.

[13] P. Corke, ”Robotics, Vision and Control,”
Springer, 2017.

[14] M. Litchter and S. Dubowsky, “State, shape, and
parameter estimation of space objects from range
images,” in IEEFE Int. Conf. Robotics & Autom.,
New Orleans, LA, 2004.

[15] A. Sonnenburg, M. Tkocz and K. Janschek,
“EKF-SLAM based Approach for Spacecraft Ren-
dezvous Navigation with Unknown Target Space-
craft,” in 18th IFAC Symp. Autom. Control in
Aerospace, Nara, Japan, 2010.

[16] S. Augenstein and S. M. Rock, “Improved
Frame-to-Frame Pose Tracking during Vision-
Only SLAM/SFM with a Tumbling Target,” in
2011 IEEFE Int. Conf. Robotics Autom., Shanghai,
China, 2011.

[17] F. Schnitzer, K. Janschek and G. Willich, “Ex-
perimental Results for Image-based Geometrical
Reconstruction for Spacecraft Rendezvous Navi-
gation with Unknown and Uncooperative Target
Spacecraft,” in 2012 IEEE/RSJ Int. Conf. Intell
Robots Sys., Vilamoura, Algarve, Portugal, 2012.

[18] M. Kaess, A. Ranganathan and F. Dellaert,
“iISAM: Incremental Smoothing and Mapping,”
IEEE Trans. Robotics, vol. 24, no. 6, pp. 1365-
1378, 2008.

[19] B. E. Tweddle, “Computer vision-based local-
ization and mapping of an unknown, uncoopera-
tive and spinning target for spacecraft proximity
operations,” MIT, 2013.

[20] V. Pesce, M. Lavagna and R. Bevilacqua,
“Stereovision-based pose and inertia estimation of
unknown and uncooperative space objects,” Ad-
vances Space Res., vol. 59, no. 1, pp. 236-251, 2017.

[21] Y. Li, Y. Xie, “Relative State Estimation of
Model-Unknown Spinning Noncooperative Target
Using Stereo EKF-SLAM,” Proceedings of the
36th Chinese Control Conference, 2017.

[22] V. Capuano, K. Kim, J. Hu, A. Harvard, S.-
J. Chung, “Monocular-Based Pose Determination
of Uncooperative Known and Unknown Space Ob-
jects”, 69th International Astronautical Congress
(TAC), Bremen, Germany, October 2018.

[23] D. J. Fleet and Y. Weiss, “Optical flow estima-
tion”, Handbook of Mathematical Models in Com-
puter Vision, 237-257, 2006.

[24] A. P. Dani, S.-J. Chung, and S. Hutchinson,
“Observer Design for Stochastic Nonlinear Sys-
tems via Contraction-based Incremental Stability,”
IEEE Trans. Automatic Control, vol. 60, no. 3, pp.
700-714, 2015.

[25] A. Dani, G.Panahandeh, S.-J. Chung, and S.
Hutchinson, “Image Moments for Higher-Level
Feature Based Navigation,” IEEE/RSJ Int. Conf.
Intell. Robots Sys (IROS), Tokyo, Japan, pp. 602-
609, 2013.

[26] M. W. M. G. Dissanayake, P. Newman, S. Clark,
H. Durrant-Whyte and M. Csorba, “A solution
to the simultaneous localization and map building
(SLAM) problem,” IEEE Trans. Robotics Autom.,
vol. 17, no. 3, pp. 229-241, 2001.

[27] H. Durrant-Whyte and T. Bailey, “Simultaneous
localization and mapping: part I,” IEEE Robotics
& Autom. Mayg., vol. 13, no. 2, pp. 99-110, 2006.

[28] A. Davison, “Real-time simultaneous localisa-
tion and mapping with a single camera,” in IEFE
Int. Conf. on Computer Vision, 2003.

[29] J. Civera and A. M. J. Davison, “Inverse depth
parametrization for monocular SLAM,” IEEE
Trans. Robotics, vol. 24, no. 5, pp. 932-945, 2008.

Page 19 of 21



[30] J. R. Wertz and R. Bell, “Autonomous Ren-
dezvous and Docking Technologies — Status and
Prospects,” SPIE AeroSense Symposium, Orlando,
FL. April 23-25, 2003.

[31] C. Pirat, F. Ankersen, r. Walker, V. Gass, “Vi-
sion Based Navigation for Autonomous Coopera-
tive Docking of CubeSats”, Acta Astronautica, 146
(2018) 418-428

[32] Djurdjani and D. Laksono. “Open source stack
for Structure from Motion 3D reconstruction: A
geometric overview,” 2016 6th International An-
nual Engineering Seminar (InAES), pp. 196-201,
2016.

[33] F. Baldini, A. Harvard, S. Chung, I. Nesnas,
and S. Bhaskaran. “Autonomous Small Body Map-
ping and Spacecraft Navigation”, 69th Interna-
tional Astronautical Congress, 2018.

[34] H. Li ; R. Hartley. “Five-Point Motion Estima-
tion Made Easy”, 18th International Conference
on Pattern Recognition, 2006.

[35] S. Sharma and S. D’Amico, “Comparative As-
sessment of Techniques for Initial Pose Estimation
using Monocular Vision,” Acta Astronautica, vol.
123, pp. 435-445, 2016.

[36] C. Harris, and M. Stephens, “A Combined Cor-
ner and Edge Detector,” Proc. Alvey Vision Conf.,
1988, pp. 147-151.

[37] R.O. Duda, P.E. Hart, “Use of the Hough trans-
formation to detect lines and curves in pictures,”
Commun. ACM 15 (1) (1972) 11-15.

[38] J. Canny, “A Computational Approach to Edge
Detection,” IEEE Trans. Pattern Anal. Mach. In-
tell., Vol. PAMI-8, No. 6, 1986, pp. 679-698.

[39] S. Sharma and J. Ventura, “Robust Model-
Based Monocular Pose Estimation for Noncooper-
ative Spacecraft Rendezvous,” J. Spacecraft Rock-
ets, 2017, pp. 1-35.

[40] D. G. Lowe, “Distinctive image features from
scale-invariant key- points,” Int. J. Comput. Vis.
60 (2) (2004) 91-110.

[41] E. Rublee, V. Rabaud, K. Konolige, G. Bradski,
“ORB: an efficient alternative to SIFT or SURF,”
in: Proc. IEEE Int. Conf. Comp. Vision, Nov.
2011.

[42] S. A. K. Tareen and Z. Saleem, “A comparative
analysis of SIFT, SURF, KAZE, AKAZE, ORB,
and BRISK,” 2018 International Conference on
Computing, Mathematics and Engineering Tech-
nologies (ICoMET), Sukkur, 2018, pp. 1-10. doi:
10.1109/ICOMET.2018.8346440

[43] “Blender,” [Online]. Available at:
www.blender.org.

https://

[44] C. M. Garcia, “NASA 3D resources,” 2018. [On-
line]. Available at: https://nasa3d.arc.nasa.
gov/detail/aura-eoe3d. [Accessed 24 July 2018].

[45] J. Sola, D. Marquez, J. Codol, and
T. Vidal-Calleja. “An EKF-SLAM tool-
box for MATLAB?”. Available online:

https://github.com/joansola/slamtb.

[46] P. Gurfil and K. Kholshevnikiv, ”Manifolds and
metrics in the relative spacecraft motion problem,”
J. Guid. Control Dyn., vol. 29, 2006.

[47] S. Segal and P. Grufil, “Effect of Kinematic
Rotation-Translation Coupling on Relative Space-
craft Translational Dynamics,” J. Guid. Control
Dyn., vol. 32, pp. 1045-1050, 2009.

[48] W. Krattenthaler, K.J. Mayer, M. Zeiler, 1994.
“Point correlation: A reduced-cost template
matching technique.” In: I1st IEEE Int. Conf. on
Image Processing (ICIP), vol. I, September, 1994,
Austin, Texas, USA, pp. 208-212, 1994.

[49] K. Yamanaka and F. Ankersen. “New state tran-
sition matrix for relative motion on an arbitrary
elliptical orbit,” Journal of guidance, control, and
dynamaics, vol. 25, pp.60-66, 2002.

[50] D. Grest, T. Petersen and V. Kuger, “A Com-
parison of Iterative 2D-3D Pose Estimation Meth-
ods for Real-Time Applications,” in Scandinavian
Conf. Image Anal., 2009.

[51] D.F. Dementhon and L. S. Davis, “Model-Based
Object Pose in 25 Lines of Code,” Int. J. Computer
Vision, vol. 15, pp. 123-141, 1995.

[52] V. Capuano, R. Opromolla, G. Cuciniello, et
al., “A Highly Integrated Navigation Unit for On-
Orbit Servicing Missions”, 69th International As-
tronautical Congress, Bremen, Germany 2018.

[53] S. Sharma, C. Beierle, S. D’Amico, “Pose
Estimation for Non-Cooperative Spacecraft Ren-
dezvous Using Convolutional Neural Networks”,
2018 TEEE Aerospace Conference, Big Sky, MT.

Page 20 of 21


https://www.blender.org
https://www.blender.org
https://nasa3d.arc.nasa.gov/detail/aura-eoe3d
https://nasa3d.arc.nasa.gov/detail/aura-eoe3d

[54] V. Capuano, G. Cuciniello, V. Pesce, R. Opro-
molla, et al., “VINAG: A Highly Integrated System
for Autonomous On-Board Absolute and Relative
Spacecraft Navigation,” The 4S Symposium 2018,
Sorrento, Italy, 2018.

[55] M. A. Fischler and R. C. Bolles, “Random sam-
ple consensus: a paradigm for model fitting with
applications to image analysis and automated car-
tography,” Comm. the ACM, vol. 24, no. 6, pp.
381-395, 1981.

[56] A. Gold, A. Rangarajan, C.P. Lu, S. Pappu and
E. Mjoisness, “New algorithms for 2D and 3D point
matching: pose estimation and correspondence,”
Pattern Recognition, vol. 31, no. 8, pp. 1019-1031,
1998.

[57) D. De Menthon and P. David, “SoftPOSIT
Demonstration Code,” “University of Maryland,
College Park, MD, 2003.

[58] “Satbeams,” [Online]. Available:
https://www.satbeams.com/satellites?id=2223.
[Accessed 24 August 2016].

[59] V. Capuano, S. R. Alimo, A. Q. Ho, S.-
J. Chung, “Robust Feature Extraction for On-
board Monocular-based Spacecraft Pose Acquisi-
tion,” ATAA SciTech Forum 2019, San Diego, CA,
UsS.

Page 21 of 21



	Introduction
	Related Work
	Contribution

	Pose and Shape Estimation of an Unknown Target
	Simultaneous Estimation of Pose and Shape of an Unknown Target
	Architecture
	Image Acquisition and Processing
	Estimator Implementation
	Initialization
	Prediction Step
	Correction Step
	Initialization of New Features
	Scale Recovery

	Estimation of Angular Velocity and Center of Gravity
	Measurements from Optical Flow
	Estimation of Center of Gravity
	Integrating with SEPS

	On-Board Offline 3D Reconstruction

	Pose Estimation of a Known Target
	Pose Determination
	3D Model

	Simulated Performance
	Simulation Models and Assumptions
	Pose Estimation of an Unknown Target
	Pose Estimation of a Known Target

	Discussion
	Space Rendezvous
	Monocular-based Relative Navigation

	Conclusion

