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SPATIOTEMPORAL SUPER-RESOLUTION FOR LOW BITRATE H.264 VIDEO

N. Anantrasirichai, C.N. Canagarajah
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ABSTRACT
Super-resolution and frame interpolation enhance low reso-
lution low-framerate videos. Such techniques are especially
important for limited bandwidth communications. This paper
proposes a novel technique to up-scale videos compressed
with H.264 at low bit-rate both in spatial and temporal di-
mensions. A quantisation noise model is used in the super-
resolution estimator, designed for low bitrate video, and a
weighting map for decreasing inaccuracy of motion esti-
mation are proposed. Results show improvement both in
rate-distortion and perceived image quality.

Index Terms— Video enhancement, Interpolation,

1. INTRODUCTION

Telecommunications in rural areas suffer from problems of
poor communications. Therefore the solution which is in-
creasingly being turned to is the use of wireless communica-
tion systems such as satellite and GSM based technologies.
The advantage is clearly that these are cost-effective to set up,
but at the price of limiting the bandwidth available.

One of the potential uses for such telecommunication sys-
tems is for transmission of video, for applications such as re-
mote medicine, agricultural advice and education. These ap-
plications require the video to be of high enough resolution
and quality – e.g. attempting to diagnose a medical problem
from a harshly compressed QCIF video is not possible. Due
to the massively limited bandwidth, existing video solutions
(such as H.264) of acceptable quality are not suitable in this
scenario. Moreover, many such rural areas of interest are in
developing countries, which therefore mean that high resolu-
tion cameras are not available, removing the possibility of us-
ing scalable video coding and other associated techniques.

Two possible solutions to this problem are super-resolution
and frame rate up conversion which both fit around an existing
compression system. Super-resolution is a spatial upsampling
technique employed at the decoder which attempts to better
estimate the high-resolution (from the camera) source video
using information from multiple low resolution frames. Frame
rate conversion is an equivalent technique which works in the
temporal domain: extra frames are interpolated between the
low frame rate decoded video in an attempt to smooth the mo-
tion.

Super-resolution is an area which is of considerable inter-
est, however the majority of work uses a downsampled ver-

sion of the high-resolution video source, possibly with added
noise – very little work uses source video which has been com-
pressed. Therefore although the work has lots of valid con-
cepts, some of the modelling and assumptions (e.g. that any
noise present is Gaussian) are ill-formed.

This paper proposes a novel technique for upsampling low
bitrate video compressed using H.264, which uses information
which is present in an H.264 bitstream to perform spatiotem-
poral super-resolution. We also introduce a quantisation noise
model used in the super-resolution estimator, particularly for
low bitrate video, and a weighting map for decreasing inaccu-
racy of motion estimation.

The remainder of this paper is organised as follows: sec-
tion 2 discusses related work in both super-resolution estima-
tion and frame rate conversion, before the proposed method-
ology is presented in section 3. Results are reported in section
4 and the paper is concluded and further work suggested in
section 5.

2. RELATED WORK

As mentioned in the introduction, little work has been carried
out on the application of super-resolution to compressed video.
However a lot of the background to super-resolution is of in-
terest. Research on super-resolution can be divided into two
main streams – spatial and temporal. Section 2.1 introduces
related work on the former whilst section 2.2 discusses the lat-
ter.

2.1. Spatial Super-Resolution Estimation

Super-resolution (SR) image reconstruction increases the res-
olution of an image by observing multiple low-resolution (LR)
images. In video sequences, successive frames are employed
to construct a high-resolution (HR) frame. Although the basic
concept of the SR algorithm is simple, there are many prob-
lems related to perceptual quality and restriction of available
data. The LR images are typically aliased and have sub-pixel
shifts between one another, and the different data are possibly
located at the same point in the HR image and some points in
the HR image do not correspond to any information from the
LR images.

The first proposed SR technique was formulated in the fre-
quency domain due to simplicity and cost [1], but exhibits
high sensitivity to model errors. Later the spatial domain has



been considered but the early approaches are generally com-
plicated. Consequently maximum likelihood estimation has
been introduced with proper prior information and the assump-
sion of additive Gaussian noise [2]. For the reconstruction
process, Bayesian interpretation and the Tikhonov regularisa-
tion is employed as statistical estimation problem. The funda-
mental SR techniques have been reviewed in [3]. The newest
technique developed in [7] introduces a spatiotemporal video
super-resolution using a multidimensional kernel regression.

Most existing SR techniques have been proposed for un-
compressed images. Unfortunately, super-resolution algo-
rithms designed for uncompressed data do not perform well
when directly applied to decompressed image sequences, es-
pecially for high compression rates. The reason is that the
quantization error introduced during the compression process
is often the dominant source of error when the compression
rate is high and this error is not modelled. In [4], a method for
SR MPEG video is introduced using quantisation information
embedded in the compressed video stream. A Bayesian SR
reconstruction technique is used to model compression and
exploit the quantization step size information for reconstruc-
tion [5]. This technique shows promising results for high
bitrate; however, the image quality is insignificantly improved
at low bitrate (256kbps). The method applied to compressed
video has been further developed by improving the registration
precision and the prior model [6].

2.2. Frame Rate Up-Conversion

Decreasing frame rate generally saves bits transmitted/stored
but produces artefacts of temporal visual degradation. Frame
rate up-conversion (FRUC) is then required at the receiver.

Motion compensated frame interpolation (MCFI) is the
most common technique for interpolating frame as it provided
simplicity with desirable performance. The concept uses the
motion vectors estimating motion between the existing frames,
normally forward and backward frames, to construct the inter-
val frame. The interpolated frame located between these two
frames consequently uses motion directions with fractional
values depending on temporal distance between the interpo-
lated frame and two reference frames. This simple approach
cannot deal with occlusions where holes are present in the
interpolated frame. Authors in [8] proposed the bi-directional
motion estimation by dividing the interpolated frame into non-
overlapping blocks. Then the motion vector for each block is
obtained by positioning the forward and backward reference
frames in opposite directions. Later, they proposed a variable
block size to achieve better performance [9].

3. PROPOSED SCHEME

The proposed scheme enhances a decoded LR low-framerate
video by applying SR method to construct a HR low-framerate
video, whilst applying a FRUC method to construct a LR high-
framerate video in parallel. Afterward the FRUC method en-

hances the HR low-framerate video using the prepared LR
high-framerate video to generate a HR high-framerate video.

We apply spatial super-resolution before frame interpola-
tion (SR → FI) since it processes faster than the alternative
order (FI → SR) as the more complex SR is working with
fewer frames. Generally applying FI → SR yields better qual-
ity compared to SR→ FI because the iterations of the SR pro-
cess (will be explained in 3.1) is able to correct some of the
errors produced from the FI process. However, in our scheme
the FI for the HR video exploits the interpolated frame of the
LR video as a guide thereby achieving comparable quality (as
shown in the result section).

3.1. Spatial super-resolution

The decoded low-resolution frame yk (formed by lexicograph-
ical ordering) is reconstructed using motion vectors vk,i and
reference frames yi as shown in equation 1 [5].

yk = T−1Q

[
T

(
gk −

∑

∀i

C(vk,i)yi

)]
+

∑

∀i

C(vk,i)yi (1)

where C(·) and Q[·] represent the prediction and quantisa-
tion processes, respectively, and T and T−1 represent the for-
ward and inverse transform matrix, respectively. The LR im-
age gk relates to its HR version fk as gk = AHfk + nk,
where H is a blur filter, A is a decimation operation and nk

is acquisition noise. The relationship between yk and fk is
irreversible. The estimator is therefore employed to estimate
fk. Here we assume that the quantisation noise is dominant
and the compression parameters can be extracted from bit-
stream. A Bayesian approach is consequently used as a pos-
teriori probability density function (PDF) of fk can be estab-
lished. The estimated HR frame f̂k is then found from a maxi-
mum a-posteriori (MAP) estimator.

f̂k = arg max
fk

{
log

∏

l

p(yl|fk) + log p(fk)

}
(2)

p(yl|fk) ∝ exp

{
−1

2
(yl −AHC(dl,k)fk)T

× K−1
l (yl −AHC(dl,k)fk)

} (3)

p(fk) ∝ exp {−λ1 ‖∇fk‖} (4)

where K−1
l is an inverse covariance matrix and dl,k is a dis-

placement in the HR frames corresponding to the motion vec-
tors vl,k in equation 1. Ringing artefacts introduced by the
coarse quantisation is used for modelling the first density func-
tion p(fk). Note that H.264 has deblocking filter, so the block-
ing artefact is not included in p(fk). The ∇fk can be seen as
the regularization term defined as∇fk = (fxxf2

y−2fxfyfxy+
fyyf2

y )/(f2
x + f2

y ) [6], where λ1 is a weighting constant (Here
λ1 = 0.1). Then equation 2 can be rewritten as

f̂k = arg min
fk





k+TF∑

l=k−TB

(yl −AHC(dl,k)fk)T

× K−1
l (yl −AHC(dl,k)fk) + λ1 ‖∇fk‖

}
(5)

In the following sections the proposed quantisation noise
model for low bitrate video is described before the technique



for using the motion estimation error to decide how much the
displacement can be trusted is outlined.

3.1.1. Quantisation Noise Model

The previous work on spatial super-resolution for H.264 com-
pressed video has been primarily concerned with high bit-rate
scenarios and as such has modelled the quantisation noise as
uniform for each frequency. This assumption does not hold for
low bit-rate video, where the quantisation noise is distributed
in a Laplacian fashion. The variance of these distributions
varies across different frequency bands, with higher frequen-
cies yielding lower variance.

The covariance in frequency domain KT for each 4 × 4
block transform is found here experimentally by looking at
five standard test sequences (Foreman, Mobile, Akiyo, Bus &
Carphone), and is shown in equation 6.

KT =




4 2 0 0
2 0 0 0
0 0 0 0
0 0 0 0




q2

100
+




21 16 21 7
16 21 14 5
21 14 5 2
7 5 2 0.4




q

10

+




−16.1 −10.4 −16.1 1.1
−10.4 −16.1 −7.2 3.2
−16.1 −7.2 3.2 6.1
1.1 3.2 6.1 3.5




(6)

where q is a quantisation step size embeded in the decoded
bitstream. Then the covariance matrix in equation 3 will be
Kl = T−1KT T−1T

, where KT is a diagonal covariance ma-
trix of repeat repositioned KT associating to yl.

3.1.2. Motion Estimation Error

The prediction process for the displacement C(dl,k), shown in
equation 5, employs block-based matching with initial motion
vectors extracted from H.264 video. That is, dl,k = m · vl,k,
where m is the proportion between the size of the HR frame
and the LR frame. Subsequently refining displacement is op-
erated in a small search window.

To reduce the error incurred for instances of displacement
of homogeneous blocks, the grid of blocks is offset on even
iterations by half a block.

The macroblock mode and decoded residual from the
H.264 bitstream are used to imply the areas of yl which are
difficult to match with areas in the reference frames. That is,
the areas with high energy εr

l decoded residual, or encoded
with intra mode are likely to be occlusions. Similarly the areas
with high energy of the compensated error εc

l = fl−C(dl,k)fk
could be occlusions.

εr
l and εc

l are employed to create the weighting maps to be
used in equation 5 as follows:

W x
l = 1− λ2 · (εx

l )2

1 + λ2 · (εx
l )2

, x ∈ {r, c} (7)

where λ2 is a decreasing rate. Here λ2 is chosen as 1
100 so

W x
l is defined as 0.5 when the intensity error is 10. Using the

steepest descent algorithm, the minimisation of equation 5 can
be found as

fn+1
k = fn

k − α




k+TF∑

l=k−TB

W c
l C(dk,l)H

T AT

× K−1
l W r

l

(
yl −AHC(dl,k)fn

k

)]
+ λ1 ‖∇fk‖

(8)

where fn+1
k and fn

k are the estimated HR frame at the (n+1)th
and nth interations, α is a relaxation parameter controlling rate
of convergence (Here α = 1).

The same maps are used to generate the initial value, f0
k ,

i.e. using the weighted average of the adjacent frames as
shown in equation 9 and the W c

k is 1. Note that if f̂l does not
yet exist, bilinear interpolation is employed.

f0k =

∑k+TF
l=k−TB W c

l C(dl,k)f̂l∑k+TF
i=k−TB W c

i

(9)

3.2. Frame Rate Up-Conversion

H.264 is a motion compensated codec, which means there is
temporal information available within the bitstream which can
be used in the motion estimation process. In the proposed
method the motion vectors and macroblock modes present in
the H.264 bitstream are used as the initial parameters for bilat-
eral motion estimation.

A frame to be interpolated is first divided into blocks
each of which in turn is estimated as the average of blocks of
pixels in the neighbouring frames yF , yB which produce the
minimum weighted sum of absolute differences, calculated as
shown in equation 10 and 11:

wd =
λ3 |d|2

1 + λ3 |d|2
(10)

SADd = wd

∑

(i,j)∈Bl

|yF (i + nF vi + di, j + nF vj

+dj)− yB(i− nBvi − nB

nF
di, j + nBvj − nB

nF
dj)

∣∣∣∣
(11)

where the weight wd is used to promote motion vectors which
are close to the initial one. This prevents a distant block with
homogeneous detail from being selected as a match between
frames. d = (di, dj) is a distance from the initial motion
vectors vi, vj extracted from H.264 bitstream, nF and nB are
the temporal distances to yF and yB , respectively. λ3 is a
scaling parameter. Here λ3 is chosen as 1

25 so w is defined
as 0.5 when the distance is 5 pixels from the initial motion
vector. Afterward an adaptively weighted vector-median filter
is employed to suppress outliers [9].

The frame rate of the LR video is enhanced using proposed
method explained above. The interpolated frames are then up-
sampled to high resolution using bilinear interpolation. Sub-
sequently as the current frame the motion compensation is ap-
plied using the neighbouring HR frames pre-generated via SR
method as references. Finally the motion is smoothed in the
same way applied to LR frames.



4. RESULTS

The proposed scheme was tested with three standard test
sequences: Foreman, Mobile, Carphone. The LR video se-
quences (QCIF format) were coded with H.264 at 15 frames
per second (fps) and were enhanced to CIF format at 30 fps.
The results were compared with the full resolution videos
coded with H.264 and the existing algorithms introduced in
[5] and [7].

Figures 1 and 2 show the results of the proposed technique
for three different sequences compared to the other algorithms
discussed. It can be seen that at low bitrate (50kbps) the pro-
posed scheme exhibits a 30kbps (37.5%) saving over the full
resolution version compressed with H.264 whilst maintaining
the same PSNR. The proposed scheme also outperforms the
scheme proposed in [5], which employs a uniform distribution
for modelling quantisation noise, by upto approximately 0.5
dB consistently across all bitrates. The algorithm proposed
in [7] is included in the experiment in order to demonstrate
the fact that algorithms which obtain promising results for un-
compressed videos don’t necessarily perform well with heav-
ily compressed data.

For Mobile sequence, the proposed scheme achieves less
impressive improvement in terms of PSNR over other meth-
ods compared the the other sequences (figures 1 & 2). This is
due to the high level of detail it contains, which is much more
senstive to the the downsampling stage present at the encoder
and hence makes recovery far more difficult.

Note that using PSNR to evaluate the perforamce of FI is
possibly not suitable because the reason interval frames are
inserted is to produce temporal smoothness, to increase the
subjective quality. The algorithm isn’t attempting to estimate
the original frames so much as it is attempting to make the
video less irritating for the observer.

25

26

27

28

29

30

31

32

33

34

0 40 80 120 160 200
bitrate (kbps @30fps)

P
S
N

R
 (

d
B

)

H.264

Proposed

FI->SR[Segall]

3DKernel[Takeda]

Fig. 1. Rate-distortion performance of Foreman

5. CONCLUSIONS & FUTURE WORK

This paper presents a novel technique for upsampling low bi-
trate video compressed using H.264. The coding parameters
embeded in the bitstreams are used to up-scaling both in spa-
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Fig. 2. Rate-distortion performance of Carphone

tial and temporal dimensions. A quantisation noise model
used in the SR estimator for low bitrate video is proposed.
Also the accuracy of the motion estimation is weighted to
avoid error accumulation produced in the iterative process.
The proposed scheme achieves a bitrate reduction compared
to transmitting HR video and gains an improvement of image
quality compared to the existing schemes. The more accurate
quantisation noise model will be considered using the details
of each video in the future.
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