3,534 research outputs found

    A model-based approach to stabilizing crutch supported paraplegic standing by artifical hip joint stiffness

    Get PDF
    The prerequisites for stable crutch supported standing were analyzed in this paper. For this purpose, a biomechanical model of crutch supported paraplegic stance was developed assuming the patient was standing with extended knees. When using crutches during stance, the crutches will put a position constraint on the shoulder, thus reducing the number of degrees of freedom. Additional hip-joint stiffness was applied to stabilize the hip joint and, therefore, to stabilize stance. The required hip-joint stiffness for changing crutch placement and hip-joint offset angle was studied under static and dynamic conditions. Modeling results indicate that, by using additional hip-joint stiffness, stable crutch supported paraplegic standing can be achieved, both under static as well as dynamic situations. The static equilibrium postures and the stability under perturbations were calculated to be dependent on crutch placement and stiffness applied. However, postures in which the hip joint was in extension (C postures) appeared to the most stable postures. Applying at least 60 N /spl middot/ m/rad hip-joint stiffness gave stable equilibrium postures in all cases. Choosing appropriate hip-joint offset angles, the static equilibrium postures changed to more erect postures, without causing instability or excessive arm forces to occur

    Control of posture with FES systems

    Get PDF
    One of the major obstacles in restoration of functional FES supported standing in paraplegia is the lack of knowledge of a suitable control strategy. The main issue is how to integrate the purposeful actions of the non-paralysed upper body when interacting with the environment while standing, and the actions of the artificial FES control system supporting the paralyzed lower extremities. In this paper we provide a review of our approach to solving this question, which focuses on three inter-related areas: investigations of the basic mechanisms of functional postural responses in neurologically intact subjects; re-training of the residual sensory-motor activities of the upper body in paralyzed individuals; and development of closed-loop FES control systems for support of the paralyzed joints

    Paraplegic standing supported by FES-controlled ankle stiffness

    Get PDF
    The objective of this paper was to investigate whether a paraplegic subject-is able to maintain balance during standing by means of voluntary and reflex activity of the upper body while being supported by closed loop controlled ankle stiffness using FES. The knees and hips of the subject were held in extended positions by a mechanical apparatus, which restricted movement to the sagittal plane. The subject underwent several training sessions where the appropriate level of stiffness around the ankles was maintained by the mechanical apparatus. This enabled the subject to learn how to use the upper body for. balancing. After the subject gained adequate skills closed-loop FES was employed to regulate ankle stiffness, replacing the stiffness provided by the apparatus. A method to control antagonist muscle moment was implemented. In subsequent standing sessions, the subject had no difficulties in maintaining balance. When the FES, support was withheld, the ability to balance was lost

    Estimates of persistent inward current in human motor neurons during postural sway

    Get PDF
    Persistent inward current (PIC) is a membrane property critical for increasing gain of motor neuron output. In humans, most estimates of PIC are made from plantarflexor or dorsiflexor motor units with the participant in a seated position with the knee flexed. This seated and static posture neglects the task-dependent nature of the monoaminergic drive that modulates PIC activation. Seated estimates may drastically underestimate the amount of PIC that occurs in human motor neurons during functional movement. The current study estimated PIC using the conventional paired motor unit technique which uses the difference between reference unit firing frequency at test unit recruitment and reference unit firing frequency at test unit de-recruitment (∆F) during triangular-shaped, isometric ramps in plantarflexion force as an estimate of PIC. Estimates of PIC were also made during standing anterior postural sway, a postural task that elicits a ramped increase and decrease in soleus motor unit activation similar to the conventional seated ramp contractions. For each motor unit pair, ∆F estimates of PIC made during conventional isometric ramps in the seated posture were compared to those made during standing postural sway. Baseline reciprocal inhibition (RI) was also measured in each posture using the post-stimulus time histogram (PSTH) technique. Hyperpolarizing input has been shown to have a reciprocal relationship with PIC in seated posture and RI was measured to examine if the same reciprocal relationship holds true during functional PIC estimation. It was hypothesized that an increase in ∆F would be seen during standing compared to sitting due to greater neuromodulatory input. We found that ∆F estimates during standing postural sway were equal (2.44 ± 1.17, p=0.44) to those in seated PIC estimates (2.73± 1.20) using the same motor unit pair. Reciprocal inhibition was significantly lower when measured in a standing posture (0.0031 ± 0.0251,

    Optimizing User Integration for Individualized Rehabilitation

    Get PDF
    User integration with assistive devices or rehabilitation protocols to improve movement function is a key principle to consider for developers to truly optimize performance gains. Better integration may entail customizing operation of devices and training programs according to several user characteristics during execution of functional tasks. These characteristics may be physical dimensions, residual capabilities, restored sensory feedback, cognitive perception, or stereotypical actions

    A review of the effectiveness of lower limb orthoses used in cerebral palsy

    Get PDF
    To produce this review, a systematic literature search was conducted for relevant articles published in the period between the date of the previous ISPO consensus conference report on cerebral palsy (1994) and April 2008. The search terms were 'cerebral and pals* (palsy, palsies), 'hemiplegia', 'diplegia', 'orthos*' (orthoses, orthosis) orthot* (orthotic, orthotics), brace or AFO

    OBJECTIVE EVALUATION OF FUNCTIONAL ANKLE INSTABILITY AND BALANCE EXERCISE TREATMENT

    Get PDF
    Functional ankle instability (FAI) is a poorly defined entity but commonly used to describe patients who sustain multiple ankle injuries with slight or no external provocation and have a subjective feeling of ankle "giving way". There have been conflicting results reported in literature regarding the role of suggested etiological factors of FAI including deficit in joint proprioception, strength, and stiffness (laxity). Diagnosis of FAI has been mainly relied on a subjective reporting, so is the assessment of FAI treatments. In spite of controversies regarding FAI factors, balance training has been widely used in sports medicine clinics for patients with FAI. Most of past studies reported its effect for FAI, but strong evidence with definitive result is still missing. Furthermore, the mechanism that explains the effect of balance training on FAI is still unclear. Recently, it was suggested that altered threshold to the unloading reaction may be behind ankle giving way episodes in patients with ankle instability. Therefore, we wanted to duplicate this finding in individuals with FAI during sudden ankle inversion test and examine the effects of a four-week balance training program on unloading reactions in individuals with FAI. Twenty four recreationally active individuals with unilateral FAI were evaluated for unloading reactions on the involved and uninvolved limbs using a sudden ankle inversion test. In seven out of twenty-four subjects, we observed a drastic reaction (hyper-reactivity) in that they were unable to maintain upright standing position when a combination of dynamic ankle stretching and nociceptive stimuli was applied on their affected ankles. The subjects were then randomized to either a control or intervention group. Subjects in the intervention group were trained on the affected limb with static and dynamic components using a Biodex balance stability system for 4-weeks. The control group received no intervention. The results suggested that balance training may desensitize the hyper-reactivity to unloading reaction in FAI subjects, suggesting a possible mechanism for reducing the ankle "giving way" episodes. In addition, balance training was found to improve the subjective self-reported ankle instability and passive ankle joint position sense. No effect was observed on isometric and isokinetic peroneal muscle strength and ankle stiffness (laxity). In summary, this dissertation work provides evidence that balance training is effective in patients with FAI, however a further study with more sample size and additional outcome measures is required to better understand the mechanism of balance training in these individuals. The findings of this work have implications for research/rehabilitation of not only individuals with FAI but also in individuals with functional joint instability, such as functional knee instability which shares many common symptoms with FAI

    Effect of Tendon Vibration on Hemiparetic Arm Stability in Unstable Workspaces

    Get PDF
    Sensory stimulation of wrist musculature can enhance stability in the proximal arm and may be a useful therapy aimed at improving arm control post-stroke. Specifically, our prior research indicates tendon vibration can enhance stability during point-to-point arm movements and in tracking tasks. The goal of the present study was to investigate the influence of forearm tendon vibration on endpoint stability, measured at the hand, immediately following forward arm movements in an unstable environment. Both proximal and distal workspaces were tested. Ten hemiparetic stroke subjects and 5 healthy controls made forward arm movements while grasping the handle of a two-joint robotic arm. At the end of each movement, the robot applied destabilizing forces. During some trials, 70 Hz vibration was applied to the forearm flexor muscle tendons. 70 Hz was used as the stimulus frequency as it lies within the range of optimal frequencies that activate the muscle spindles at the highest response rate. Endpoint position, velocity, muscle activity and grip force data were compared before, during and after vibration. Stability at the endpoint was quantified as the magnitude of oscillation about the target position, calculated from the power of the tangential velocity data. Prior to vibration, subjects produced unstable, oscillating hand movements about the target location due to the applied force field. Stability increased during vibration, as evidenced by decreased oscillation in hand tangential velocity
    corecore