260 research outputs found

    A sufficient condition for the existence of an anti-directed 2-factor in a directed graph

    Get PDF
    Let D be a directed graph with vertex set V and order n. An anti-directed hamiltonian cycle H in D is a hamiltonian cycle in the graph underlying D such that no pair of consecutive arcs in H form a directed path in D. An anti-directed 2-factor in D is a vertex-disjoint collection of anti-directed cycles in D that span V. It was proved in [3] that if the indegree and the outdegree of each vertex of D is greater than (9/16)n then D contains an anti-directed hamilton cycle. In this paper we prove that given a directed graph D, the problem of determining whether D has an anti-directed 2-factor is NP-complete, and we use a proof technique similar to the one used in [3] to prove that if the indegree and the outdegree of each vertex of D is greater than (24/46)n then D contains an anti-directed 2-factor

    Oriented trees and paths in digraphs

    Full text link
    Which conditions ensure that a digraph contains all oriented paths of some given length, or even a all oriented trees of some given size, as a subgraph? One possible condition could be that the host digraph is a tournament of a certain order. In arbitrary digraphs and oriented graphs, conditions on the chromatic number, on the edge density, on the minimum outdegree and on the minimum semidegree have been proposed. In this survey, we review the known results, and highlight some open questions in the area

    Arc Reversals in Tournaments.

    Get PDF

    Sets as graphs

    Get PDF
    The aim of this thesis is a mutual transfer of computational and structural results and techniques between sets and graphs. We study combinatorial enumeration of sets, canonical encodings, random generation, digraph immersions. We also investigate the underlying structure of sets in algorithmic terms, or in connection with hereditary graphs classes. Finally, we employ a set-based proof-checker to verify two classical results on claw-free graph

    Properly colored subgraphs in edge-colored graphs

    Get PDF
    corecore