76 research outputs found

    Temporal and Spatiotemporal Arboviruses Forecasting by Machine Learning: A Systematic Review

    Get PDF
    Arboviruses are a group of diseases that are transmitted by an arthropod vector. Since they are part of the Neglected Tropical Diseases that pose several public health challenges for countries around the world. The arboviruses' dynamics are governed by a combination of climatic, environmental, and human mobility factors. Arboviruses prediction models can be a support tool for decision-making by public health agents. In this study, we propose a systematic literature review to identify arboviruses prediction models, as well as models for their transmitter vector dynamics. To carry out this review, we searched reputable scientific bases such as IEE Xplore, PubMed, Science Direct, Springer Link, and Scopus. We search for studies published between the years 2015 and 2020, using a search string. A total of 429 articles were returned, however, after filtering by exclusion and inclusion criteria, 139 were included. Through this systematic review, it was possible to identify the challenges present in the construction of arboviruses prediction models, as well as the existing gap in the construction of spatiotemporal models

    Statistical modeling of the effect of rainfall flushing on dengue transmission in Singapore

    Get PDF
    Background: Rainfall patterns are one of the main drivers of dengue transmission as mosquitoes require standing water to reproduce. However, excess rainfall can be disruptive to the Aedes reproductive cycle by “flushing out” aquatic stages from breeding sites. We developed models to predict the occurrence of such “flushing” events from rainfall data and to evaluate the effect of flushing on dengue outbreak risk in Singapore between 2000 and 2016. Methods: We used machine learning and regression models to predict days with “flushing” in the dataset based on entomological and corresponding rainfall observations collected in Singapore. We used a distributed lag nonlinear logistic regression model to estimate the association between the number of flushing events per week and the risk of a dengue outbreak. Results: Days with flushing were identified through the developed logistic regression model based on entomological data (test set accuracy = 92%). Predictions were based upon the aggregate number of thresholds indicating unusually rainy conditions over multiple weeks. We observed a statistically significant reduction in dengue outbreak risk one to six weeks after flushing events occurred. For weeks with five or more flushing events, compared with weeks with no flushing events, the risk of a dengue outbreak in the subsequent weeks was reduced by 16% to 70%. Conclusions: We have developed a high accuracy predictive model associating temporal rainfall patterns with flushing conditions. Using predicted flushing events, we have demonstrated a statistically significant reduction in dengue outbreak risk following flushing, with the time lag well aligned with time of mosquito development from larvae and infection transmission. Vector control programs should consider the effects of hydrological conditions in endemic areas on dengue transmission.Charles Stark Draper Laborator

    Machine Learning Methods with Noisy, Incomplete or Small Datasets

    Get PDF
    In many machine learning applications, available datasets are sometimes incomplete, noisy or affected by artifacts. In supervised scenarios, it could happen that label information has low quality, which might include unbalanced training sets, noisy labels and other problems. Moreover, in practice, it is very common that available data samples are not enough to derive useful supervised or unsupervised classifiers. All these issues are commonly referred to as the low-quality data problem. This book collects novel contributions on machine learning methods for low-quality datasets, to contribute to the dissemination of new ideas to solve this challenging problem, and to provide clear examples of application in real scenarios

    Yellow fever in South America: The role of environment and host on transmission dynamics

    Get PDF
    Yellow fever (YF) is an arbovirus that affects both humans and non-human primates (NHPs). Despite a longstanding recognition of YF as a significant public health problem, many aspects of its underlying transmission and maintenance remain unknown. These knowledge gaps continue to exist even with the increasing availability of data, techniques and recent large-scale outbreaks in South America and Africa.Using several statistical and machine learning methods, I investigate the role of climate, environment and host in predicting the suitability of YF across South America, as an average, seasonally and inter-annually. Following Iexamine the role of seasonality of agriculture, as a proxy for exposure, on human and NHP YF reports in Brazil. To contextualise these predictions and recommendations, I calculate and describe population-level YF vaccination coverage estimates (1940-2050) across Africa and South America, as well as the interactive web-based platform these are published on. Finally, I predict the distribution and density of NHP genera across the South-East of Brazil, and use this ina stochastic multi-species, age structured, meta-population model to explore the role of NHP genera on viral maintenance, and the potential for the establishment of endemicity in the state of Rio de Janeiro.Overall this thesis describes several key aspects necessary to understand the enigma of YF transmission in South America. A greater understanding of climate and environment allows for the possibility of forecasting periods of heightened transmission which could inform pro-active surveillance and vaccination, supported through our vaccination coverage estimates. Finally, by providing insights into the role of NHP genera on maintenance and critical community sizes for YFV transmission, I can highlight the potential for endemicity to be established.Open Acces

    Book of Abstracts of SPE 2021

    Get PDF
    Book of Abstracts of SPE 202

    Applications of big data approaches to topics in infectious disease epidemiology

    Get PDF
    The availability of big data (i.e., a large number of observations and variables per observation) and advancements in statistical methods present numerous exciting opportunities and challenges in infectious disease epidemiology. The studies in this dissertation address questions regarding the epidemiology of dengue and sepsis by applying big data and traditional epidemiologic approaches. In doing so, we aim to advance our understanding of both diseases and to critically evaluate traditional and novel methods to understand how these approaches can be leveraged to improve epidemiologic research. In the first study, we examined the ability of machine learning and regression modeling approaches to predict dengue occurrence in three endemic locations. When we utilized models with historical surveillance, population, and weather data, machine learning models predicted weekly case counts more accurately than regression models. When we removed surveillance data, regression models were more accurate. Furthermore, machine learning models were able to accurately forecast the onset and duration of dengue outbreaks up to 12 weeks in advance without using surveillance data. This study highlighted potential benefits that machine learning models could bring to a dengue early warning system. The second study utilized machine learning approaches to identify the rainfall conditions which lead to mosquito larvae being washed away from breeding sites occurring in roadside storm drains in Singapore. We then used conventional epidemiologic approaches to evaluate how the occurrence of these washout events affect dengue occurrence in subsequent weeks. This study demonstrated an inverse relationship between washout events and dengue outbreak risk. The third study compared algorithmic-based and conventional epidemiologic approaches used to evaluate variables for statistical adjustment. We used these approaches to identify what variables to adjust for when estimating the effect of autoimmune disease on 30-day mortality among ICU patients with sepsis. In this study, autoimmune disease presence was associated with an approximate 10-20% reduction in mortality risk. Risk estimates identified with algorithmic-based approaches were compatible with conventional approaches and did not differ by more than 9%. This study revealed that algorithmic-based approaches can approximate conventional selection methods, and may be useful when the appropriate set of variables to adjust for is unknown
    • …
    corecore