9,832 research outputs found

    Training Process Reduction Based On Potential Weights Linear Analysis To Accelarate Back Propagation Network

    Get PDF
    Learning is the important property of Back Propagation Network (BPN) and finding the suitable weights and thresholds during training in order to improve training time as well as achieve high accuracy. Currently, data pre-processing such as dimension reduction input values and pre-training are the contributing factors in developing efficient techniques for reducing training time with high accuracy and initialization of the weights is the important issue which is random and creates paradox, and leads to low accuracy with high training time. One good data preprocessing technique for accelerating BPN classification is dimension reduction technique but it has problem of missing data. In this paper, we study current pre-training techniques and new preprocessing technique called Potential Weight Linear Analysis (PWLA) which combines normalization, dimension reduction input values and pre-training. In PWLA, the first data preprocessing is performed for generating normalized input values and then applying them by pre-training technique in order to obtain the potential weights. After these phases, dimension of input values matrix will be reduced by using real potential weights. For experiment results XOR problem and three datasets, which are SPECT Heart, SPECTF Heart and Liver disorders (BUPA) will be evaluated. Our results, however, will show that the new technique of PWLA will change BPN to new Supervised Multi Layer Feed Forward Neural Network (SMFFNN) model with high accuracy in one epoch without training cycle. Also PWLA will be able to have power of non linear supervised and unsupervised dimension reduction property for applying by other supervised multi layer feed forward neural network model in future work.Comment: 11 pages IEEE format, International Journal of Computer Science and Information Security, IJCSIS 2009, ISSN 1947 5500, Impact factor 0.42

    Quantum-inspired Machine Learning on high-energy physics data

    Get PDF
    Tensor Networks, a numerical tool originally designed for simulating quantum many-body systems, have recently been applied to solve Machine Learning problems. Exploiting a tree tensor network, we apply a quantum-inspired machine learning technique to a very important and challenging big data problem in high energy physics: the analysis and classification of data produced by the Large Hadron Collider at CERN. In particular, we present how to effectively classify so-called b-jets, jets originating from b-quarks from proton-proton collisions in the LHCb experiment, and how to interpret the classification results. We exploit the Tensor Network approach to select important features and adapt the network geometry based on information acquired in the learning process. Finally, we show how to adapt the tree tensor network to achieve optimal precision or fast response in time without the need of repeating the learning process. These results pave the way to the implementation of high-frequency real-time applications, a key ingredient needed among others for current and future LHCb event classification able to trigger events at the tens of MHz scale.Comment: 13 pages, 4 figure
    corecore