939 research outputs found

    3D Human Activity Recognition with Reconfigurable Convolutional Neural Networks

    Full text link
    Human activity understanding with 3D/depth sensors has received increasing attention in multimedia processing and interactions. This work targets on developing a novel deep model for automatic activity recognition from RGB-D videos. We represent each human activity as an ensemble of cubic-like video segments, and learn to discover the temporal structures for a category of activities, i.e. how the activities to be decomposed in terms of classification. Our model can be regarded as a structured deep architecture, as it extends the convolutional neural networks (CNNs) by incorporating structure alternatives. Specifically, we build the network consisting of 3D convolutions and max-pooling operators over the video segments, and introduce the latent variables in each convolutional layer manipulating the activation of neurons. Our model thus advances existing approaches in two aspects: (i) it acts directly on the raw inputs (grayscale-depth data) to conduct recognition instead of relying on hand-crafted features, and (ii) the model structure can be dynamically adjusted accounting for the temporal variations of human activities, i.e. the network configuration is allowed to be partially activated during inference. For model training, we propose an EM-type optimization method that iteratively (i) discovers the latent structure by determining the decomposed actions for each training example, and (ii) learns the network parameters by using the back-propagation algorithm. Our approach is validated in challenging scenarios, and outperforms state-of-the-art methods. A large human activity database of RGB-D videos is presented in addition.Comment: This manuscript has 10 pages with 9 figures, and a preliminary version was published in ACM MM'14 conferenc

    On Neural Associative Memory Structures: Storage and Retrieval of Sequences in a Chain of Tournaments

    Get PDF
    Associative memories enjoy many interesting properties in terms of error correction capabilities, robustness to noise, storage capacity, and retrieval performance, and their usage spans over a large set of applications. In this letter, we investigate and extend tournament-based neural networks, originally proposed by Jiang, Gripon, Berrou, and Rabbat (2016), a novel sequence storage associative memory architecture with high memory efficiency and accurate sequence retrieval. We propose a more general method for learning the sequences, which we call feedback tournament-based neural networks. The retrieval process is also extended to both directions: forward and backward—in other words, any large-enough segment of a sequence can produce the whole sequence. Furthermore, two retrieval algorithms, cache-winner and explore-winner, are introduced to increase the retrieval performance. Through simulation results, we shed light on the strengths and weaknesses of each algorithm.publishedVersio

    Enhancing Energy Minimization Framework for Scene Text Recognition with Top-Down Cues

    Get PDF
    Recognizing scene text is a challenging problem, even more so than the recognition of scanned documents. This problem has gained significant attention from the computer vision community in recent years, and several methods based on energy minimization frameworks and deep learning approaches have been proposed. In this work, we focus on the energy minimization framework and propose a model that exploits both bottom-up and top-down cues for recognizing cropped words extracted from street images. The bottom-up cues are derived from individual character detections from an image. We build a conditional random field model on these detections to jointly model the strength of the detections and the interactions between them. These interactions are top-down cues obtained from a lexicon-based prior, i.e., language statistics. The optimal word represented by the text image is obtained by minimizing the energy function corresponding to the random field model. We evaluate our proposed algorithm extensively on a number of cropped scene text benchmark datasets, namely Street View Text, ICDAR 2003, 2011 and 2013 datasets, and IIIT 5K-word, and show better performance than comparable methods. We perform a rigorous analysis of all the steps in our approach and analyze the results. We also show that state-of-the-art convolutional neural network features can be integrated in our framework to further improve the recognition performance

    Visual Representation Learning with Limited Supervision

    Get PDF
    The quality of a Computer Vision system is proportional to the rigor of data representation it is built upon. Learning expressive representations of images is therefore the centerpiece to almost every computer vision application, including image search, object detection and classification, human re-identification, object tracking, pose understanding, image-to-image translation, and embodied agent navigation to name a few. Deep Neural Networks are most often seen among the modern methods of representation learning. The limitation is, however, that deep representation learning methods require extremely large amounts of manually labeled data for training. Clearly, annotating vast amounts of images for various environments is infeasible due to cost and time constraints. This requirement of obtaining labeled data is a prime restriction regarding pace of the development of visual recognition systems. In order to cope with the exponentially growing amounts of visual data generated daily, machine learning algorithms have to at least strive to scale at a similar rate. The second challenge consists in the learned representations having to generalize to novel objects, classes, environments and tasks in order to accommodate to the diversity of the visual world. Despite the evergrowing number of recent publications tangentially addressing the topic of learning generalizable representations, efficient generalization is yet to be achieved. This dissertation attempts to tackle the problem of learning visual representations that can generalize to novel settings while requiring few labeled examples. In this research, we study the limitations of the existing supervised representation learning approaches and propose a framework that improves the generalization of learned features by exploiting visual similarities between images which are not captured by provided manual annotations. Furthermore, to mitigate the common requirement of large scale manually annotated datasets, we propose several approaches that can learn expressive representations without human-attributed labels, in a self-supervised fashion, by grouping highly-similar samples into surrogate classes based on progressively learned representations. The development of computer vision as science is preconditioned upon the seamless ability of a machine to record and disentangle pictures' attributes that were expected to only be conceived by humans. As such, particular interest was dedicated to the ability to analyze the means of artistic expression and style which depicts a more complex task than merely breaking an image down to colors and pixels. The ultimate test for this ability is the task of style transfer which involves altering the style of an image while keeping its content. An effective solution of style transfer requires learning such image representation which would allow disentangling image style and its content. Moreover, particular artistic styles come with idiosyncrasies that affect which content details should be preserved and which discarded. Another pitfall here is that it is impossible to get pixel-wise annotations of style and how the style should be altered. We address this problem by proposing an unsupervised approach that enables encoding the image content in such a way that is required by a particular style. The proposed approach exchanges the style of an input image by first extracting the content representation in a style-aware way and then rendering it in a new style using a style-specific decoder network, achieving compelling results in image and video stylization. Finally, we combine supervised and self-supervised representation learning techniques for the task of human and animals pose understanding. The proposed method enables transfer of the representation learned for recognition of human poses to proximal mammal species without using labeled animal images. This approach is not limited to dense pose estimation and could potentially enable autonomous agents from robots to self-driving cars to retrain themselves and adapt to novel environments based on learning from previous experiences

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text

    Homological Neural Networks: A Sparse Architecture for Multivariate Complexity

    Full text link
    The rapid progress of Artificial Intelligence research came with the development of increasingly complex deep learning models, leading to growing challenges in terms of computational complexity, energy efficiency and interpretability. In this study, we apply advanced network-based information filtering techniques to design a novel deep neural network unit characterized by a sparse higher-order graphical architecture built over the homological structure of underlying data. We demonstrate its effectiveness in two application domains which are traditionally challenging for deep learning: tabular data and time series regression problems. Results demonstrate the advantages of this novel design which can tie or overcome the results of state-of-the-art machine learning and deep learning models using only a fraction of parameters

    Deep Learning in Social Networks for Overlappering Community Detection

    Get PDF
    The collection of nodes is termed as community in any network system that are tightly associated to the other nodes. In network investigation, identifying the community structure is crucial task, particularly for exposing connections between certain nodes. For community overlapping, network discovery, there are numerous methodologies described in the literature. Numerous scholars have recently focused on network embedding and feature learning techniques for node clustering. These techniques translate the network into a representation space with fewer dimensions. In this paper, a deep neural network-based model for learning graph representation and stacked auto-encoders are given a nonlinear embedding of the original graph to learn the model. In order to extract overlapping communities, an AEOCDSN algorithm is used. The efficiency of the suggested model is examined through experiments on real-world datasets of various sizes and accepted standards. The method outperforms various well-known community detection techniques, according to empirical findings
    • …
    corecore