1,192 research outputs found

    Improved Streaming Algorithms for Weighted Matching, via Unweighted Matching

    Get PDF
    We present a (4 + epsilon) approximation algorithm for weighted graph matching which applies in the semistreaming, sliding window, and MapReduce models; this single algorithm improves the previous best algorithm in each model. The algorithm operates by reducing the maximum-weight matching problem to a polylog number of copies of the maximum-cardinality matching problem. The algorithm also extends to provide approximation guarantees for the more general problem of finding weighted independent sets in p-systems (which include intersections of p matroids and p-bounded hypergraph matching)

    Sublinear Estimation of Weighted Matchings in Dynamic Data Streams

    Full text link
    This paper presents an algorithm for estimating the weight of a maximum weighted matching by augmenting any estimation routine for the size of an unweighted matching. The algorithm is implementable in any streaming model including dynamic graph streams. We also give the first constant estimation for the maximum matching size in a dynamic graph stream for planar graphs (or any graph with bounded arboricity) using O~(n4/5)\tilde{O}(n^{4/5}) space which also extends to weighted matching. Using previous results by Kapralov, Khanna, and Sudan (2014) we obtain a polylog(n)\mathrm{polylog}(n) approximation for general graphs using polylog(n)\mathrm{polylog}(n) space in random order streams, respectively. In addition, we give a space lower bound of Ω(n1ε)\Omega(n^{1-\varepsilon}) for any randomized algorithm estimating the size of a maximum matching up to a 1+O(ε)1+O(\varepsilon) factor for adversarial streams

    Streaming Verification of Graph Properties

    Get PDF
    Streaming interactive proofs (SIPs) are a framework for outsourced computation. A computationally limited streaming client (the verifier) hands over a large data set to an untrusted server (the prover) in the cloud and the two parties run a protocol to confirm the correctness of result with high probability. SIPs are particularly interesting for problems that are hard to solve (or even approximate) well in a streaming setting. The most notable of these problems is finding maximum matchings, which has received intense interest in recent years but has strong lower bounds even for constant factor approximations. In this paper, we present efficient streaming interactive proofs that can verify maximum matchings exactly. Our results cover all flavors of matchings (bipartite/non-bipartite and weighted). In addition, we also present streaming verifiers for approximate metric TSP. In particular, these are the first efficient results for weighted matchings and for metric TSP in any streaming verification model.Comment: 26 pages, 2 figure, 1 tabl

    Maximum Matching in Turnstile Streams

    Get PDF
    We consider the unweighted bipartite maximum matching problem in the one-pass turnstile streaming model where the input stream consists of edge insertions and deletions. In the insertion-only model, a one-pass 22-approximation streaming algorithm can be easily obtained with space O(nlogn)O(n \log n), where nn denotes the number of vertices of the input graph. We show that no such result is possible if edge deletions are allowed, even if space O(n3/2δ)O(n^{3/2-\delta}) is granted, for every δ>0\delta > 0. Specifically, for every 0ϵ10 \le \epsilon \le 1, we show that in the one-pass turnstile streaming model, in order to compute a O(nϵ)O(n^{\epsilon})-approximation, space Ω(n3/24ϵ)\Omega(n^{3/2 - 4\epsilon}) is required for constant error randomized algorithms, and, up to logarithmic factors, space O(n22ϵ)O( n^{2-2\epsilon} ) is sufficient. Our lower bound result is proved in the simultaneous message model of communication and may be of independent interest

    Planar Matching in Streams Revisited

    Get PDF
    We present data stream algorithms for estimating the size or weight of the maximum matching in low arboricity graphs. A large body of work has focused on improving the constant approximation factor for general graphs when the data stream algorithm is permitted O(n polylog n) space where n is the number of nodes. This space is necessary if the algorithm must return the matching. Recently, Esfandiari et al. (SODA 2015) showed that it was possible to estimate the maximum cardinality of a matching in a planar graph up to a factor of 24+epsilon using O(epsilon^{-2} n^{2/3} polylog n) space. We first present an algorithm (with a simple analysis) that improves this to a factor 5+epsilon using the same space. We also improve upon the previous results for other graphs with bounded arboricity. We then present a factor 12.5 approximation for matching in planar graphs that can be implemented using O(log n) space in the adjacency list data stream model where the stream is a concatenation of the adjacency lists of the graph. The main idea behind our results is finding "local" fractional matchings, i.e., fractional matchings where the value of any edge e is solely determined by the edges sharing an endpoint with e. Our work also improves upon the results for the dynamic data stream model where the stream consists of a sequence of edges being inserted and deleted from the graph. We also extend our results to weighted graphs, improving over the bounds given by Bury and Schwiegelshohn (ESA 2015), via a reduction to the unweighted problem that increases the approximation by at most a factor of two

    Streaming Algorithms for Graph k-Matching with Optimal or Near-Optimal Update Time

    Get PDF

    Weighted Reservoir Sampling from Distributed Streams

    Get PDF
    We consider message-efficient continuous random sampling from a distributed stream, where the probability of inclusion of an item in the sample is proportional to a weight associated with the item. The unweighted version, where all weights are equal, is well studied, and admits tight upper and lower bounds on message complexity. For weighted sampling with replacement, there is a simple reduction to unweighted sampling with replacement. However, in many applications the stream has only a few heavy items which may dominate a random sample when chosen with replacement. Weighted sampling \textit{without replacement} (weighted SWOR) eludes this issue, since such heavy items can be sampled at most once. In this work, we present the first message-optimal algorithm for weighted SWOR from a distributed stream. Our algorithm also has optimal space and time complexity. As an application of our algorithm for weighted SWOR, we derive the first distributed streaming algorithms for tracking \textit{heavy hitters with residual error}. Here the goal is to identify stream items that contribute significantly to the residual stream, once the heaviest items are removed. Residual heavy hitters generalize the notion of 1\ell_1 heavy hitters and are important in streams that have a skewed distribution of weights. In addition to the upper bound, we also provide a lower bound on the message complexity that is nearly tight up to a log(1/ϵ)\log(1/\epsilon) factor. Finally, we use our weighted sampling algorithm to improve the message complexity of distributed L1L_1 tracking, also known as count tracking, which is a widely studied problem in distributed streaming. We also derive a tight message lower bound, which closes the message complexity of this fundamental problem.Comment: To appear in PODS 201

    Weighted Matchings via Unweighted Augmentations

    Full text link
    We design a generic method for reducing the task of finding weighted matchings to that of finding short augmenting paths in unweighted graphs. This method enables us to provide efficient implementations for approximating weighted matchings in the streaming model and in the massively parallel computation (MPC) model. In the context of streaming with random edge arrivals, our techniques yield a (1/2+c)(1/2+c)-approximation algorithm thus breaking the natural barrier of 1/21/2. For multi-pass streaming and the MPC model, we show that any algorithm computing a (1δ)(1-\delta)-approximate unweighted matching in bipartite graphs can be translated into an algorithm that computes a (1ε(δ))(1-\varepsilon(\delta))-approximate maximum weighted matching. Furthermore, this translation incurs only a constant factor (that depends on ε>0\varepsilon> 0) overhead in the complexity. Instantiating this with the current best multi-pass streaming and MPC algorithms for unweighted matchings yields the following results for maximum weighted matchings: * A (1ε)(1-\varepsilon)-approximation streaming algorithm that uses Oε(1)O_\varepsilon(1) passes and Oε(npoly(logn))O_\varepsilon(n\, \text{poly} (\log n)) memory. This is the first (1ε)(1-\varepsilon)-approximation streaming algorithm for weighted matchings that uses a constant number of passes (only depending on ε\varepsilon). * A (1ε)(1 - \varepsilon)-approximation algorithm in the MPC model that uses Oε(loglogn)O_\varepsilon(\log \log n) rounds, O(m/n)O(m/n) machines per round, and Oε(npoly(logn))O_\varepsilon(n\, \text{poly}(\log n)) memory per machine. This improves upon the previous best approximation guarantee of (1/2ε)(1/2-\varepsilon) for weighted graphs
    corecore