1,392 research outputs found

    New attacks on RSA with Moduli N = p^r q

    Get PDF
    International audienceWe present three attacks on the Prime Power RSA with mod-ulus N = p^r q. In the first attack, we consider a public exponent e satisfying an equation ex − φ(N)y = z where φ(N) = p^(r−1 )(p − 1)(q − 1). We show that one can factor N if the parameters |x| and |z| satisfy |xz| < N r(r−1) (r+1)/ 2 thereby extending the recent results of Sakar [16]. In the second attack, we consider two public exponents e1 and e2 and their corresponding private exponents d1 and d2. We show that one can factor N when d1 and d2 share a suitable amount of their most significant bits, that is |d1 − d2| < N r(r−1) (r+1) /2. The third attack enables us to factor two Prime Power RSA moduli N1 = p1^r q1 and N2 = p2^r q2 when p1 and p2 share a suitable amount of their most significant bits, namely, |p1 − p2| < p1/(2rq1 q2)

    Notes on Small Private Key Attacks on Common Prime RSA

    Full text link
    We point out critical deficiencies in lattice-based cryptanalysis of common prime RSA presented in ``Remarks on the cryptanalysis of common prime RSA for IoT constrained low power devices'' [Information Sciences, 538 (2020) 54--68]. To rectify these flaws, we carefully scrutinize the relevant parameters involved in the analysis during solving a specific trivariate integer polynomial equation. Additionally, we offer a synthesized attack illustration of small private key attacks on common prime RSA.Comment: 15 pages, 1 figur

    Public key exponent attacks on multi-prime power modulus using continued fraction expansion method

    Get PDF
    This paper proposes three public key exponent attacks of breaking the security of the prime power modulus =22 where and are distinct prime numbers of the same bit size. The first approach shows that the RSA prime power modulus =22 for q&lt;&lt;2q using key equation −()=1 where ()= 22(−1)(−1) can be broken by recovering the secret keys&nbsp; / from the convergents of the continued fraction expansion of e/−23/4 +1/2 . The paper also reports the second and third approaches of factoring multi-prime power moduli =2 2 simultaneously through exploiting generalized system of equations −()=1 and −()=1 respectively. This can be achieved in polynomial time through utilizing Lenstra Lenstra Lovasz (LLL) algorithm and simultaneous Diophantine approximations method for =1,2,…,

    A Unified Method for Private Exponent Attacks on RSA using Lattices

    Get PDF
    International audienceLet (n = pq, e = n^β) be an RSA public key with private exponent d = n^δ , where p and q are large primes of the same bit size. At Eurocrypt 96, Coppersmith presented a polynomial-time algorithm for finding small roots of univariate modular equations based on lattice reduction and then succussed to factorize the RSA modulus. Since then, a series of attacks on the key equation ed − kφ(n) = 1 of RSA have been presented. In this paper, we show that many of such attacks can be unified in a single attack using a new notion called Coppersmith's interval. We determine a Coppersmith's interval for a given RSA public key (n, e). The interval is valid for any variant of RSA, such as Multi-Prime RSA, that uses the key equation. Then we show that RSA is insecure if δ < β + 1/3 α − 1/3 √ (12αβ + 4α^2) provided that we have approximation p0 ≥ √ n of p with |p − p0| ≤ 1/2 n^α , α ≤ 1/2. The attack is an extension of Coppersmith's result

    Note on Integer Factoring Methods IV

    Get PDF
    This note continues the theoretical development of deterministic integer factorization algorithms based on systems of polynomials equations. The main result establishes a new deterministic time complexity bench mark in integer factorization.Comment: 20 Pages, New Versio
    • …
    corecore