2,017 research outputs found

    Turbo-Coded Adaptive Modulation Versus Space-Time Trellis Codes for Transmission over Dispersive Channels

    No full text
    Decision feedback equalizer (DFE)-aided turbocoded wideband adaptive quadrature amplitude modulation (AQAM) is proposed, which is capable of combating the temporal channel quality variation of fading channels. A procedure is suggested for determining the AQAM switching thresholds and the specific turbo-coding rates capable of maintaining the target bit-error rate while aiming for achieving a highly effective bits per symbol throughput. As a design alternative, we also employ multiple-input/multiple-output DFE-aided space–time trellis codes, which benefit from transmit diversity and hence reduce the temporal channel quality fluctuations. The performance of both systems is characterized and compared when communicating over the COST 207 typical urban wideband fading channel. It was found that the turbo-coded AQAM scheme outperforms the two-transmitter space–time trellis coded system employing two receivers; although, its performance is inferior to the space–time trellis coded arrangement employing three receivers. Index Terms—Coded adaptive modulation, dispersive channels, space–time trellis codes

    Space-Time Trellis and Space-Time Block Coding Versus Adaptive Modulation and Coding Aided OFDM for Wideband Channels

    No full text
    Abstract—The achievable performance of channel coded spacetime trellis (STT) codes and space-time block (STB) codes transmitted over wideband channels is studied in the context of schemes having an effective throughput of 2 bits/symbol (BPS) and 3 BPS. At high implementational complexities, the best performance was typically provided by Alamouti’s unity-rate G2 code in both the 2-BPS and 3-BPS scenarios. However, if a low complexity implementation is sought, the 3-BPS 8PSK space-time trellis code outperfoms the G2 code. The G2 space-time block code is also combined with symbol-by-symbol adaptive orthogonal frequency division multiplex (AOFDM) modems and turbo convolutional channel codecs for enhancing the system’s performance. It was concluded that upon exploiting the diversity effect of the G2 space-time block code, the channel-induced fading effects are mitigated, and therefore, the benefits of adaptive modulation erode. In other words, once the time- and frequency-domain fades of the wideband channel have been counteracted by the diversity-aided G2 code, the benefits of adaptive modulation erode, and hence, it is sufficient to employ fixed-mode modems. Therefore, the low-complexity approach of mitigating the effects of fading can be viewed as employing a single-transmitter, single-receiver-based AOFDM modem. By contrast, it is sufficient to employ fixed-mode OFDM modems when the added complexity of a two-transmitter G2 scheme is affordable

    Self-concatenated code design and its application in power-efficient cooperative communications

    No full text
    In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions

    Turbo Decoding and Detection for Wireless Applications

    Get PDF
    A historical perspective of turbo coding and turbo transceivers inspired by the generic turbo principles is provided, as it evolved from Shannon’s visionary predictions. More specifically, we commence by discussing the turbo principles, which have been shown to be capable of performing close to Shannon’s capacity limit. We continue by reviewing the classic maximum a posteriori probability decoder. These discussions are followed by studying the effect of a range of system parameters in a systematic fashion, in order to gauge their performance ramifications. In the second part of this treatise, we focus our attention on the family of iterative receivers designed for wireless communication systems, which were partly inspired by the invention of turbo codes. More specifically, the family of iteratively detected joint coding and modulation schemes, turbo equalization, concatenated spacetime and channel coding arrangements, as well as multi-user detection and three-stage multimedia systems are highlighted

    Joint space-time trellis code detection and MIMO equalisation via particle filtering

    Get PDF

    Turbo-Detected Unequal Protection MPEG-4 Wireless Video Telephony using Multi-Level Coding, Trellis Coded Modulation and Space-Time Trellis Coding

    No full text
    Most multimedia source signals are capable of tolerating lossy, rather than lossless delivery to the human eye, ear and other human sensors. The corresponding lossy and preferably low-delay multimedia source codecs however exhibit unequal error sensitivity, which is not the case for Shannon’s ideal entropy codec. This paper proposes a jointly optimised turbo transceiver design capable of providing unequal error protection for MPEG-4 coding aided wireless video telephony. The transceiver investigated consists of space-time trellis coding (STTC) invoked for the sake of mitigating the effects of fading, in addition to bandwidth efficient trellis coded modulation or bit-interleaved coded modulation, combined with a multi-level coding scheme employing either two different-rate non-systematic convolutional codes (NSCs) or two recursive systematic convolutional codes for yielding a twin-class unequal-protection. A single-class protection based benchmark scheme combining STTC and NSC is used for comparison with the unequal-protection scheme advocated. The video performance of the various schemes is evaluated when communicating over uncorrelated Rayleigh fading channels. It was found that the proposed scheme requires about 2.8 dBs lower transmit power than the benchmark scheme in the context of the MPEG-4 videophone transceiver at a similar decoding complexity

    Turbo-Detected Unequal Protection MPEG-4 Audio Transceiver Using Convolutional Codes, Trellis Coded Modulation and Space-Time Trellis Coding

    No full text
    A jointly optimised turbo transceiver capable of providing unequal error protection is proposed for employment in an MPEG-4 aided audio transceiver. The transceiver advocated consists of Space-Time Trellis Coding (STTC), Trellis Coded Modulation (TCM) and two different-rate Non-Systematic Convolutional codes (NSCs) used for unequal error protection. A benchmarker scheme combining STTC and a single-class protection NSC is used for comparison with the proposed scheme. The audio performance of the both schemes is evaluated when communicating over uncorrelated Rayleigh fading channels. It was found that the proposed unequal protection turbo-transceiver scheme requires about two dBs lower transmit power than the single-class turbo benchmarker scheme in the context of the MPEG-4 audio transceiver, when aiming for an effective throughput of 2 bits/symbol, while exhibiting a similar decoding complexity

    An improved algorithm for evaluating trellis phase codes

    Get PDF
    A method is described for evaluating the minimum distance parameters of trellis phase codes, including CPFSK, partial response FM, and more importantly, coded CPM (continuous phase modulation) schemes. The algorithm provides dramatically faster execution times and lesser memory requirements than previous algorithms. Results of sample calculations and timing comparisons are included

    Burst-by-Burst Adaptive Decision Feedback Equalised TCM, TTCM and BICM for H.263-Assisted Wireless Video Telephony

    No full text
    Decision Feedback Equaliser (DFE) aided wideband Burst-by-Burst (BbB) Adaptive Trellis Coded Modulation (TCM), Turbo Trellis Coded Modulation (TTCM) and Bit-Interleaved Coded Modulation (BICM) assisted H.263-based video transceivers are proposed and characterised in performance terms when communicating over the COST 207 Typical Urban wideband fading channel. Specifically, four different modulation modes, namely 4QAM, 8PSK, 16QAM and 64QAM are invoked and protected by the above-mentioned coded modulation schemes. The TTCM assisted scheme was found to provide the best video performance, although at the cost of the highest complexity. A range of lower-complexity arrangements will also be characterised. Finally, in order to confirm these findings in an important practical environment, we have also investigated the adaptive TTCM scheme in the CDMA-based Universal Mobile Telecommunications System's (UMTS) Terrestrial Radio Access (UTRA) scenario and the good performance of adaptive TTCM scheme recorded when communicating over the COST 207 channels was retained in the UTRA environment
    corecore