35,357 research outputs found

    AN EFFICIENT METHOD TO FEED HIGH RESOLUTION IMAGES TO FACIAL ANALYSIS SYSTEMS

    Get PDF
    Image Processing is any form of signal processing for which the image is an input such as a photograph or video frame. The output of image processing may be either an image or a set of characteristics or parameters related to the image. In many facial analysis systems like Face Recognition face is used as an important biometric. Facial analysis systems need High Resolution images for their processing. The video obtained from inexpensive surveillance cameras are of poor quality. Processing of poor quality images leads to unexpected results. To detect face images from a video captured by inexpensive surveillance cameras, we will use AdaBoost algorithm. If we feed those detected face images having low resolution and low quality to face recognition systems they will produce some unstable and erroneous results. Because these systems have problem working with low resolution images. Hence we need a method to bridge the gap between on one hand low- resolution and low-quality images and on the other hand facial analysis systems. Our approach is to use a Reconstruction Based Super Resolution method. In Reconstruction Based Super Resolution method we will generate a face-log containing images of similar frontal faces of the highest possible quality using head pose estimation technique. Then, we use a Learning Based Super-Resolution algorithm applied to the result of the reconstruction-based part to improve the quality by another factor of two. Hence the total system quality factor will be improved by four

    Global motion based video super-resolution reconstruction using discrete wavelet transform

    Get PDF
    Different from the existing super-resolution (SR) reconstruction approaches working under either the frequency-domain or the spatial- domain, this paper proposes an improved video SR approach based on both frequency and spatial-domains to improve the spatial resolution and recover the noiseless high-frequency components of the observed noisy low-resolution video sequences with global motion. An iterative planar motion estimation algorithm followed by a structure-adaptive normalised convolution reconstruction method are applied to produce the estimated low-frequency sub-band. The discrete wavelet transform process is employed to decompose the input low-resolution reference frame into four sub-bands, and then the new edge-directed interpolation method is used to interpolate each of the high-frequency sub-bands. The novelty of this algorithm is the introduction and integration of a nonlinear soft thresholding process to filter the estimated high-frequency sub-bands in order to better preserve the edges and remove potential noise. Another novelty of this algorithm is to provide flexibility with various motion levels, noise levels, wavelet functions, and the number of used low-resolution frames. The performance of the proposed method has been tested on three well-known videos. Both visual and quantitative results demonstrate the high performance and improved flexibility of the proposed technique over the conventional interpolation and the state-of-the-art video SR techniques in the wavelet- domain

    Video-rate computational super-resolution and integral imaging at longwave-infrared wavelengths

    Get PDF
    We report the first computational super-resolved, multi-camera integral imaging at long-wave infrared (LWIR) wavelengths. A synchronized array of FLIR Lepton cameras was assembled, and computational super-resolution and integral-imaging reconstruction employed to generate video with light-field imaging capabilities, such as 3D imaging and recognition of partially obscured objects, while also providing a four-fold increase in effective pixel count. This approach to high-resolution imaging enables a fundamental reduction in the track length and volume of an imaging system, while also enabling use of low-cost lens materials.Comment: Supplementary multimedia material in http://dx.doi.org/10.6084/m9.figshare.530302

    Image enhancement from a stabilised video sequence

    Get PDF
    The aim of video stabilisation is to create a new video sequence where the motions (i.e. rotations, translations) and scale differences between frames (or parts of a frame) have effectively been removed. These stabilisation effects can be obtained via digital video processing techniques which use the information extracted from the video sequence itself, with no need for additional hardware or knowledge about camera physical motion. A video sequence usually contains a large overlap between successive frames, and regions of the same scene are sampled at different positions. In this paper, this multiple sampling is combined to achieve images with a higher spatial resolution. Higher resolution imagery play an important role in assisting in the identification of people, vehicles, structures or objects of interest captured by surveillance cameras or by video cameras used in face recognition, traffic monitoring, traffic law reinforcement, driver assistance and automatic vehicle guidance systems

    Investigation of a new method for improving image resolution for camera tracking applications

    Get PDF
    Camera based systems have been a preferred choice in many motion tracking applications due to the ease of installation and the ability to work in unprepared environments. The concept of these systems is based on extracting image information (colour and shape properties) to detect the object location. However, the resolution of the image and the camera field-of- view (FOV) are two main factors that can restrict the tracking applications for which these systems can be used. Resolution can be addressed partially by using higher resolution cameras but this may not always be possible or cost effective. This research paper investigates a new method utilising averaging of offset images to improve the effective resolution using a standard camera. The initial results show that the minimum detectable position change of a tracked object could be improved by up to 4 times

    Spatiotemporal super-resolution for low bitrate H.264 video

    Get PDF
    • …
    corecore