5 research outputs found

    Competitive Segmentation Performance on Near-lossless and Lossy Compressed Remote Sensing Images

    Get PDF
    Image segmentation lies at the heart of multiple image processing chains, and achieving accurate segmentation is of utmost importance as it impacts later processing. Image segmentation has recently gained interest in the field of remote sensing, mostly due to the widespread availability of remote sensing data. This increased availability poses the problem of transmitting and storing large volumes of data. Compression is a common strategy to alleviate this problem. However, lossy or near-lossless compression prevents a perfect reconstruction of the recovered data. This letter investigates the image segmentation performance in data reconstructed after a near-lossless or a lossy compression. Two image segmentation algorithms and two compression standards are evaluated on data from sev- eral instruments. Experimental results reveal that segmentation performance over previously near-lossless and lossy compressed images is not markedly reduced at low and moderate compression ratios. In some scenarios, accurate segmentation performance can be achieved even for high compression ratios

    Improved Statistically Based Retrievals via Spatial-Spectral Data Compression for IASI Data

    Get PDF
    In this paper, we analyze the effect of spatial and spectral compression on the performance of statistically based retrieval. Although the quality of the information is not com- pletely preserved during the coding process, experiments reveal that a certain amount of compression may yield a positive impact on the accuracy of retrievals. We unveil two strategies, both with interesting benefits: either to apply a very high compression, which still maintains the same retrieval performance as that obtained for uncompressed data; or to apply a moderate to high compression, which improves the performance. As a second contribution of this paper, we focus on the origins of these benefits. On the one hand, we show that a certain amount of noise is removed during the compression stage, which benefits the retrievals performance. On the other hand, we analyze the effect of compression on spectral/spatial regularization (smoothing). We quantify the amount of information shared among the spatial neighbors for the different methods and compression ratios. We also propose a simple strategy to specifically exploit spectral and spatial relations and find that, when these relations are taken into account beforehand, the benefits of compression are reduced. These experiments suggest that compression can be understood as an indirect way to regularize the data and exploit spatial neighbors information, which improves the performance of pixelwise statistics-based retrieval algorithms

    Discrete Atomic Transform-Based Lossy Compression of Three-Channel Remote Sensing Images with Quality Control

    Get PDF
    Lossy compression of remote sensing data has found numerous applications. Several requirements are usually imposed on methods and algorithms to be used. A large compression ratio has to be provided, introduced distortions should not lead to sufficient reduction of classification accuracy, compression has to be realized quickly enough, etc. An additional requirement could be to provide privacy of compressed data. In this paper, we show that these requirements can be easily and effectively realized by compression based on discrete atomic transform (DAT). Three-channel remote sensing (RS) images that are part of multispectral data are used as examples. It is demonstrated that the quality of images compressed by DAT can be varied and controlled by setting maximal absolute deviation. This parameter also strictly relates to more traditional metrics as root mean square error (RMSE) and peak signal-to-noise ratio (PSNR) that can be controlled. It is also shown that there are several variants of DAT having different depths. Their performances are compared from different viewpoints, and the recommendations of transform depth are given. Effects of lossy compression on three-channel image classification using the maximum likelihood (ML) approach are studied. It is shown that the total probability of correct classification remains almost the same for a wide range of distortions introduced by lossy compression, although some variations of correct classification probabilities take place for particular classes depending on peculiarities of feature distributions. Experiments are carried out for multispectral Sentinel images of different complexities
    corecore