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Abstract— In this contribution we address the problem of
MIMO equalisation and transmit diversity. More specifically, we
develop a method that jointly decodes Space Time Trellis Coded
Modulation (STTCM) encoded signals and equalises the MIMO
channels. The optimal solution for such a setup would require
construction of a super-trellis that describes a finite state machine
resulting from the combination of MIMO channel and STTCM
trellises. However, the number of states in this super-trellis is
typically gigantic and as such prohibits practical application.
Our solution is based on Sequential Monte Carlo technique (aka
Particle filter), which has gained much interest recently in the
communications community. The structure of the STTCM code
is incorporated into the proposal distribution of the particle
filter. As a results a significant reduction in complexity has been
achieved as compared not only to the brute force super-trellis
approach, but also when compared to the conventional ”turbo”
solution.

I. INTRODUCTION

Multiple antenna (aka MIMO) techniques continue to re-
ceive tremendous interest from the industry and the academia
alike. In fact, the ”from invention to implementation” delay
has been remarkably small and difficult to compare with any
other invention created by the communications scientist. The
MIMO techniques can broadly be classified into transmit di-
versity and spatial multiplexing (although this division is more
historical, and some researchers argue there is no fundamental
difference). In this technical paper we take on the detection
problem of a classical transmit diversity scheme i.e. Space-
time Trellis Coded Modulation (STTCM) [1]. The STTCM
attempts to jointly optimise: modulation encoding, transmit
and receive diversity. Additionally STTCM can provide some
coding gain. STTCM uses Finite State Machine (FSM) to
impose first order Markov property onto the encoded data.
As the results, the detection process can be performed by
a dynamic programming algorithm - the Viterbi algorithm.
The detection process gets complicated, when the system
transmits the information over a wideband channel. Wide-
channel necessitates some form of equalisation at the receiver.

Since the wideband characteristics introduce memory in the
channel, it can also be modelled as another FSM machine.
A concatenation of two FSM machines, is just another FSM
machine and the Viterbi algorithm can solve the problem, at
least in principle. This approach rapidly becomes infeasible,
as the number of states grows exponentially with the number
of the channel taps and transmit antennas.

Two sub-optimal solutions are currently available in the
literature. In [2] it is shown that the joint trellis approach may
still be feasible, however this method is restricted in practice to
only very few simple space-time codes. The second approach
[3] utilises the turbo principle. The MIMO equalisation and
STTCM detection are handled by a separate soft-in - soft
out decoders. Those decoders perform an iterative detection
exchanging so-called extrinsic information. Since the number
of states in the MIMO equaliser scales exponentially with the
modulation alphabet and the number of transmit antennas,
the complexity of the turbo solution may still be colossal.
In an attempt to reduce the complexity of the turbo system
[4] detects I and Q branches separately and [5] proposes M-
BCJR algorithm in place of BCJR for MIMO equalisation
step. In this contribution, we develop a new approach to this
problem. We apply Sequential Monte Carlo technique (aka
Particle filter) [6], that has recently gained much interest in the
communications community [7]. In our solution the structure
of the STTCM code is incorporated into the proposal distribu-
tion of the particle filter. As the results a remarkable reduction
in complexity has been achieved. In fact the complexity of the
proposed solution is independent of the channel length and
complexity/performance can be tuned by a single parameter:
the number of particles.

II. SIGNAL MODEL AND ESTIMATION TASKS

Consider a multi antenna wireless system (aka MIMO) that
employs space-time coding for improved performance. The
schematic of the considered system is depicted in figure 1. The



source collects an information sequence to be transmitted d =
{d(1), . . . , d(T )}. The information sequence is then encoded
by a STTCM to produce a codeword C = (c1, c2, . . . , cT ),
ct = (c1,t. . . . , cNT ,t)

T is of size NT × 1 where NT is the
number of transmit antennas and ct belongs to a signalling
alphabet e.g. M-PSK. In this contribution we assume that
interleavers are not used, hence the transmitted signal retains
Markovian characteristics imposed by the STTCM encoder.
This assumption is in fact crucial for the success of the
presented method.
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Fig. 1. Space-time coded system signalling over a Wideband MIMO channel.

The system sends information over a wideband channel
(multidimensional FIR filter) which is characterised by a
channel matrix H: We assume quasistatic scenario i.e. the
wideband channel remains constant for the duration of a frame
and changes independently from one frame to another.

H =




hT
1,1 · · · hT

1,NT

...
. . .

...
hT

NR,1 · · · hT
NR,NT


 (1)

where:

hm,n =
(
h(τ=0)

m,n , h(τ=1)
m,n , . . . , h(τ=L−1)

m,n

)T

(2)

Define:

xt,n = (ct,n, ct−1,n, . . . , ct−L+1,n)T (3)

and
xt =

(
xT

t,1,x
T
t,2, . . . ,x

T
t,N

)T
(4)

With the above definitions the received signal at time t, for
t = {1, 2, . . . T} is

yt = Hxt + nt (5)

Where nt ∼ CN (
0, σ2I

)
. The receiver’s task is to find a

legitimate transmitted sequence (i.e. the codeword) that best
explains the sequence of observations. This amounts to finding
the maximum of the joint likelihood:

Ĉ = arg max
C̃=c1,...,cT

{
f

(
y1,y2 . . . ,yT

∣∣∣C̃ = c1, . . . , cT

)}
(6)

In principle, this task could be solved optimally by the
Viterbi algorithm, however the computational complexity of
this approach is prohibitive. The conventional sub-optimal
solution consists of splitting the decision making process into
two parts. The resulting solution is called turbo detection and
involves iterative detection and exchange of ”soft information”
between MIMO equaliser and soft STTCM decoder [3]. Our

solution is based on an approximate recursive detection pro-
cedure known as a particle filter [6]. The Markovian structure
plays a central role in the proposed scheme. A similar idea
appeared previously in the literature in a somewhat simpler
setup of BPSK signalling over flat-fading channels [8].

III. MONTE CARLO METHODS

Monte Carlo methods have proved to be very efficient at
tackling such complex problems. They have been successfully
applied in physics for 50 years [9], image processing for
nearly 20 years and statistics for over a decade where they
have revolutionised Bayesian statistics. The basic principle
of Monte Carlo methods consists of replacing the algebraic
representation of π by a population based representation. More
precisely assume that we know how to produce N samples,
the population, distributed according to π, then the probability
of any region A of X , i.e.

∫
A

π (x) dx, can be approximated
by the number of samples that belong to A. Now if we wish
to approximate an integral of the form

I (f) =
∫
X

f (x)π (x) dx

(where here
∫

either means discrete or continuous sum), then
a Monte Carlo estimator of I (f) is given by

Î (f) =
1
N

N∑
i=1

f (xi) .

Intuitively this estimator ought to be efficient, as the samples
{xi} tend to concentrate on regions of high probability (i.e.
where information is) and avoid regions of low probability,
therefore making the most of the available computational
power. This statement can be made mathematically rigourous,
and it can be proved that under fairly general conditions, the
rate of convergence of this estimator to the true value of the
integral is of the order O

(
1√
N

)
, that is the rate of convergence

is independent of the dimension of X .

A. Particle Filter

Particle filter (PF) is a recursive Bayesian estimation tech-
nique. It is typically used in the context of non-linear and/or
non-Gaussian dynamical systems. It can also be used where
the underling problem can be modelled as a Hidden Markov
Model (HMM), as indeed it is the case in this contribution.
To set the background for the application of PF we start
with a brief review of HMM and its properties relevant for
a sequential detection via PF.

The joint distribution of observations {y1,y2, . . . ,yT } ≡
y1:T and hidden states (unobserved signal of interest)
{x0,x1, . . . ,xT } ≡ x0:T factors as:

f (y1:T ,x0:T ) = f (x0)
T∏

t=1

f (yt |xt ) f (xt |xt−1 ) (7)

The joint posterior distribution is proportional to (7) i.e.

f (x0:T |y1:T ) ∝ f (y1:T ,x0:T )



The task is to construct a procedure for obtaining
f (x0:t+1 |y1:t+1 ) = Φ {f (x0:t |y1:t )}

By Bayes theorem:

f (x0:t |y1:t ) =
f (y1:t |x0:t ) f (x0:t)∫

f (y1:t |x0:t )f (x0:t) dx0:t
(8)

To find out the required transform Φ, Bayes’ theorem is
used again:

f (x0:t+1 |y1:t+1 ) = f (x0:t+1 |yt+1,y1:t ) =
f(yt+1|x0:t+1,y1:t )f(x0:t+1|y1:t )

f(yt+1|y1:t )

(9)

However, the observations are conditionally independent:
f (yt+1 |x0:t+1,y1:t ) = f (yt+1 |xt+1 ). This leads to the
required recursive formula:

f (x0:t+1 |y1:t+1 ) =
f (yt+1 |xt+1 ) f (xt+1 |xt )

f (yt+1 |y1:t )
f (x0:t |y1:t )

(10)
Deceptively, the above recursion is straightforward to perform.
However, exact analytical formulae are possible to find only
in a very few cases. One is the case when the states evolve
according to some linear function and both the state and the
observation noise are Gaussian. The other exception is when
x is a discrete random variable, which is exactly our case.
However, even though the distribution of interest is defined
over a finite grid, number of states prohibits exact calculations.

Particle filters are designed to solve exactly this problem.
Suppose that samples

{
x(i)

0:t; i = 1 : P
}

are drawn indepen-
dently from a normalised importance function .

π (x0:t |y0:t ) (11)

Then the posterior distribution at time t can be approximated
by:

p̂ (x) =
P∑

i=1

w̃
(i)
t δ

(
x − x(i)

0:t

)
(12)

w̃
(i)
t =

w
(i)
t∑P

j=1 w
(j)
t

(13)

where:

w
(i)
t+1 =

f
(
yt+1

∣∣∣x(i)
t+1

)
f

(
x(i)

t+1

∣∣∣x(i)
t

)
π

(
x(i)

t+1

∣∣∣x(i)
0:t,y1:t+1

) w
(i)
t (14)

is the unnormalised incremental importance weight.

IV. PARTICLE FILTERING APPLIED TO JOINT MIMO
EQUALISATION AND STTCM DETECTION

As mentioned in section II our aim is to find the max-
imum of the joint likelihood. With the assumption that all
code sequences are apriori equally likely, the maximum of
the joint likelihood will coincide with the maximum of the
joint posterior distribution i.e. the MAP estimate. Hence our
strategy is to tract the joint posterior distribution f (x0:t |y0:t )
in a computationally feasible way, i.e. using particle filter. The
final decision will be taken using an approximation to the

joint posterior, simply by choosing a particle with its whole
trajectory for which the associated weight at time t = T is
maximal.

The algorithm proceeds as follows:

1) Draw samples from the importance function. In our case
it is the prior, which is augmented by the knowledge of
the STTCM structure i.e.

x(j,i)
t ∼ π

(
xt |x (i)

t−1

)
I

(
xt |x (i)

t−1

)

Where the indicator function I
(
xt |x (i)

t−1

)
takes value

1 if the transition xt−1 ⇒ xt is compatible with the
STTCM structure and 0 otherwise.

2) Update and re-normalise the particle weights.

w
(j,i)
t ∝ w̃

(i)
t−1f

(
yt

∣∣∣x(j,i)
t

)

w̃
(j,i)
t =

w
(j,i)
t∑K

k=1

∑P
l=1 w

(k,l)
t

3) Resample P particles according to their weights from
K × P particles.

4) Append the trajectory of each particle
{
x(i)

0:t−1

}
with

the resampled particles
{
x(i)

t

}
5) if t < T repeat steps 1 to 4, otherwise choose

{
x(i)

0:T

}
as the final decision for which the associated weight has
the maximal value.

It is reasonable in our case to replace the sampling step in
1) by an exploration of all possibilities that are compatible
with the STTCM code. This also explains the notation K -
is the number of transitions leaving each state in the space
time code. In step 3) the random resampling procedure can
be replaced with a max function i.e. P particles are retained
according to the value of their weights. In fact, such procedure
will produce a biased estimator, but not necessarily worse in
terms of Frame Error Rate - as we will see in the next section
such procedure (deterministic procedure) will lead to improved
FER.

Fig. 2. Graphical interpretation of the particle filtering algorithm.

Figure 2 provides some graphical interpretation to the pre-
sented method. The trellis depicts the overall trellis structure
i.e. the super-trellis. Even though the algorithm was not
presented using trellis, it can easily be cast on that framework.



The red dots represent the support for the filtering distribu-
tion, whereas the red thick lines represent trajectories of the
particles. The particle filtering is used here as a statistical
pruning technique. It should also be clear that particle filtering
in this context is similar to so-called T and M algorithms.
To be more precise: particle filtering subsumes somewhat
heuristically developed T and M algorithms and provides a
firm statistical framework.

It is possible to extend the proposed technique to provide
soft estimates of the transmitted symbols. One way is to
introduce a backward recursion that would perform fixed
interval smoothing on the filter grid, as proposed in [10] in
the context of somewhat simpler setup.

A. Complexity

The complexity of the optimal solution i.e. Viterbi over
super-trellis in a general case is Copt = O (

SMNT (L−1)
)
,

where S in the number of STTCM states and M is the
cardinality of the signalling alphabet. The complexity of the
turbo solution is Cturbo = Imax (Ceq + CSTTCM), this number
strongly depends on the complexity of the MIMO equliser
Ceq . The complexity order of the soft STTCM decoder is
Ceq = O (S). The complexity order of the particle filter is
simply Cpart = O (N), N - number of particles.

V. NUMERICAL RESULTS

In this section we investigate the performance of the pro-
posed techniques. As an example we choose a system with
NT = NR = 2 antennas that uses a 16 state 4-PSK code of
[11]. A frame is set to 192 symbols (including 2 terminating
symbols). The system transmits the information frame over
a wideband channel with L = 3 taps, where each tap is iid
hm,n,τ ∼ CN (

0, 1
L

)
. The channels are kept constant during

the duration of a frame. Figure 3 depicts the performance of
a turbo system [3], reduced complexity turbo [5] and two
benchmarking scenarios. The benchmark ”ML narrowband”
refers to a case where L = 1 (narrowband channel) with ML
(Viterbi detection). The benchmark ”ML narrow fixed” refers
to a case where L = 1, and hm,n,1 = 1. Two re-sampling
schemes for the proposed technique are investigated: random
re-sampling and deterministic max procedure. Figures 4 and
5 refer to those scenarios respectively. The particle filter with
the deterministic max procedure is superior compared to the
M-BCJR reduced complexity technique. This is clearly seen
in figure 6. At the same time it offers reduced complexity
detection.

VI. CONCLUSIONS

This paper presents a technique for the detection of space
time trellis codes that are transmitted over wideband channels.
The detection technique is based on a sequential Monte
Carlo technique - particle filtering (aka sequential importance
sampling). It offers an improved performance as compared to
M-BCJR suboptimal detector. At the same time the detection
complexity is reduced significantly. The technique provides
a performance/complexity trade-off that is tuned by a single
parameter: the number of particles.
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Fig. 3. Performance of the particle filter based joint STTCM detector and
MIMO equaliser, NT = NR = 2, 3 tap Rayleigh faded channel; Turbo BCJR
and M-BCJR.
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Fig. 4. Performance of the particle filter based joint STTCM detector and
MIMO equaliser, NT = NR = 2, 3 tap Rayleigh faded channel; Stochastic
re-sampling procedure.
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