2,256 research outputs found

    Improved Quantum Algorithm for Triangle Finding via Combinatorial Arguments

    Full text link
    In this paper we present a quantum algorithm solving the triangle finding problem in unweighted graphs with query complexity O~(n5/4)\tilde O(n^{5/4}), where nn denotes the number of vertices in the graph. This improves the previous upper bound O(n9/7)=O(n1.285...)O(n^{9/7})=O(n^{1.285...}) recently obtained by Lee, Magniez and Santha. Our result shows, for the first time, that in the quantum query complexity setting unweighted triangle finding is easier than its edge-weighted version, since for finding an edge-weighted triangle Belovs and Rosmanis proved that any quantum algorithm requires Ω(n9/7/logn)\Omega(n^{9/7}/\sqrt{\log n}) queries. Our result also illustrates some limitations of the non-adaptive learning graph approach used to obtain the previous O(n9/7)O(n^{9/7}) upper bound since, even over unweighted graphs, any quantum algorithm for triangle finding obtained using this approach requires Ω(n9/7/logn)\Omega(n^{9/7}/\sqrt{\log n}) queries as well. To bypass the obstacles characterized by these lower bounds, our quantum algorithm uses combinatorial ideas exploiting the graph-theoretic properties of triangle finding, which cannot be used when considering edge-weighted graphs or the non-adaptive learning graph approach.Comment: 17 pages, to appear in FOCS'14; v2: minor correction

    Quantum Algorithm for Triangle Finding in Sparse Graphs

    Full text link
    This paper presents a quantum algorithm for triangle finding over sparse graphs that improves over the previous best quantum algorithm for this task by Buhrman et al. [SIAM Journal on Computing, 2005]. Our algorithm is based on the recent O~(n5/4)\tilde O(n^{5/4})-query algorithm given by Le Gall [FOCS 2014] for triangle finding over dense graphs (here nn denotes the number of vertices in the graph). We show in particular that triangle finding can be solved with O(n5/4ϵ)O(n^{5/4-\epsilon}) queries for some constant ϵ>0\epsilon>0 whenever the graph has at most O(n2c)O(n^{2-c}) edges for some constant c>0c>0.Comment: 13 page

    Lower Bounds on Quantum Query Complexity

    Full text link
    Shor's and Grover's famous quantum algorithms for factoring and searching show that quantum computers can solve certain computational problems significantly faster than any classical computer. We discuss here what quantum computers_cannot_ do, and specifically how to prove limits on their computational power. We cover the main known techniques for proving lower bounds, and exemplify and compare the methods.Comment: survey, 23 page

    Quantum query complexity of minor-closed graph properties

    Get PDF
    We study the quantum query complexity of minor-closed graph properties, which include such problems as determining whether an nn-vertex graph is planar, is a forest, or does not contain a path of a given length. We show that most minor-closed properties---those that cannot be characterized by a finite set of forbidden subgraphs---have quantum query complexity \Theta(n^{3/2}). To establish this, we prove an adversary lower bound using a detailed analysis of the structure of minor-closed properties with respect to forbidden topological minors and forbidden subgraphs. On the other hand, we show that minor-closed properties (and more generally, sparse graph properties) that can be characterized by finitely many forbidden subgraphs can be solved strictly faster, in o(n^{3/2}) queries. Our algorithms are a novel application of the quantum walk search framework and give improved upper bounds for several subgraph-finding problems.Comment: v1: 25 pages, 2 figures. v2: 26 page

    Towards a fully automated computation of RG-functions for the 3-dd O(N) vector model: Parametrizing amplitudes

    Full text link
    Within the framework of field-theoretical description of second-order phase transitions via the 3-dimensional O(N) vector model, accurate predictions for critical exponents can be obtained from (resummation of) the perturbative series of Renormalization-Group functions, which are in turn derived --following Parisi's approach-- from the expansions of appropriate field correlators evaluated at zero external momenta. Such a technique was fully exploited 30 years ago in two seminal works of Baker, Nickel, Green and Meiron, which lead to the knowledge of the β\beta-function up to the 6-loop level; they succeeded in obtaining a precise numerical evaluation of all needed Feynman amplitudes in momentum space by lowering the dimensionalities of each integration with a cleverly arranged set of computational simplifications. In fact, extending this computation is not straightforward, due both to the factorial proliferation of relevant diagrams and the increasing dimensionality of their associated integrals; in any case, this task can be reasonably carried on only in the framework of an automated environment. On the road towards the creation of such an environment, we here show how a strategy closely inspired by that of Nickel and coworkers can be stated in algorithmic form, and successfully implemented on the computer. As an application, we plot the minimized distributions of residual integrations for the sets of diagrams needed to obtain RG-functions to the full 7-loop level; they represent a good evaluation of the computational effort which will be required to improve the currently available estimates of critical exponents.Comment: 54 pages, 17 figures and 4 table

    Lorentzian and Euclidean Quantum Gravity - Analytical and Numerical Results

    Full text link
    We review some recent attempts to extract information about the nature of quantum gravity, with and without matter, by quantum field theoretical methods. More specifically, we work within a covariant lattice approach where the individual space-time geometries are constructed from fundamental simplicial building blocks, and the path integral over geometries is approximated by summing over a class of piece-wise linear geometries. This method of ``dynamical triangulations'' is very powerful in 2d, where the regularized theory can be solved explicitly, and gives us more insights into the quantum nature of 2d space-time than continuum methods are presently able to provide. It also allows us to establish an explicit relation between the Lorentzian- and Euclidean-signature quantum theories. Analogous regularized gravitational models can be set up in higher dimensions. Some analytic tools exist to study their state sums, but, unlike in 2d, no complete analytic solutions have yet been constructed. However, a great advantage of our approach is the fact that it is well-suited for numerical simulations. In the second part of this review we describe the relevant Monte Carlo techniques, as well as some of the physical results that have been obtained from the simulations of Euclidean gravity. We also explain why the Lorentzian version of dynamical triangulations is a promising candidate for a non-perturbative theory of quantum gravity.Comment: 69 pages, 16 figures, references adde

    Using 1-Factorization from Graph Theory for Quantum Speedups on Clique Problems

    Full text link
    The clique problems, including kk-CLIQUE and Triangle Finding, form an important class of computational problems; the former is an NP-complete problem, while the latter directly gives lower bounds for Matrix Multiplication. A number of previous efforts have approached these problems with Quantum Computing methods, such as Amplitude Amplification. In this paper, we provide new Quantum oracle designs based on the 1-factorization of complete graphs, all of which have depth O(n)O(n) instead of the O(n2)O(n^2) presented in previous studies. Also, we discuss the usage of one of these oracles in bringing the Triangle Finding time complexity down to O(n2.25poly(logn))O(n^{2.25} poly(log n)), compared to the O(n2.38)O(n^{2.38}) classical record. Finally, we benchmark the number of required Amplitude Amplification iterations for another presented oracle, for solving kk-CLIQUE.Comment: 14 pages, 8 figure
    corecore