933 research outputs found

    Jefferson Digital Commons quarterly report: April-June 2019

    Get PDF
    This quarterly report includes: Articles CREATE Day Presentations Dissertations From the Archives Grand Rounds and Lectures House Staff Quality Improvement and Patient Safety Posters JCIPE Student Hotspotting Posters Journals and Newsletters MPH Capstone Presentations Posters Sigma Xi Research Day What People are Saying About the Jefferson Digital Common

    Chapter Integrative Systems Biology Resources and Approaches in Disease Analytics

    Get PDF
    Currently, our analytical competences are struggling to keep-up the pace of in-deep analysis of all generated large-scale data resultant of high-throughput omics platforms. While, a substantial effort was spent on methods enhancement regarding technical aspects across many detection omics platforms, the development of integrative down-stream approaches is still challenging. Systems biology has an immense applicability in the biomedical and pharmacological areas since the main goal of those focuses in the translation of measured outputs into potential markers of a Human ailment and/or to provide new compound leads for drug discovery. This approach would become more straightforward and realistic to use in standard analysis workflows if the collation of all available information of every component of a biological system was ensured into a single database framework, instead of search and fetch a single component at time across a scatter of databases resources. Here, we will describe several database resources, standalone and web-based tools applied in disease analytics workflows based in data-driven integration of outputs of multi-omic detection platforms

    SALMANTICOR study. Rationale and design of a population-based study to identify structural heart disease abnormalities: a spatial and machine learning analysis

    Get PDF
    [EN]Introduction: This study aims to obtain data on the prevalence and incidence of structural heart disease in a population setting and, to analyse and present those data on the application of spatial and machine learning methods that, although known to geography and statistics, need to become used for healthcare research and for political commitment to obtain resources and support effective public health programme implementation. Methods and analysis: We will perform a cross-sectional survey of randomly selected residents of Salamanca (Spain). 2400 individuals stratified by age and sex and by place of residence (rural and urban) will be studied. The variables to analyse will be obtained from the clinical history, different surveys including social status, Mediterranean diet, functional capacity, ECG, echocardiogram, VASERA and biochemical as well as genetic analysis. Ethics and dissemination: The study has been approved by the ethical committee of the healthcare community. All study participants will sign an informed consent for participation in the study. The results of this study will allow the understanding of the relationship between the different influencing factors and their relative importance weights in the development of structural heart disease

    Immune cell proteomes

    Get PDF

    Rapid prediction of multidrug-resistant klebsiella pneumoniae through deep learning analysis of sers spectra

    Get PDF
    Klebsiella pneumoniae is listed by the WHO as a priority pathogen of extreme importance that can cause serious consequences in clinical settings. Due to its increasing multidrug resistance all over the world, K. pneumoniae has the potential to cause extremely difficult-To-Treat infections. Therefore, rapid and accurate identification of multidrug-resistant K. pneumoniae in clinical diagnosis is important for its prevention and infection control. However, the limitations of conventional and molecular methods significantly hindered the timely diagnosis of the pathogen. As a label-free, noninvasive, and low-cost method, surface-enhanced Raman scattering (SERS) spectroscopy has been extensively studied for its application potentials in the diagnosis of microbial pathogens. In this study, we isolated and cultured 121 K. pneumoniae strains from clinical samples with different drug resistance profiles, which included polymyxin-resistant K. pneumoniae (PRKP; n = 21), carbapenem-resistant K. pneumoniae, (CRKP; n = 50), and carbapenemsensitive K. pneumoniae (CSKP; n = 50). For each strain, a total of 64 SERS spectra were generated for the enhancement of data reproducibility, which were then computationally analyzed via the convolutional neural network (CNN). According to the results, the deep learning model CNN plus attention mechanism could achieve a prediction accuracy as high as 99.46%, with robustness score of 5-fold cross-validation at 98.87%. Taken together, our results confirmed the accuracy and robustness of SERS spectroscopy in the prediction of drug resistance of K. pneumoniae strains with the assistance of deep learning algorithms, which successfully discriminated and predicted PRKP, CRKP, and CSKP strains. IMPORTANCE: This study focuses on the simultaneous discrimination and prediction of Klebsiella pneumoniae strains with carbapenem-sensitive, carbapenem-resistant, and polymyxin-resistant phenotypes. The implementation of CNN plus an attention mechanism makes the highest prediction accuracy at 99.46%, which confirms the diagnostic potential of the combination of SERS spectroscopy with the deep learning algorithm for antibacterial susceptibility testing in clinical settings

    xTrimoPGLM: Unified 100B-Scale Pre-trained Transformer for Deciphering the Language of Protein

    Full text link
    Protein language models have shown remarkable success in learning biological information from protein sequences. However, most existing models are limited by either autoencoding or autoregressive pre-training objectives, which makes them struggle to handle protein understanding and generation tasks concurrently. We propose a unified protein language model, xTrimoPGLM, to address these two types of tasks simultaneously through an innovative pre-training framework. Our key technical contribution is an exploration of the compatibility and the potential for joint optimization of the two types of objectives, which has led to a strategy for training xTrimoPGLM at an unprecedented scale of 100 billion parameters and 1 trillion training tokens. Our extensive experiments reveal that 1) xTrimoPGLM significantly outperforms other advanced baselines in 18 protein understanding benchmarks across four categories. The model also facilitates an atomic-resolution view of protein structures, leading to an advanced 3D structural prediction model that surpasses existing language model-based tools. 2) xTrimoPGLM not only can generate de novo protein sequences following the principles of natural ones, but also can perform programmable generation after supervised fine-tuning (SFT) on curated sequences. These results highlight the substantial capability and versatility of xTrimoPGLM in understanding and generating protein sequences, contributing to the evolving landscape of foundation models in protein science
    corecore