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a b s t r a c t

Let D be a directed graph with vertex set V , arc set A, and order n. The graph underlying D is
the graph obtained fromD by replacing each arc (u, v) ∈ A by an undirected edge {u, v} and
then replacing each double edge by a single edge. An anti-directed (hamiltonian) cycle H inD
is a (hamiltonian) cycle in the graph underlying D such that no pair of consecutive arcs inH
formadirected path inD. An anti-directed 2-factor inD is a vertex-disjoint collection of anti-
directed cycles inD that span V . It was proved in Busch et al. (submitted for publication) [3]
that if the indegree and the outdegree of each vertex ofD is greater than 9

16n thenD contains
an anti-directed Hamilton cycle. In this paper we prove that given a directed graph D, the
problem of determining whether D has an anti-directed 2-factor is NP-complete, and we
use a proof technique similar to the one used in Busch et al. (submitted for publication) [3]
to prove that if the indegree and the outdegree of each vertex of D is greater than 24

46n then
D contains an anti-directed 2-factor.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a multigraph with vertex set V (G) and edge set E(G). For a vertex v ∈ V (G), the degree of v in G, denoted
by deg(v,G), is the number of edges of G incident to v. Let δ(G) = minv∈V (G){deg(v,G)}. The simple graph underlying
G, denoted by simp(G), is the graph obtained from G by replacing all multiple edges by single edges. A 2-factor in G is a
collection of vertex-disjoint cycles that span V (G). Let D be a directed graph with vertex set V (D) and arc set A(D). We recall
that a directed graph D can contain arcs (u, v) and (v, u) for any two different vertices u, v but no parallel arcs. For a vertex
v ∈ V (D), the outdegree (respectively, indegree) of v in D denoted by d+(v,D) (respectively, d−(v,D)) is the number of
arcs of D directed out of v (respectively, directed into v). Let δ(D) = minv∈V (D){min{d+(v,D), d−(v,D)}}. The multigraph
underlying D is the multigraph obtained from D by ignoring the directions of the arcs of D. A directed (Hamilton) cycle C in
D is a (Hamilton) cycle in the multigraph underlying D such that all pairs of consecutive arcs in C form a directed path in D.
An anti-directed (Hamilton) cycle C in D is a (Hamilton) cycle in the multigraph underlying D such that no pair of consecutive
arcs in C form a directed path in D. A directed 2-factor in D is a collection of vertex-disjoint directed cycles in D that span
V (D). An anti-directed 2-factor in D is a collection of vertex-disjoint anti-directed cycles in D that span V (D). Note that every
anti-directed cycle in Dmust have an even number of vertices. We refer the reader to standard books on graph theory [1,2,
9] for all terminology and notation that is not defined in this paper.

The following classical theorems by Dirac [6] and Ghouila-Houri [7] give sufficient conditions for the existence of a
Hamilton cycle in a graph G and for the existence of a directed Hamilton cycle in a directed graph D respectively.
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Theorem 1 ([6]). If G is a graph of order n ≥ 3 and δ(G) ≥
n
2 , then G contains a Hamilton cycle.

Theorem 2 ([7]). If D is a directed graph of order n and δ(D) ≥
n
2 , then D contains a directed Hamilton cycle.

Note that if D is a directed graph of even order n and δ(D) ≥
3
4n then D contains an anti-directed Hamilton cycle. To

see this, let G be the multigraph underlying D and let G′ be the subgraph of G consisting of the parallel edges of G. Now,
δ(D) ≥

3
4n implies that δ(simp(G′)) ≥

n
2 and hence Theorem 1 implies that simp(G′) contains a Hamilton cycle which in

turn implies that D contains an anti-directed Hamilton cycle because for each edge {u, v} of simp(G′) we have the directed
arcs (u, v) and (v, u) in D.

The following theorem by Grant [8] gives a sufficient condition for the existence of an anti-directed Hamilton cycle in a
directed graph D.

Theorem 3 ([8]). If D is a directed graph with even order n and if δ(D) ≥
2
3n +

√
n log(n) then D contains an anti-directed

Hamilton cycle.

In his paper Grant [8] conjectured that the theorem above can be strengthened to assert that if D is a directed graph with
even order n and if δ(D) ≥

1
2n then D contains an anti-directed Hamilton cycle. Mao-cheng Cai [4] gave a counter-example

to this conjecture. In [3] the following sufficient condition for the existence of an anti-directed Hamilton cycle in a directed
graph was proved.

Theorem 4 ([3]). Let D be a directed graph of even order n and suppose that 1
2 < p < 3

4 . If δ(D) ≥ pn and n > ln(4)
p− 1

2


ln


p+ 1

2
3
2 −p

 ,
then D contains an anti-directed Hamilton cycle.

It was shown in [3] that Theorem 4 implies the following improvement on the result in Theorem 3.

Corollary 1 ([3]). If D is a directed graph of even order n and δ(D) > 9
16n then D contains an anti-directed Hamilton cycle.

In this paper we seek to weaken the degree condition in Corollary 1, but still guarantee the existence of an anti-directed
2-factor. The following theorem (see [1]) gives a necessary and sufficient condition for the existence of a directed 2-factor
in a digraph D.

Theorem 5. A directed graph D = (V , A) has a directed 2-factor if and only if |


v∈X N+(v)| ≥ |X | for all X ⊆ V .

We note here that given a directed graph D the problem of determining whether D has a directed Hamilton cycle is known
to be NP-complete, whereas, there exists an O(

√
nm) algorithm (see [1]) to check if a directed graph D of order n and size

m has a directed 2-factor. On the other hand, the following theorem proves that given a directed graph D, the problem of
determining whether D has an anti-directed 2-factor is NP-complete. We are indebted to Sundar Vishwanathan [11] for
pointing out the short proof of Theorem 6 given below.

Theorem 6. Given a directed graph D, the problem of determining whether D has an anti-directed 2-factor is NP-complete.
Proof. Clearly the problem of determining whether D has an anti-directed 2-factor is in NP. A graph G is said to be k-edge
colorable if the edges of G can be colored with k colors in such a way that no two adjacent edges receive the same color. It
is well known that given a cubic graph G, it is NP-complete to determine if G is 3-edge colorable. Now, given a cubic graph
G = (V , E), construct a directed graph D = (V , A), where for each {u, v} ∈ E, we have the oppositely directed arcs (u, v)
and (v, u) in A. Now, G is 3-edge colorable if and only if E can be partitioned into 3 1-factors, or equivalently, a 1-factor
and a 2-factor consisting of only even cycles. Thus it is clear that G is 3-edge colorable if and only if D contains an anti-
directed 2-factor. This proves that the problem of determining whether a directed graph D has an anti-directed 2-factor is
NP-complete. �

In Section 2 of this paper we prove the following theorem that gives a sufficient condition for the existence of an anti-
directed 2-factor in a directed graph.

Theorem 7. Let D be a directed graph of even order n and suppose that 1
2 < p < 3

4 . If δ(D) ≥ pn and n > ln(4)
p− 1

2


ln


p+ 1

2
3
2 −p

 −

1
p− 1

2

 , then D contains an anti-directed 2-factor.

In Section 2 we will show that Theorem 7 implies the following corollary.

Corollary 2. If D is a directed graph of even order n and δ(D) > 24
46n then D contains an anti-directed 2-factor.

The result in Corollary 2 is almost certainly not the best possible. Let K⃗k denote the complete directed graph on k vertices
which has both oppositely directed arcs (u, v) and (v, u) for each pair of distinct vertices u and v. Let D(n) be the directed
graph consisting of two disjoint copies of K⃗ n

2
where n ≡ 2(mod 4). Note that δ(D(n)) =

n
2 −1 and thatD(n) does not contain

an anti-directed 2-factor. For each even integer n, Mao-cheng Cai [4] gave an example of a directed graph D′(n) on n vertices
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with δ(D′(n)) =
n
2 , and such that D′(n) does not contain an anti-directed Hamilton cycle. It is easy to see that the directed

graphD′(6) given byMao-cheng Cai does not contain an anti-directed 2-factorwhileD′(n) contains an anti-directed 2-factor
for all n ≥ 8. Based on these comments and our result in Corollary 2 we offer the following conjecture.

Conjecture 1. If D is a directed graph of even order n ≥ 8 and δ(D) ≥
1
2n then D contains an anti-directed 2-factor.

2. Proof of Theorem 7 and its corollary

A partition of a set S with |S| being even into S = X ∪ Y is an equipartition of S if |X | = |Y | =
|S|
2 . The proof of Theorem 4

mentioned in the Introduction made extensive use of the following theorem by Chvátal [5].

Theorem 8 ([5]). Let G be a bipartite graph of even order n and with equipartition V (G) = X ∪ Y . Let (d1, d2, . . . , dn) be the
degree sequence of G with d1 ≤ d2 ≤ · · · ≤ dn. If G does not contain a Hamilton cycle, then for some i ≤

n
4 we have di ≤ i and

d n
2

≤
n
2 − i.

Weprepare for the proof of Theorem7 by proving Theorems 10 and 11which give necessary degree conditions (similar to
those in Theorem8) for the non-existence of a 2-factor in a bipartite graphG of even order nwith equipartition V (G) = X∪Y .
Let G = (V , E) be a bipartite graph of even order n and with equipartition V (G) = X ∪ Y . For U ⊆ X (respectively U ⊆ Y )
define N(U) as being the set of vertices v ∈ Y (respectively v ∈ X) such that (u, v) ∈ E for some u ∈ U . For U ⊆ X
(respectively U ⊆ Y ) define N (2)(U) as being the multiset of vertices v ∈ Y (respectively v ∈ X) such that (u, v) ∈ E for
some u ∈ U and with v appearing twice in N (2)(U) if there are two or more vertices u ∈ U with (u, v) ∈ E and v appearing
once in N (2)(U) if there is exactly one u ∈ U with (u, v) ∈ E. We will use the following theorem by Ore [10] that gives a
necessary and sufficient condition for the non-existence of a 2-factor in a bipartite graph of even order nwith equipartition
V (G) = X ∪ Y .

Theorem 9 ([10]). Let G = (V , E) be a bipartite graph of even order andwith equipartition V (G) = X∪Y . G contains no 2-factor
if and only if there exists some U ⊆ X such that |N (2)(U)| < 2|U|.

For a bipartite graph G = (V , E) of even order n and with equipartition V (G) = X ∪Y , a set U ⊆ X or U ⊆ Y is defined to
be a deficient set of vertices in G if |N (2)(U)| < 2|U|. Theorems 10 and 11 use Theorem 9 to derive some degree conditions
that are necessary for a bipartite graph to not have a 2-factor.
We first prove four lemmas that will be used in the proof of Theorems 10 and 11.

Lemma 1. Let G be a bipartite graph of even order n and with equipartition V (G) = X ∪ Y . If U is a minimal deficient set of
vertices in G then 2|U| − 2 ≤ |N (2)(U)|.
Proof. Clear by the minimality of U . �

Lemma 2. Let G be a bipartite graph of even order n and with equipartition V (G) = X ∪ Y , and let U be a minimal deficient set
of vertices in G. Let M ⊆ N(U) be the set of vertices in N(U) that are adjacent to exactly one vertex in U. Then, no vertex of U is
adjacent to more than one vertex of M.
Proof. If a vertex u ∈ U is adjacent to two vertices of M , since U is a deficient set of vertices in G, we have |N (2)(U − u)| ≤

|N (2)(U)| − 2 < 2|U| − 2 = 2|U − u|. This implies that U − u is a deficient set of vertices in G, which in turn contradicts the
minimality of U . �

Lemma 3. Let G be a bipartite graph of even order n and with equipartition V (G) = X ∪ Y , and suppose that G does not contain
a 2-factor. If U is a minimal deficient set in G with |U| = k, then deg(u) ≤ k for each u ∈ U and |{u ∈ U : deg(u) ≤ k − 1}| ≥

k − 1.
Proof. Suppose that deg(u) ≥ k + 1 for some u ∈ U and let M ⊆ N(U) be the set of vertices in N(U) that are adjacent to
exactly one vertex in U . Then Lemma 2 implies that u is adjacent to at most one vertex inM which implies that u is adjacent
to at least k vertices in N(U) − M . This implies that |N (2)(U)| ≥ 2k, which contradicts the assumption that U is a deficient
set. This proves that deg(u) ≤ k for each u ∈ U . If two vertices in U have degree k then similarly Lemma 2 implies that
|N (2)(U)| ≥ 2k, which contradicts the assumption that U is a deficient set. This proves the second part of the lemma. �

Lemma 4. Let G = (V , E) be a bipartite graph of even order n and with equipartition V (G) = X ∪ Y and suppose that U ⊆ X is
a minimal deficient set in G. Let Y0 = {v ∈ Y : v ∉ N(U)}, Y1 = {v ∈ Y : |U ∩N(v)| = 1}, and Y2 = {v ∈ Y : |U ∩N(v)| ≥ 2}.
Let U∗

= Y0 ∪ Y1. Then U∗ is a deficient set in G.
Proof. Let X0 = X − U, X1 = {u ∈ U : (u, v) ∈ E for some v ∈ Y1}, and X2 = U − X1. Note that |X | = |Y | implies
that |X0|+|X1|+|X2| = |Y0|+|Y1|+|Y2|. Now, since by Lemma2wehave |X1| = |Y1|, this implies that |X0|+|X2| = |Y0|+|Y2|.
Since U is a deficient set we have |N (2)(U)| = |Y1| + 2|Y2| < 2|U| = 2(|X1| + |X2|). Hence, |Y1| + 2(|X0| + |X2| − |Y0|) <
2(|X1| + |X2|), which in turn implies that 2|X0| + |X1| < 2(|Y0| + |Y1|). This proves that U∗ is a deficient set in G. �

We are now ready to prove two theorems which give necessary degree conditions (similar to those in Theorem 8) for the
non-existence of a 2-factor in a bipartite graph G of even order nwith equipartition V (G) = X ∪ Y .
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Theorem 10. Let G be a bipartite graph of even order n = 4s ≥ 12 and with equipartition V (G) = X ∪ Y . Let (d1, d2, . . . , dn)
be the degree sequence of G with d1 ≤ d2 ≤ · · · ≤ dn. If G does not contain a 2-factor, then either

(1) for some k ≤
n
4 we have dk ≤ k and dk−1 ≤ k − 1, or,

(2) d n
4 −1 ≤

n
4 − 1.

Proof. We will prove that for some k ≤
n
4 ,G contains k vertices with degree at most k, and that of these k vertices, (k − 1)

vertices have degree at most (k − 1), or, that G contains at least n
4 − 1 vertices of degree at most n

4 − 1.
Since G does not contain a 2-factor, Theorem 9 implies that G contains a deficient set of vertices. Let U ⊆ X be a minimal
deficient set of vertices in G. If |U| ≤

n
4 , then Lemma 3 implies that statement (1) is verified and so the conclusion holds.

Now suppose that |U| > n
4 . As in the statement of Lemma 4, let Y0 = {v ∈ Y : v ∉ N(U)}, Y1 = {v ∈ Y : |U ∩ N(v)| = 1},

and Y2 = {v ∈ Y : |U ∩ N(v)| ≥ 2}. Let U∗
= Y0 ∪ Y1. Then Lemma 4 implies that U∗ is a deficient set in G. If |U∗

| ≤
n
4 then

again statement (1) is verified and so the conclusion holds.
Now suppose that |U∗

| > n
4 , and as in the proof of Lemma 4, let X0 = X −U, X1 = {u ∈ U : (u, v) ∈ E for some v ∈ Y1}, and

X2 = U − X1. By Lemma 2 we have deg(u) ≤ 1 + |Y2| for each u ∈ U , and hence we may assume that |Y2| ≥
n
4 − 1,

else the conclusion holds. Similarly, since deg(u) ≤ 1 + |X0| for each u ∈ U∗, we may assume that |X0| ≥
n
4 − 1.

Note that |U| > n
4 and |X0| ≥

n
4 − 1 imply that |U| =

n
4 + 1, and that |U∗

| > n
4 and |Y2| ≥

n
4 − 1 implies that

|U∗
| =

n
4 +1. Now, since U is a minimal deficient set of vertices in G, by Lemma 1we have 2|U|−2 ≤ |N (2)(U)| ≤ 2|U|−1.

Substituting |U| =
n
4 + 1, |N (2)(U)| = 2|Y2| + |Y1| = 2|Y2| + |X1|, and |Y2| =

n
4 − 1 into the chain of inequalities

2|U| − 2 ≤ |N (2)(U)| ≤ 2|U| − 1, we have n
2 ≤

n
2 − 2 + |X1| ≤

n
2 + 1. Hence, |X1| = 2 or |X1| = 3. If |X1| = 2 then at least

n
4 − 1 of the vertices in U must have degree at most n

4 − 1, and statement (2) of the theorem is true. Finally, if |X1| = 3 then
at least n

2 − 4 (and hence at least n
4 − 1 because n ≥ 12) of the vertices in each of U and U∗ must have degree at most n

4 − 1,
and statement (2) of the theorem is true. �

Theorem 11. Let G be a bipartite graph of even order n = 4s+2 ≥ 14 andwith equipartition V (G) = X∪Y . Let (d1, d2, . . . , dn)
be the degree sequence of G with d1 ≤ d2 ≤ · · · ≤ dn. If G does not contain a 2-factor, then either

(1) for some k ≤
(n−2)

4 we have dk ≤ k and dk−1 ≤ k − 1, or,

(2) d (n−2)
2

≤
(n−2)

4 .

Proof. Since G does not contain a 2-factor, Theorem 9 implies that G contains a deficient set of vertices. Without loss of
generality let U ⊆ X be a minimum cardinality deficient set of vertices in G. If |U| ≤

(n−2)
4 , then Lemma 3 implies that

statement (1) is verified and so the conclusion holds.
Now suppose that |U| > (n−2)

4 . As in the statement of Lemma 4, let Y0 = {v ∈ Y : v ∉ N(U)}, Y1 = {v ∈ Y : |U∩N(v)| = 1},
and Y2 = {v ∈ Y : |U ∩ N(v)| ≥ 2}. Let U∗

= Y0 ∪ Y1. Then Lemma 4 implies that U∗ is a deficient set in G. Since U is a
minimum cardinality deficient set of vertices in G, we have |U∗

| ≥ |U| > (n−2)
4 .

Now, as in the proof of Lemma 4, let X0 = X − U, X1 = {u ∈ U : (u, v) ∈ E for some v ∈ Y1}, and X2 = U − X1. We have
deg(u) ≤ 1+|Y2| for each u ∈ U , and hence wemay assume that |Y2| ≥

(n−2)
4 −1, else the conclusion holds. Similarly, since

deg(u) ≤ 1+|X0| for each u ∈ U∗, wemay assume that |X0| ≥
(n−2)

4 −1. Note that |X | =
n
2 , |U| > (n−2)

4 , and |X0| ≥
(n−2)

4 −1
imply that (n−2)

4 + 1 ≤ |U| ≤
(n−2)

4 + 2. We now examine the two cases: |U| =
(n−2)

4 + 1 and |U| =
(n−2)

4 + 2.

(1) |U| =
(n−2)

4 + 1. In this case we must have |X0| =
(n−2)

4 . Note that |X1| ≤ 3 because if |X1| ≥ 4 then since U is a
minimal deficient set of vertices, we would have |Y2| ≤

(n−2)
4 − 2, a contradiction to the assumption at this point that

|Y2| ≥
(n−2)

4 − 1. We now examine the following four subcases separately.

(1)a |X1| = 0. In this case we have |Y1| = 0 and |X2| =
(n−2)

4 +1. Since U is a minimal deficient set of vertices, Lemma 1
implies that |Y2| =

(n−2)
4 and |Y0| =

(n−2)
4 + 1. Thus, X2 ∪ Y0 is a set of n

2 + 1 vertices of degree at most (n−2)
4 which

shows that (2) is verified, and hence the conclusion holds.
(1)b |X1| = 1. In this case we have |Y1| = 1 and |X2| =

(n−2)
4 . Since U is a minimal deficient set of vertices, Lemma 1

implies that |Y2| =
(n−2)

4 and |Y0| =
(n−2)

4 . Thus, X2 ∪ Y0 is a set of n
2 − 1 vertices of degree at most (n−2)

4 each as
required by the theorem.

(1)c |X1| = 2. In this case we have |Y1| = 2 and |X2| =
(n−2)

4 −1. Since U is a minimal deficient set of vertices, Lemma 1
implies that |Y2| =

(n−2)
4 −1 and |Y0| =

(n−2)
4 . Thus, X2 ∪X1 ∪Y0 is a set of n

2 vertices of degree at most (n−2)
4 which

shows that (2) is verified, and hence the conclusion holds.
(1)d |X1| = 3. In this case we have |Y1| = 3 and |X2| =

(n−2)
4 −2. Since U is a minimal deficient set of vertices, Lemma 1

implies that |Y2| =
(n−2)

4 − 1 and |Y0| =
(n−2)

4 − 1. Thus, X2 ∪ X1 ∪ Y0 is a set of n
2 − 1 vertices of degree at most

(n−2)
4 as required by the theorem.
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(2) |U| =
(n−2)

4 + 2. In this case we have |X0| =
(n−2)

4 − 1. Recall that since deg(u) ≤ 1 + |Y2| for each u ∈ U we have

|Y2| ≥
(n−2)

4 −1. Hencewe have |U∗
| ≤

n
2 −


(n−2)

4 − 1


=
(n−2)

4 +2 = |U|. Thus, U∗ is a minimum cardinality deficient

set of vertices. Hence, we now have |Y2| = |X0| =
(n−2)

4 − 1. Thus, U ∪ U∗ is a set of n
2 + 3 vertices of degree at most

(n−2)
4 which shows that (2) is verified, and hence the conclusion holds. �

Lemma 5. Let x, y, and s be positive numbers such that x ≥ y > s
2 . Then,

x(x+1)(x+2)···(x+s)
y(y+1)(y+2)···(y+s) ≥


x+ s

2
y+ s

2

(s+1)
.

Proof. Note that for positive numbers a, b, r such that a ≥ b > r , since b2(a2−r2) ≥ (b2−r2)a2, we have (a+r)(a−r)
(b+r)(b−r) ≥

 a
b

2.
Applying this note with a = x +

s
2 , b = y +

s
2 and r ranging from 1 to ⌈

s
2⌉ gives the result. �

We are now ready for a proof of Theorem 7.

Proof. For an equipartition of V (D) into V (D) = X ∪ Y , let B(X → Y ) be the bipartite directed graph with vertex set V (D),
equipartition V (D) = X ∪ Y , and with (x, y) ∈ A(B(X → Y )) if and only if x ∈ X, y ∈ Y , and, (x, y) ∈ A(D). Let B(X, Y )
denote the bipartite graph underlying B(X → Y ). It is clear that B(X, Y ) contains a Hamilton cycle if and only if B(X → Y )
contains an anti-directed Hamilton cycle. We will prove that there exists an equipartition of V (D) into V (D) = X ∪ Y such
that B(X, Y ) contains a Hamilton cycle. In this proof we abuse the notation and write d+(v) (respectively d−(v)) in place of
d+(v,D) (respectively d−(v,D)).
In the argument below,wemake the simplifying assumption that d+(v) = d−(v) = δ(D) for each v ∈ V (D). After presenting
the proof of the theorem under this simplifying assumption it will be easy to see that the proof extends to the case in which
some indegrees or outdegrees are greater than δ(D). We will supply a proof of the theorem only for the case in which n is a
multiple of 4, and δ is even; the other cases can be proved in a similar manner using Theorems 10 and 11.
So, let n = 4m and δ = 2d for some positive integers m and d. Let v ∈ V (D) and let nk denote the number of equipartitions
of V (D) into V (D) = X ∪ Y for which deg(v, B(X, Y )) = k. Since v ∈ X or v ∈ Y and since d+(v) = d−(v) = δ(D), we have
nk = 2


δ

k

  n−δ−1
n
2 −k


. Note that if k > n

2 or if k < δ −
n
2 + 1 then nk = 0. Thus the total number of equipartitions of V (D)

into V (D) = X ∪ Y is

N =

n
2−

k=δ− n
2 +1

nk =

n
2−

k=δ− n
2 +1

2


δ

k


n − δ − 1

n
2 − k


=


n
n
2


. (1)

For a particular equipartition of V (D) into V (D) = Xi ∪ Yi, let (d(i)
1 , d(i)

2 , . . . , d(i)
n ) be the degree sequence of B(Xi, Yi) with

d(i)
1 ≤ d(i)

2 ≤ · · · ≤ d(i)
n , i = 1, 2, . . . ,N . If B(Xi, Yi) does not contain a 2-factor then Theorem 10 implies that there exists

k ≤
n
4 such that d(i)

k ≤ k and d(i)
k ≤ (k−1), or d n

4 −1 ≤
n
4 −1. Hence, the number of equipartitions of V (D) into V (D) = X ∪Y

for which B(X, Y ) does not contain a 2-factor is at most

S = n


n2

2
+

n3

3
+ · · · +

n⌊ n
4⌋−1 n

4


− 1


. (2)

Thus, to show that there exists an equipartition of V (D) into V (D) = X ∪ Y such that B(X, Y ) contains a 2-factor, it suffices
to show that N > S, i.e.,

n
2−

k=δ− n
2 +1

2


δ

k


n − δ − 1

n
2 − k


> n

⌊
n
4 ⌋−1−
k=2

2


δ

k

  n−δ−1
n
2 −k


k

. (3)

For i = 0, 1, . . . , n
4 − 3, let Ai = n(d+i) = 2


δ

d+i

  n−δ−1
2m−d−i


, and let Bi = n( n

4 −i−1) = 2


δ

m−i−1

  n−δ−1
m+i+1


. Clearly, (3) is

satisfied if we can show that

Ai >
nBi

n
4 − i − 1

, for each i = 0, 1, . . . ,
n
4

− 3. (4)

This is clear because the terms in
∑ n

4 −3
i=1 Ai form a subset of the terms in the sum on the left hand side of inequality (3),

and the terms in
∑ n

4 −3
i=1

nBi
n
4 −i−1 are precisely the terms in the sum on the right hand side of inequality (3). We prove (4) by

recursion on i. We first show that A0 >
nB0
n
4 −1 , i.e.

( n
4 −1)
n

A0
B0

> 1. Let s = δ −
n
2 . We have
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4 − 1


n

A0

B0
=

 n
4 − 1


n

 n
4 − 1


!

δ −

n
4 + 1


!
 n
4 + 1


!
 3n

4 − δ − 2

!

δ
2 !

δ
2 !
 n
2 −

δ
2


!
 n
2 −

δ
2 − 1


!

=

 n
4 − 1


n

 n
4 − 1


! n

4 +
s
2


!

 n
4 + s + 1


! n

4 +
s
2


!

 n
4 + 1


! n

4 −
s
2


!

 n
4 − s − 2


! n

4 −
s
2 − 1


!

=

 n
4 − 1


n

 n
4 − 1


!
 n
4 + s + 1


!
 n
4 + 1


!
 n
4 − s − 2


! n

4 +
s
2


!
 n
4 +

s
2


!
 n
4 −

s
2


!
 n
4 −

s
2 − 1


!

=

 n
4 − 1


n

 n
4 + s + 1

  n
4 + s


· · ·
 n
4 +

s
2 + 1

  n
4 + 1

  n
4


· · ·
 n
4 −

s
2 + 1

 n
4

  n
4 + 1


· · ·
 n
4 +

s
2

  n
4 −

s
2 − 1


· · ·
 n
4 − s − 1


=

 n
4 − 1


n

 n
4 + 1

 n
4 − s − 1

  n4 + s + 1


n
4

 n
4 + s


· · ·
 n
4 +

s
2 + 1

 n
4 +

s
2


· · ·
 n
4 + 1

  n
4


· · ·
 n
4 −

s
2 + 1

 n
4 −

s
2 − 1


· · ·
 n
4 − s

 . (5)

Since n ≥ 4 and s ≥ 1, it is easy to check that ( n
4 −1)
n

( n
4 +1)

( n
4 −s−1)

≥
1
4 . Now, applications of Lemma 5 give n

4 − 1


n
A0

B0
≥

1
4

 n
4 + s + 1


n
4

 n
4 +

3s
4 +

1
2

 s
2 n

4 +
s
4 +

1
2

 s
2

 n
4 −

s
4 +

1
2

 s
2 n

4 −
3s
4 −

1
2

 s
2

≥
1
4

 n
4 + s + 1


n
4

 n
4 +

s
4 +

1
2

s n
4 −

s
4

s
≥

1
4


n + s
n − s

s+1

. (6)

Since δ ≥ pn, we have s = δ −
n
2 ≥


p −

1
2


n. Thus, (6) gives

 n
4 − 1


n

A0

B0
≥

1
4


n +


p −

1
2


n

n −

p −

1
2


n

p− 1
2


n+1

=
1
4


p +

1
2

3
2 − p

p− 1
2


n+1

. (7)

Because n > ln(4)
p− 1

2


ln


p+ 1

2
3
2 −p

 −
1

p− 1
2

 , (7) implies that ( n
4 −1)
n

A0
B0

> 1 as desired.

We now turn to the recursive step in proving (4) and assume that Ak >
nBk

n
4 −k−1 , for 0 < k < n

4 − 3. We will show that

Ak+1

Ak
≥

 n
4 − k − 1
n
4 − k − 2


Bk+1

Bk
. (8)

This will suffice because (8) together with the recursive hypothesis implies that Ak+1 ≥

 n
4 −k−1
n
4 −k−2


Ak
Bk
Bk+1 > n

4 −k−1
n
4 −k−2


n

n
4 −k−1Bk+1 =

n
n
4 −k−2Bk+1. We have

Ak+1

Ak
=


δ

δ
2 +k+1

 
n−δ−1

n
2 −

δ
2 −k−1




δ
δ
2 +k

 
n−δ−1
n
2 −

δ
2 −k

 =


δ
2 − k

  n
2 −

δ
2 − k


δ
2 + k + 1

  n
2 −

δ
2 + k

 ,
and,

Bk+1

Bk
=


δ

n
4 −k−2

 
n−δ−1
n
4 +k+2




δ
n
4 −k−1

 
n−δ−1
n
4 +k+1

 =

 n
4 − k − 1

  3n
4 − δ − k − 2


δ −

n
4 + k + 2

  n
4 + k + 2

 .

Hence, letting δ =
n
2 + s, we have

Ak+1
Ak




Bk+1
Bk

 =


δ
2 − k

  n
2 −

δ
2 − k

 
δ −

n
4 + k + 2

  n
4 + k + 2

 n
4 − k − 1

  3n
4 − δ − k − 2

 
δ
2 + k + 1

  n
2 −

δ
2 + k


=

 n
4 +

s
2 − k

  n
4 −

s
2 − k

  n
4 + s + k + 2

  n
4 + k + 2

 n
4 − k − 1

  n
4 − s − k − 2

  n
4 +

s
2 + k + 1

  n
4 −

s
2 + k

 . (9)
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Note that in Eq. (9) we have, (
n
4 +

s
2 −k)

( n
4 −k−1)

> 1, ( n
4 +s+k+2)

( n
4 +

s
2 +k+1)

> 1, ( n
4 +k+2)

( n
4 −

s
2 +k)

> 1, and in addition because k < n
4 , it is easy to verify

that ( n
4 −

s
2 −k)

( n
4 −s−k−2)

≥
( n
4 −k−1)

( n
4 −k−2)

. Now (9) implies (8) which in turn proves (4). This completes the proof.

Remark. We argue that there was no loss of generality in our assumption at the beginning of the proof of Theorem 7 that
d+(v) = d−(v) = δ(D) for each v ∈ V (D). LetD∗

= (V ∗, A(D∗)) be a directed graphwith d+(v) ≥ δ(D∗), and d−(v) ≥ δ(D∗)
for each v ∈ V (D∗). Let v ∈ V (D∗), and, let n∗

k denote the number of equipartitions of V (D∗) into V (D∗) = X ∪ Y for
which deg(v, B(X, Y )) = k. We can delete some arcs pointed into v and some arcs pointed out of v to get a directed
graph D = (V ∗, A(D)) in which d+(v) = d−(v) = δ(D∗). Now as before let nk denote the number of equipartitions
of V (D) into V (D) = X ∪ Y for which deg(v, B(X, Y )) = k. It is clear that

∑q
k=2 nk ≥

∑q
k=2 n

∗

k for each q, and that∑ n
2
k=δ− n

2 +1 nk =
∑ n

2
k=δ− n

2 +1 nk
∗ is the total number of equipartitions of V (D∗). Hence, the proof above that N > S holds

with nk replaced by n∗

k . �

We now prove Corollary 2 mentioned in the Introduction.

Proof. For p =
24
46 , 1420 < ln(4)

p− 1
2


ln


p+ 1

2
3
2 −p

 −
1

p− 1
2

 < 1421. Hence, Theorem 7 implies that the corollary is true for all

n ≥ 1420. If n < 1420 and δ > 24
46n then we can verify by direct computation that inequality (3) in the proof of Theorem 7

is satisfied except for the case when n = 44 and δ = 23. In this case when n = 44 and δ = 23, using both conditions dk ≤ k
and dk−1 ≤ k − 1 of condition (1) in Theorem 10 implies that D contains an anti-directed 2-factor. �
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