2,067 research outputs found

    Automatic Environmental Sound Recognition: Performance versus Computational Cost

    Get PDF
    In the context of the Internet of Things (IoT), sound sensing applications are required to run on embedded platforms where notions of product pricing and form factor impose hard constraints on the available computing power. Whereas Automatic Environmental Sound Recognition (AESR) algorithms are most often developed with limited consideration for computational cost, this article seeks which AESR algorithm can make the most of a limited amount of computing power by comparing the sound classification performance em as a function of its computational cost. Results suggest that Deep Neural Networks yield the best ratio of sound classification accuracy across a range of computational costs, while Gaussian Mixture Models offer a reasonable accuracy at a consistently small cost, and Support Vector Machines stand between both in terms of compromise between accuracy and computational cost

    Hacking Smart Machines with Smarter Ones: How to Extract Meaningful Data from Machine Learning Classifiers

    Full text link
    Machine Learning (ML) algorithms are used to train computers to perform a variety of complex tasks and improve with experience. Computers learn how to recognize patterns, make unintended decisions, or react to a dynamic environment. Certain trained machines may be more effective than others because they are based on more suitable ML algorithms or because they were trained through superior training sets. Although ML algorithms are known and publicly released, training sets may not be reasonably ascertainable and, indeed, may be guarded as trade secrets. While much research has been performed about the privacy of the elements of training sets, in this paper we focus our attention on ML classifiers and on the statistical information that can be unconsciously or maliciously revealed from them. We show that it is possible to infer unexpected but useful information from ML classifiers. In particular, we build a novel meta-classifier and train it to hack other classifiers, obtaining meaningful information about their training sets. This kind of information leakage can be exploited, for example, by a vendor to build more effective classifiers or to simply acquire trade secrets from a competitor's apparatus, potentially violating its intellectual property rights

    The role of speech technology in biometrics, forensics and man-machine interface

    Get PDF
    Day by day Optimism is growing that in the near future our society will witness the Man-Machine Interface (MMI) using voice technology. Computer manufacturers are building voice recognition sub-systems in their new product lines. Although, speech technology based MMI technique is widely used before, needs to gather and apply the deep knowledge of spoken language and performance during the electronic machine-based interaction. Biometric recognition refers to a system that is able to identify individuals based on their own behavior and biological characteristics. Fingerprint success in forensic science and law enforcement applications with growing concerns relating to border control, banking access fraud, machine access control and IT security, there has been great interest in the use of fingerprints and other biological symptoms for the automatic recognition. It is not surprising to see that the application of biometric systems is playing an important role in all areas of our society. Biometric applications include access to smartphone security, mobile payment, the international border, national citizen register and reserve facilities. The use of MMI by speech technology, which includes automated speech/speaker recognition and natural language processing, has the significant impact on all existing businesses based on personal computer applications. With the help of powerful and affordable microprocessors and artificial intelligence algorithms, the human being can talk to the machine to drive and control all computer-based applications. Today's applications show a small preview of a rich future for MMI based on voice technology, which will ultimately replace the keyboard and mouse with the microphone for easy access and make the machine more intelligent

    Statistical Approaches for Signal Processing with Application to Automatic Singer Identification

    Get PDF
    In the music world, the oldest instrument is known as the singing voice that plays an important role in musical recordings. The singer\u27s identity serves as a primary aid for people to organize, browse, and retrieve music recordings. In this thesis, we focus on the problem of singer identification based on the acoustic features of singing voice. An automatic singer identification system is constructed and has achieved a very high identification accuracy. This system consists of three crucial parts: singing voice detection, background music removal and pattern recognition. These parts are introduced and explored in great details in this thesis. To be specific, in terms of the singing voice detection, we firstly study a traditional method, double GMM. Then an improved method, namely single GMM, is proposed. The experimental result shows that the detection accuracy of single GMM can be achieved as high as 96.42%. In terms of the background music removal, Non-negative Matrix Factorization (NMF) and Robust Principal Component Analysis (RPCA) are demonstrated. The evaluation result shows that RPCA outperforms NMF. In terms of pattern recognition, we explore the algorithms of Support Vector Machine (SVM) and Gaussian Mixture Model (GMM). Based on the experimental results, it turns out that the prediction accuracy of GMM classifier is about 16% higher than SVM

    Forensic and Automatic Speaker Recognition System

    Get PDF
    Current Automatic Speaker Recognition (ASR) System has emerged as an important medium of confirmation of identity in many businesses, ecommerce applications, forensics and law enforcement as well. Specialists trained in criminological recognition can play out this undertaking far superior by looking at an arrangement of acoustic, prosodic, and semantic attributes which has been referred to as structured listening. An algorithmbased system has been developed in the recognition of forensic speakers by physics scientists and forensic linguists to reduce the probability of a contextual bias or pre-centric understanding of a reference model with the validity of an unknown audio sample and any suspicious individual. Many researchers are continuing to develop automatic algorithms in signal processing and machine learning so that improving performance can effectively introduce the speaker’s identity, where the automatic system performs equally with the human audience. In this paper, I examine the literature about the identification of speakers by machines and humans, emphasizing the key technical speaker pattern emerging for the automatic technology in the last decade. I focus on many aspects of automatic speaker recognition (ASR) systems, including speaker-specific features, speaker models, standard assessment data sets, and performance metric

    Visual Speech Recognition using Histogram of Oriented Displacements

    Get PDF
    Lip reading is the recognition of spoken words from the visual information of lips. It has been of considerable interest in the Computer Vision and Speech Recognition communities to automate this process using computer algorithms. In this thesis, we have developed a novel method involving describing visual features using fixed length descriptors called Histogram of Oriented Displacements to which we apply Support Vector Machines for recognition of spoken words. Using this method on the CUAVE database we have achieved a recognition rate of 81%

    Text-Independent Speaker Identification using Statistical Learning

    Get PDF
    The proliferation of voice-activated devices and systems and over-the-phone bank transactions has made our daily affairs much easier in recent times. The ease that these systems offer also call for a need for them to be fail-safe against impersonators. Due to the sensitive information that might be shred on these systems, it is imperative that security be an utmost concern during the development stages. Vital systems like these should incorporate a functionality of discriminating between the actual speaker and impersonators. That functionality is the focus of this thesis. Several methods have been proposed to be used to achieve this system and some success has been recorded so far. However, due to the vital role this system has to play in securing critical information, efforts have been continually made to reduce the probability of error in the systems. Therefore, statistical learning methods or techniques are utilized in this thesis because they have proven to have high accuracy and efficiency in various other applications. The statistical methods used are Gaussian Mixture Models and Support Vector Machines. These methods have become the de facto techniques for designing speaker identification systems. The effectiveness of the support vector machine is dependent on the type of kernel used. Several kernels have been proposed for achieving better results and we also introduce a kernel in this thesis which will serve as an alternative to the already defined ones. Other factors including the number of components used in modeling the Gaussian Mixture Model (GMM) affect the performance of the system and these factors are used in this thesis and exciting results were obtained

    VOICE BIOMETRICS UNDER MISMATCHED NOISE CONDITIONS

    Get PDF
    This thesis describes research into effective voice biometrics (speaker recognition) under mismatched noise conditions. Over the last two decades, this class of biometrics has been the subject of considerable research due to its various applications in such areas as telephone banking, remote access control and surveillance. One of the main challenges associated with the deployment of voice biometrics in practice is that of undesired variations in speech characteristics caused by environmental noise. Such variations can in turn lead to a mismatch between the corresponding test and reference material from the same speaker. This is found to adversely affect the performance of speaker recognition in terms of accuracy. To address the above problem, a novel approach is introduced and investigated. The proposed method is based on minimising the noise mismatch between reference speaker models and the given test utterance, and involves a new form of Test-Normalisation (T-Norm) for further enhancing matching scores under the aforementioned adverse operating conditions. Through experimental investigations, based on the two main classes of speaker recognition (i.e. verification/ open-set identification), it is shown that the proposed approach can significantly improve the performance accuracy under mismatched noise conditions. In order to further improve the recognition accuracy in severe mismatch conditions, an approach to enhancing the above stated method is proposed. This, which involves providing a closer adjustment of the reference speaker models to the noise condition in the test utterance, is shown to considerably increase the accuracy in extreme cases of noisy test data. Moreover, to tackle the computational burden associated with the use of the enhanced approach with open-set identification, an efficient algorithm for its realisation in this context is introduced and evaluated. The thesis presents a detailed description of the research undertaken, describes the experimental investigations and provides a thorough analysis of the outcomes

    An on-line VAD based on Multi-Normalisation Scoring (MNS) of observation likelihoods

    Get PDF
    Preprint del artículo públicado online el 31 de mayo 2018Voice activity detection (VAD) is an essential task in expert systems that rely on oral interfaces. The VAD module detects the presence of human speech and separates speech segments from silences and non-speech noises. The most popular current on-line VAD systems are based on adaptive parameters which seek to cope with varying channel and noise conditions. The main disadvantages of this approach are the need for some initialisation time to properly adjust the parameters to the incoming signal and uncertain performance in the case of poor estimation of the initial parameters. In this paper we propose a novel on-line VAD based only on previous training which does not introduce any delay. The technique is based on a strategy that we have called Multi-Normalisation Scoring (MNS). It consists of obtaining a vector of multiple observation likelihood scores from normalised mel-cepstral coefficients previously computed from different databases. A classifier is then used to label the incoming observation likelihood vector. Encouraging results have been obtained with a Multi-Layer Perceptron (MLP). This technique can generalise for unseen noise levels and types. A validation experiment with two current standard ITU-T VAD algorithms demonstrates the good performance of the method. Indeed, lower classification error rates are obtained for non-speech frames, while results for speech frames are similar.This work was partially supported by the EU (ERDF) under grant TEC2015-67163-C2-1-R (RESTORE) (MINECO/ERDF, EU) and by the Basque Government under grant KK-2017/00043 (BerbaOla)
    corecore