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Abstract

Background

Rainfall patterns are one of the main drivers of dengue transmission as mosquitoes require

standing water to reproduce. However, excess rainfall can be disruptive to the Aedes repro-

ductive cycle by “flushing out” aquatic stages from breeding sites. We developed models to

predict the occurrence of such “flushing” events from rainfall data and to evaluate the effect

of flushing on dengue outbreak risk in Singapore between 2000 and 2016.

Methods

We used machine learning and regression models to predict days with “flushing” in the

dataset based on entomological and corresponding rainfall observations collected in

Singapore. We used a distributed lag nonlinear logistic regression model to estimate the

association between the number of flushing events per week and the risk of a dengue

outbreak.

Results

Days with flushing were identified through the developed logistic regression model based on

entomological data (test set accuracy = 92%). Predictions were based upon the aggregate

number of thresholds indicating unusually rainy conditions over multiple weeks. We

observed a statistically significant reduction in dengue outbreak risk one to six weeks after

flushing events occurred. For weeks with five or more flushing events, compared with

weeks with no flushing events, the risk of a dengue outbreak in the subsequent weeks was

reduced by 16% to 70%.

Conclusions

We have developed a high accuracy predictive model associating temporal rainfall patterns

with flushing conditions. Using predicted flushing events, we have demonstrated a statisti-

cally significant reduction in dengue outbreak risk following flushing, with the time lag well

aligned with time of mosquito development from larvae and infection transmission. Vector
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control programs should consider the effects of hydrological conditions in endemic areas on

dengue transmission.

Author summary

Dengue transmission is sensitive to fluctuations in rainfall and other weather conditions

because it is transmitted by the Aedes mosquito. Recent studies have identified that

extreme rainfall can result in mosquito breeding site flushing. However, these rainfall con-

ditions have neither been described nor evaluated for their potential effect on dengue

transmission. In this study, we applied machine learning and regression approaches to

identify rainfall thresholds associated with mosquito breeding site flushing in Singapore.

We then estimated the association between the number of flushing events per week and

dengue outbreaks in the following weeks. Here we demonstrate that flushing events are

accurately predicted by historical rainfall patterns. We also show that flushing events are

associated with a statistically significant reduction in dengue outbreak risk up to six weeks

after the flushing events occurred. This research suggests that dengue predictive and early

warning systems must consider hydrological conditions and other contributing factors to

accurately predict near-term dengue risk.

Introduction

Dengue, a disease transmitted by Aedes mosquitoes, is a global public health problem. Dengue

is endemic in more than 100 tropical and subtropical countries where 30–50% of the global

population is at risk for infection [1–4]. Annually, there are an estimated 50–100 million cases

of dengue, with 500,000 of these cases developing into life-threatening Dengue Hemorrhagic

Fever and Dengue Shock Syndrome [5].

Various weather factors influence dengue incidence. Temperature and humidity impact

dengue incidence by affecting adult feeding behavior, larvae development, and mosquito sur-

vival [2,5–16]. Small increases in average monthly temperature (e.g., 1˚C) have been associated

with a considerable increase in dengue incidence, leading to a 45% increase in the number of

cases in subsequent months in Brazil and China [4,5,17–30].

Although mosquitoes require sufficient rainfall for breeding and larval development [2,7–

9,31,32], too much rainfall can be detrimental [33–35]. Excessive rainfall can cause breeding

sites to overflow, disrupting mosquito breeding and destroying developing larvae. Mosquito

breeding site “flushing”, where water levels exceed a breeding site’s drainage threshold and

wash away mosquito larvae, has been observed in both experimental and field settings [33–36].

In experimental studies, simulated heavy rainfall washed away the majority of mosquito larvae

and resulted in significant larvae mortality [33,35,36]. The extent of the effect of flushing

depended on rainfall intensity, container size, and larvae age [33,35]. A field study in Singa-

pore demonstrated that dengue incidence is lowest following months where flushing events

are most frequent suggesting that flushing events may influence how and when dengue trans-

mission occurs [34].

Multiple studies have described the weather drivers of dengue incidence using regression

and time series models [4,5,10,17–30,37–39]. While relationships between temperature and

humidity and dengue incidence have been consistent, the relationship between rainfall and

dengue incidence has remained unclear. Associations between rainfall and dengue incidence
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have ranged from weak or no connection [19,25,27–29,39], to as much as a 21% increase in

dengue incidence in response to increased rainfall [10,19,26,37]. Machine learning tools have

been used to predict the occurrence of dengue based on a combination of weather parameters,

including rainfall [40–48]. Though successful in predicting weekly and monthly dengue inci-

dence with over 90% accuracy, these models did not explain the relationship between rainfall

and dengue.

One interesting and still unanswered question relates to the influence of flushing on dengue

incidence. Observations by Seidahmed and Eltahir [34] of larvae survival in storm drains in

Singapore following rainfall events have confirmed that flushing mostly occurs during the

Northeast monsoon season. The authors noted that the season with the highest rainfall levels

and most flushing events preceded the season with traditionally low dengue incidence. How-

ever, the study did not quantify the rainfall patterns leading to flushing nor its effect on dengue

spread.

This paper proposes a quantitative approach associating flushing, expressed through rainfall

patterns, with the subsequent fluctuations in dengue outbreak risk in Singapore between 2000

and 2016. The methodology uses entomological data from Singapore [34] combined with his-

torical rainfall data to quantify the rainfall conditions associated with mosquito larvae wash-

out, or “flushing”. A regression model is then used to estimate the effect of flushing events on

dengue outbreaks. We show a statistically significant 16–70% reduction in dengue outbreak

risk in one to six weeks following flushing events.

Materials and methods

Study area

Singapore is located on the southern-most tip of the Malay Peninsula with a population of

5.6-million people [49]. Dengue is hyper-endemic, where serotypes I-IV co-circulate, and is

transmitted year-round, with peak incidence occurring between July and September [50–53].

Singapore has a tropical rainforest climate (Köppen: Af) with two monsoon seasons, the

Northeast and Southwest monsoons. The former is associated with heavy rainfall between

November and March while the latter occurs between June and October and is relatively drier

[54]. Average annual precipitation is nearly 2.3 meters. Average daily temperature is stable

throughout the year, where average daily temperatures of the hottest and coolest months differ

by 1.9˚C.

Surveillance data

Weekly dengue case counts in Singapore from 2000–2016 (N = 887) were obtained from the

Weekly Infectious Disease Bulletin of the Singapore Ministry of Health [55]. Confirmed cases

were reported by all public and private hospitals and laboratories who are mandated to report

all clinically and lab diagnosed cases of dengue within 24 hours [56,57].

Entomological data

Longitudinal entomological surveys were obtained from a previously published work of Sei-

dahmed and Eltahir [34]. These surveys were conducted in the Geylang neighborhood of Sin-

gapore, a highly urbanized neighborhood located east of the Singapore River [34]. Geylang is

classified as being hyperendemic for dengue by the National Environmental Agency since den-

gue transmission occurs year-round [34]. Geylang is estimated to have a resident population

of 32,000 and an even larger non-resident population which is a result of the large amount of

cheap housing options that are primarily used by foreign laborers [34].
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During entomological data collection, random aquatic surveys were completed twice a

week between August 2014 and August 2015 (except between February 21st and March 10th),

resulting in 107 days of entomological observations. For each survey, trained inspectors exam-

ined all potential outdoor natural and artificial mosquito breeding sites (e.g., open and closed

roadside storm drains and non-drain sites such as canvas sheets, pails and flowerpots), looking

for mosquito aquatic stages in randomly selected neighborhood blocks. Samples of aquatic

stages were taken and evaluated for taxonomic classification. A subsample of aquatic speci-

mens was retained until adult emergence to confirm taxonomic identification. Taxonomic

keys [58–60] were used to classify sampled aquatic stages and emerged adults [34].

A total of 6,824 samples were taken from potential breeding sites (5,818 samples from open

and closed storm drains) [34]. Sixty-seven breeding sites (53 occurring in storm drains) were

positive for Ae. aegypti breeding [34]. Particular attention was then given to the 53 positive Ae.
aegypti breeding sites that were found in open and closed storm drains [34]. Breeding sites of

Ae. Aegypti were mainly found in the southern part of Geylang where denser urban drainage

network and low-rise housing predominate [61].

The 53 positive breeding sites occurring in storm drains were continuously monitored for

hydrological conditions and changes in the presence of mosquito larvae. For each visit during

the monitoring phase, the following four conditions were observed: 1) stagnant water and pos-

itive for aquatic stages, 2) stagnant water and negative for aquatic stages, 3) dry and negative

for aquatic stages, and 4) flushed and negative for aquatic stages [34]. No sites were identified

as flushed and positive for aquatic stages or dry and positive for aquatic stages. We then classi-

fied each day of observation as “Flushed” if at least one breeding site was classified as “flushed

and negative”, meaning that water had exceeded the drainage threshold (indicated by the

storm drain overflowing, or evidence of an overflow) for the breeding site and mosquito larvae

were not present. Of the 107 days of entomological observations, 25 were classified as flushed

and 82 as non-flushed (Fig 1). The majority of flushing events (84%) occurred during the

Northeast monsoon, while only 23% of non-flushing events happened during this time. This

data was used to develop a model to predict flushing occurrence for the entire study period.

Weather data

Daily weather data, including rainfall and temperature, were obtained from Tanjong Katong

weather station (selected for its proximity to Geylang) [62]. Humidity data were extracted

from remote sensed reanalysis data [63] and El Niño Southern Oscillation (ENSO) data were

obtained from the Climate Prediction Center [64], both of which are operated by the National

Oceanic and Atmospheric Administration. The ENSO index used was the normalized Oceanic

Niño Index for Niño region 3.4 [65–68] and used to define the ENSO phase (i.e., El Niño, La

Niña, Neutral). Weather data were obtained from 1/1/1999–12/31/2016. Missing weather data

were imputed using multiple imputations through chained equations using the MICE R pack-

age [69].

Exposure assessment: Modeling and predicting flushing event occurrence

Entomological data detailing the hydrological conditions of breeding sites in Singapore were

only available for a single year (August 2014 –August 2015) during the study period (2000–

2016). We developed the Predictive fLUshing-Mosquito model (PLUM) which predicts the

occurrence of flushing events based on the temporal variation in daily rainfall over several

weeks preceding the day of interest and allows the extension of the prediction to dates when

no entomological observations are available. The objective was not only to make a daily predic-

tion but to identify more general ‘flushing’ conditions leading to drains’ overflow. Early
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flooding warning systems use rainfall thresholds to predict flooding occurrence [70]. The

PLUM model operates in a similar fashion by identifying a set of variables and their thresholds

associated with flushing occurrence.

The PLUM model was developed using the entomological observations and the correspond-

ing rainfall data between August 2014 to August 2015. The general model framework can be

found in S1 Fig. The proposed approach identifies rainfall thresholds associated with a higher

likelihood of flushing occurrence. We used supervised machine learning models to associate

the identified thresholds with flushing occurrence. Each model was trained using a balanced

training set where non-flushed observations were randomly under-sampled to generate a 1:1

ratio of flushed to non-flushed observations in the training set to prevent the model from classi-

fying all observations as the majority class [71]. Each model was evaluated on unseen data

using leave-one-out cross validation. The PLUM model was then extended to the entire study

period, to predict the occurrence of flushing events in Singapore between 2000 and 2016.

Data preprocessing. The PLUM model operates on a daily basis, with an outcome, “flush-
ing”, defined as a day with at least one flushed breeding site recorded in the entomological

Fig 1. Timeline of observed Ae. aegypti breeding sites in Geylang, Singapore, August 2014 –August 2015. There were 107 days of entomological

observations where 53 breeding sites, once identified as positive for Ae. aegypti breeding, were monitored for changes in hydrological conditions. Breeding

sites where water exceeded the drainage threshold were classified as “Flushed”. For each day of observation, if at least one breeding site was observed as

flushed, the day of observation was defined as flushed. If no breeding sites were observed as flushed then the day of observation was classified as not flushed.

This figure, “Timeline of observed Ae. aegypti breeding sites in Geylang, Singapore, August 2014 –August 2015 is a derivative of “Timeline of the breeding

drains of Aedes aegypti in Geylang, Singapore: August 2014 –August 2015” by Seidahmed and Eltahir [34], used under CC BY.

https://doi.org/10.1371/journal.pntd.0006935.g001
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data. Rainfall variables were created to summarize trends in rainfall. We created 38 time-vary-

ing rainfall variables from the weeks preceding the day of interest reflecting frequency, inten-

sity, and total rainfall. Rainfall was characterized using several different variables to capture the

different mechanisms by which flushing may occur (i.e., very intense rainfall directly preced-

ing the flushing event or elevated rainfall over several weeks followed by moderate rainfall

directly preceding the flushing event). These variables were selected based upon their associa-

tion with mosquito abundance and because they are conventionally used in studies of mos-

quito breeding ecology (Table 1) [36,72–76].

Identifying thresholds associated with flushing occurrence. One of the objectives of the

PLUM model was to identify flushing conditions expressed through the ‘thresholds’ of various

combinations of rainfall parameters. We used the Univariate Flagging Algorithm (UFA) [64]

to identify conditions leading to flushing.

UFA is a threshold detection algorithm that identifies an optimal cutpoint for a single con-

tinuous variable (e.g., 1-week cumulative rainfall) that is associated with a statistically signifi-

cant higher (“high risk”) likelihood of the outcome (flushing). The algorithm evaluates

candidate thresholds along the variable space, selecting the threshold that optimizes the differ-

ence in the outcome rate for observations that fall outside of the threshold and a baseline rate.

The baseline rate is defined as the outcome rate within the interquartile range of the evaluated

variable. Two such thresholds can be identified, one above and one below the median. As rec-

ommended by the algorithm developers, statistically significant thresholds were identified

using a p-value of 0.01. A total of 36 high risk thresholds were identified. The identified flush-

ing thresholds are specific to storm drains that are similar to the sampled storm drains (see sec-

tion 2.3 Entomological Data) and are invariant to time because the hydrological characteristics

and drainage thresholds will remain constant unless the storm drains are rebuilt using new

dimensions, are damaged, or are obstructed by accumulated rubbish or sediment.

PLUM model development and evaluation. The PLUM model predicts daily flushing

occurrence based upon two variables, the aggregate number of high risk thresholds that were

met per day for both cumulative and daily rainfall variables (all models that were investigated

are described in section 1.1 of S1 Text). The general formula for the PLUM model is given as

follows:

FlushedD ¼ b1ðThresholds MetD;Daily� High RiskÞ þ b2ðThresholds MetD;Cumulative� High RIskÞ þ b0 ð1Þ

Where FlushedD is the flushing status for day D; Thresholds MetD, Daily-High Risk is the number

of high risk daily rainfall thresholds met for day D; Thresholds MetD, Cumulative-High Risk is the

number of high risk cumulative rainfall thresholds met for day D; β1 and β2 are the model

Table 1. Rainfall variables created for PLUM model development. These variables were created to characterize rain-

fall several different ways in order to capture the different mechanisms by which storm drains may be flushed.

Variables Total number of variables

created

Daily rainfall variables

The number of rainy days in the last 7-day period 1 variable

Average daily rainfall per rainy day in the last 7, 14, 21, and 28-day period 4 variables

The ranked order (1st highest, 2nd highest,. . ., 7th highest) daily total rainfall in the

previous 7-day period

7 variables

Peak daily total rainfall in the previous 1-, 2-,. . ., 6-day period 6 variables

Cumulative rainfall variables

Cumulative total rainfall covering a period of 1, 2, 3,. . ., 20 weeks prior 20 variables

https://doi.org/10.1371/journal.pntd.0006935.t001
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coefficients; and β0 is the model intercept. This model used a classification threshold of 0.52,

meaning that when predicted values where greater than or equal to 0.52, the model predicted

“flushed”, otherwise the model predicted “not flushed”.

We performed a sensitivity analysis to evaluate how different definitions of the outcome

variable “flushing” affected PLUM model performance. The sensitivity analysis is described in

detail in section 1.2 of S1 Text.

Modeling the association between flushing events and dengue outbreaks. We devel-

oped a distributed lag nonlinear logistic regression model [77] to estimate the effect of the

number of flushing events per week on the risk of dengue outbreak occurrence, controlling for

potential confounders. The model is given as follows:

Outbreakw ¼ Sl¼20

l¼1
nsðWeekly Flushingw� l; 3; 3Þ þ Si¼20

i¼1
Tempw� i þ S

j¼20

j¼1
AHw� j þ

Outbreakw� 1 þMonsoonw þ ENSOw ð2Þ

Where Outbreakw is a binary variable reflecting outbreak status during week W; Weekly flush-
ingw-l is the number of flushing events per week predicted by the PLUM model for week W-l (l

[1-20]); Tempw-i is the average weekly temperature for week W-i (i [1-20]); AHw-j is the average

weekly absolute humidity for week W-j (j [1-20]) and was estimated using the approach

described by Xu et al. [5]; Outbreakw-1 is a binary variable reflecting the outbreak status during

week W-1; Monsoonw is the season (Northeast monsoon, Southwest monsoon, Non-monsoon)

for week W; and ENSOw is the current ENSO period (El Niño, La Niña, Neutral) for week W.

We define the outcome, Outbreakw, as follows:

Outbreakw

1; Incidencew � Outbreak thresholdyear

0; Otherwise

(

0 ð3Þ

where the outbreak threshold for each year is defined as:

Outbreak thresholdyear

¼ meanðweekly incidenceÞyear þ standard deviationðweekly incidenceÞyear ð4Þ

The exposure of interest, “Weekly flushingw” was created by predicting whether or not a

flushing event occurred for each day in the study period with the PLUM model and aggregat-

ing the number of predicted flushing events per week. In Eq (2), a natural cubic spline function

was used to model the nonlinear weekly flushing association with 3 degrees of freedom and

the lagged association using 3 degrees of freedom.

Potential confounders and modifiers, average weekly temperature, average weekly absolute

humidity, monsoon season, ENSO phase, and the previous week’s outbreak status, were

selected based upon their known relationship with rainfall or dengue [2,5–16,31,32,78–80].

Data for these variables were obtained from the weather and surveillance data sets. We utilized

a simple confounder model which assumed a linear relationship between each confounder and

dengue outbreak risk. A simple confounder model was selected because we are interested in

the relationship between flushing and dengue outbreak risk and model estimates are relatively

insensitive to the choice of confounder model [81]. In this analysis, we included a lag period of

one to 20 weeks for the weekly flushing, temperature and humidity variables. This period was

selected based upon a literature review on the effects of weather factors on vectors and dengue

transmission [51,82–88].
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Results

Rainfall conditions associated with flushing events

We applied UFA to identify thresholds associated flushing. Running UFA for all 38 rainfall

variables, we identified 36 thresholds (20 for cumulative rainfall variables, 16 for daily rainfall

variables) associated with an increased likelihood of flushing occurrence. The likelihood of

flushing occurrence was found to increase when variable values were greater than or equal to

the associated high risk thresholds. All UFA identified thresholds can be found in S1 Table.

Predicting flushing events from rainfall pattern

In total, there were 107 days of entomological observations, 25 were defined as flushed and 82

were defined as not flushed. We used the PLUM model (described in section 2.5) to classify

each entomological observation using leave-one-out cross validation. The PLUM model made

predictions based upon two variables, the aggregate number of high risk thresholds that were

met per day for both cumulative and daily rainfall variables. The PLUM model achieved 92%

accuracy and demonstrated a strong ability to discriminate between flushed and non-flushed

observations (Table 2).

There is a well-defined threshold resulting in nearly perfect separation between flushed and

non-flushed observations (Fig 2). We fit Eq (1) to each cross validation sample and identified

the mean value for each model coefficient resulting in the following model:

FlushedD ¼ 0:56ðThresholds MetD;Daily� High RiskÞ þ 0:20ðThresholds MetD;Cumulative� High RIskÞ

þ 7:94:ð5Þ

We observed that the fit of Eq (1) for each cross validation sample was stable indicating

good generalizability of the PLUM model.

We extended the PLUM model to the entire study period. Using Eq (5) we assigned a value

indicating whether or not flushing occurred on each day within the study period. For the

study period, 1,242 (21.2%) days were classified as flushing, a similar proportion to the number

of flushed days (25, 23.4%) in the observed entomological data time period. These results were

used in creating the “weekly flushing” variable which is an aggregator of daily flushing events

per week.

Measuring the association between flushing and dengue outbreaks

We used a distributed lag nonlinear logistic regression model to evaluate the association

between flushing occurrence and the risk of a dengue outbreak in the weeks following the

flushing events.

Dengue incidence was reported in 887 weeks between the years 2000 and 2016. Summary

statistics for outbreak occurrence, flushing occurrence, and other weather variables during the

study period are presented in Table 3. During the study period, 138 (15.6%) weeks were

Table 2. Performance of PLUM model classification on the unseen test data. The model used the aggregate number of high risk thresholds that were met per day for

both cumulative and daily rainfall variables. Evaluation measures include F1-score (F1), accuracy (Acc), positive predictive value (PPV), Sensitivity (Se), area under the

receiver operating characteristics curve (AUC), specificity (Sp), negative predictive value (NPV).

Model Variables Acc F1 PPV Se AUC Sp NPV

Logistic # cumulative rainfall high risk thresholds

# daily rainfall high risk thresholds

92% 0.84 0.77 0.92 0.94 0.91 0.97

https://doi.org/10.1371/journal.pntd.0006935.t002

Association between mosquito breeding site flushing and dengue in Singapore

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006935 December 6, 2018 8 / 18

https://doi.org/10.1371/journal.pntd.0006935.t002
https://doi.org/10.1371/journal.pntd.0006935


defined as an Outbreak week based upon the selected criteria. There is also evidence of sea-

sonal variation in outbreak occurrence and rainfall. Outbreak weeks were at least three times

as likely to occur during the Southwest monsoon compared with the Northeast and Non-mon-

soonal periods. Total weekly rainfall shows a seasonal pattern where weeks during the North-

east monsoon have on average 15-20mm more rainfall than other weeks. Due to increased

rainfall, flushing events were most likely to occur during the Northeast monsoon as compared

with any other season.

Fig 3 shows the prevalence of flushing events and the prevalence of outbreak weeks by

month. Here we observe a negative association in which months where flushing event prevalence

is highest (November to February) the outbreak week prevalence is low. Moreover, in months

where flushing event prevalence is low (June to September), outbreak week prevalence is highest.

Regression analysis, Eq (2), demonstrates a negative association between flushing events

and dengue outbreak risk (Fig 4). We identified a nonlinear association between the number

of flushing events per week and dengue outbreak risk that varied over the lag dimension. The

Fig 2. Results of PLUM model associating flushing with the number of high risk thresholds met for cumulative

and daily rainfall variables. There is a clearly defined threshold that almost perfectly separates flushed (blue) and non-

flushed (orange) observations based upon the aggregate number of high risk thresholds that were met per day for both

cumulative and daily rainfall variables. Each gray line represents Eq (1) fit to each leave-one-out cross validation

sample while the blue line represents the mean fit from all of the leave-one-out cross validation samples.

https://doi.org/10.1371/journal.pntd.0006935.g002

Table 3. Descriptive statistics for weekly data on weather variables and dengue outbreak occurrence in Singapore, 2000–2016.

Variable Northeast monsoon Non-monsoon Southwest monsoon All Weeks

Number of total weeks 368 148 371 887

Number of outbreak weeks 32 (8.7%) 3 (2.0%) 103 (27.8%) 138 (15.6%)

Total weekly rainfall (Mean ± SD) 52.6 (60.4) 38.2 (33.7) 33.6 (30.4) 42 (46.5)

Daily temperature (Mean ± SD) 27.2 (0.7) 28.4 (0.7) 28.1 (0.7) 27.8 (0.9)

Daily absolute humidity (Mean ± SD) 25.3 (1.5) 26.7 (1.0) 25.8 (1.2) 25.8 (1.4)

Number of flushing events per week (Mean ± SD) 2.3 (2.5) 1.2 (1.9) 0.6 (1.3) 1.4 (2.1)

Abbreviations: SD, standard deviation

https://doi.org/10.1371/journal.pntd.0006935.t003
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Fig 3. The average prevalence of flushing events and dengue outbreak weeks by month, Singapore, 2000–2016. In months where flushing event

prevalence is highest (blue) dengue outbreak week prevalence (red) is lowest, and vice versa.

https://doi.org/10.1371/journal.pntd.0006935.g003

Fig 4. Association between number of flushing events per week and dengue outbreak occurrence over 20 lag

weeks. The risk of an outbreak occurring within one to six weeks after the week of consideration was significantly

lower if five or more flushing events occurred during the considered week.

https://doi.org/10.1371/journal.pntd.0006935.g004
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risk of an outbreak occurring was significantly lower for weeks where five or more flushing

events occurred compared with weeks with zero flushing events; this relationship remained

significant up to six weeks after the flushing events occurred (Table 4). Weeks where seven

flushing events occurred, there was between a 30–70% reduction in the risk of an outbreak up

to six weeks after the flushing events occurred. Smaller reductions in dengue outbreak risk

were also observed when five (16–38% reduction in risk up to four weeks after the flushing

events) and six (24–56% reduction in risk up to five weeks after the flushing events) flushing

events occurred in a week.

Discussion

Rainfall is an important factor contributing to dengue incidence, in part due to mosquitoes’

reliance upon stagnant water pools to reproduce [7,31,32]. Excessive rainfall can flush out

these breeding sites resulting in larvae death [33–35], potentially causing a reduction in dengue

incidence in the following weeks.

To evaluate the relationship between excessive rainfall and flushing of larvae from their

breeding sites, we developed the PLUM model to identify rainfall conditions that are associ-

ated with flushing events and to predict flushing occurrence. The PLUM model predicts daily

flushing occurrence based upon the temporal rainfall pattern expressed through aggregation

of excessively high cumulative and peak daily rainfall conditions. Our analysis has shown that

a variety of temporal rainfall patterns is associated with flushing events. These patterns,

Table 4. Association between number of flushing events per week and dengue outbreak occurrence over 20 lag weeks. When five or more flushing events occurred in

a week, compared with 0 flushing events, the risk of a dengue outbreak occurring in the subsequent weeks was significantly reduced up to six weeks after the flushing events

occurred.

Weeks after flushing events 1 Day Flushed

OR (95%CI)

2 Day Flushed

OR (95%CI)

3 Day Flushed

OR (95%CI)

4 Day Flushed

OR (95%CI)

5 Day Flushed

OR (95%CI)

6 Day Flushed

OR (95%CI)

7 Day Flushed

OR (95%CI)

1 Week 1.13 (0.88–1.44) 1.16 (0.77–1.74) 1.04 (0.67–1.62) 0.84 (0.54–1.30) 0.62 (0.38–1.02) 0.44 (0.22–0.87) 0.30 (0.11–0.79)

2 Weeks 1.13 (0.93–1.37) 1.17 (0.85–1.60) 1.07 (0.76–1.51) 0.89 (0.64–1.25) 0.69 (0.47–1.02) 0.51 (0.29–0.88) 0.37 (0.17–0.80)

3 Weeks 1.13 (0.97–1.30) 1.18 (0.93–1.49) 1.11 (0.86–1.43) 0.95 (0.74–1.22) 0.76 (0.57–1.03) 0.59 (0.38–0.90) 0.44 (0.24–0.82)

4 Weeks 1.13 (1.00–1.27) 1.19 (0.98–1.44) 1.14 (0.93–1.39) 1.01 (0.83–1.22) 0.84 (0.67–1.05) 0.67 (0.48–0.94) 0.53 (0.32–0.86)

5 Weeks 1.13 (1.01–1.26) 1.20 (1.01–1.42) 1.17 (0.97–1.40) 1.06 (0.89–1.25) 0.91 (0.75–1.10) 0.76 (0.57–1.01) 0.62 (0.40–0.94)

6 Weeks 1.13 (1.01–1.26) 1.21 (1.01–1.44) 1.19 (0.99–1.44) 1.11 (0.93–1.31) 0.98 (0.81–1.18) 0.84 (0.64–1.10) 0.70 (0.47–1.05)

7 Weeks 1.13 (1.00–1.27) 1.22 (1.01–1.47) 1.22 (1.00–1.49) 1.15 (0.96–1.39) 1.04 (0.86–1.27) 0.91 (0.69–1.20) 0.79 (0.53–1.19)

8 Weeks 1.13 (1.00–1.28) 1.23 (1.00–1.50) 1.24 (1.00–1.54) 1.19 (0.98–1.46) 1.10 (0.89–1.35) 0.99 (0.74–1.31) 0.87 (0.57–1.32)

9 Weeks 1.14 (1.00–1.29) 1.24 (1.00–1.52) 1.26 (1.01–1.58) 1.23 (1.00–1.51) 1.15 (0.93–1.43) 1.05 (0.78–1.41) 0.95 (0.62–1.45)

10 Weeks 1.14 (1.00–1.29) 1.25 (1.01–1.53) 1.29 (1.03–1.61) 1.26 (1.02–1.56) 1.20 (0.96–1.49) 1.11 (0.82–1.49) 1.01 (0.66–1.54)

11 Weeks 1.14 (1.01–1.29) 1.26 (1.03–1.54) 1.30 (1.05–1.63) 1.29 (1.05–1.59) 1.24 (1.00–1.53) 1.16 (0.87–1.54) 1.07 (0.71–1.61)

12 Weeks 1.15 (1.02–1.29) 1.26 (1.04–1.54) 1.32 (1.07–1.63) 1.32 (1.08–1.61) 1.27 (1.03–1.57) 1.20 (0.91–1.58) 1.11 (0.75–1.65)

13 Weeks 1.15 (1.03–1.29) 1.27 (1.06–1.53) 1.34 (1.09–1.64) 1.34 (1.10–1.63) 1.30 (1.06–1.59) 1.23 (0.94–1.60) 1.15 (0.80–1.66)

14 Weeks 1.15 (1.03–1.29) 1.28 (1.07–1.54) 1.35 (1.11–1.65) 1.36 (1.12–1.65) 1.32 (1.08–1.60) 1.25 (0.98–1.61) 1.17 (0.83–1.66)

15 Weeks 1.16 (1.04–1.30) 1.29 (1.07–1.56) 1.36 (1.11–1.68) 1.37 (1.13–1.67) 1.34 (1.10–1.63) 1.27 (0.99–1.62) 1.19 (0.85–1.66)

16 Weeks 1.16 (1.03–1.31) 1.30 (1.07–1.59) 1.38 (1.10–1.73) 1.39 (1.12–1.72) 1.35 (1.09–1.66) 1.28 (1.00–1.64) 1.20 (0.85–1.69)

17 Weeks 1.17 (1.02–1.34) 1.31 (1.04–1.65) 1.39 (1.07–1.80) 1.40 (1.10–1.79) 1.36 (1.08–1.71) 1.29 (0.98–1.69) 1.20 (0.83–1.74)

18 Weeks 1.17 (1.00–1.38) 1.32 (1.01–1.73) 1.40 (1.04–1.89) 1.41 (1.06–1.87) 1.36 (1.05–1.78) 1.29 (0.94–1.75) 1.20 (0.79–1.83)

19 Weeks 1.18 (0.98–1.43) 1.33 (0.97–1.83) 1.41 (0.99–2.01) 1.42 (1.02–1.97) 1.37 (1.01–1.86) 1.29 (0.90–1.84) 1.19 (0.73–1.96)

20 Weeks 1.19 (0.95–1.48) 1.34 (0.93–1.94) 1.42 (0.95–2.14) 1.43 (0.97–2.09) 1.37 (0.96–1.96) 1.29 (0.85–1.95) 1.19 (0.67–2.12)

Bold values highlight statistically significant (p < 0.05) results

Abbreviations: OR, odds ratio; CI, confidence interval

https://doi.org/10.1371/journal.pntd.0006935.t004
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highlighted in Fig 2, ranged from heavy rainfall directly preceding the flushing event to the

accumulation of excess rainfall over several weeks followed by moderate rainfall directly pre-

ceding the flushing event. For example, one flushed observation exceeded 11 daily rainfall

thresholds and three cumulative rainfall thresholds (indicating heavy rainfall preceding the

event) while another flushed observation exceeded 3 daily rainfall thresholds and 19 cumula-

tive rainfall thresholds (indicating the accumulation of excess rainfall over time followed by a

smaller rainfall event that finally triggered flushing). Sensitivity analysis further emphasized

the importance of the temporal rainfall pattern rather than single rainfall events. When using

only one daily rainfall variable (e.g., peak daily total rainfall in the preceding two days) we

observed a marked decrease in model accuracy and its ability to discriminate between flushed

and non-flushed observations (Accuracy: 88%; AUC: 0.75) as compared to the PLUM model

(Accuracy: 92%; AUC: 0.94; Table 2).

Flushing events were negatively associated with dengue outbreak risk in Singapore between

2000 and 2016 (Figs 3 and 4). This association was observed when five or more flushing events

occurred in a week, and persisted up to six weeks after the flushing events occurred. The stron-

gest association was found for weeks where flushing events occurred each day, reducing the

risk of a dengue outbreak by as much as 70%. When there were five or six flushing events per

week, the observed association was marginally attenuated (a maximum reduction of 48% and

56% respectively). These results provide support for the hypothesis put forth by Seidahmed

and Eltahir that in addition to typical climatic, human, and vector drivers, monsoon-driven

flushing events affect seasonal abundance of Ae. aegypti via a process of flushing and drying

phases. Through this mechanism, excess rainfall flushes out Aedes larvae from the breeding

site and subsequent dry periods impede Aedes breeding by preventing the development of ade-

quate breeding sites [34]. Together, these flushing and drying periods can have a harmful effect

on dengue transmission.

Our findings, that excess rainfall negatively affects dengue spread, are supported by multi-

ple studies which have observed a similar inverse association between rainfall and mosquito

borne disease incidence or dengue virus isolation [29,39,89,90]. For example, a study on the

relationship between rainfall and malaria incidence in China found an inverse association

(high rainfall was associated with a 15–50% reduction in malaria incidence) when incidence

was modeled as a function of total rainfall at the 4th and 6th, 9th, or 12th lagged weeks, hinting

at a similar flushing mechanism [90]. In Curaçao, monthly rainfall above 200mm, as compared

with mean monthly rainfall at 54mm was associated with a decrease in dengue incidence [29],

while in Colombo Sri Lanka, where annual rainfall (2.4m) is similar to Singapore (2.3m),

weekly total rainfall was observed to have a weak negative association with dengue incidence

[39]. In Senegal, annual dengue virus isolates from mosquitoes decreased 9.7% for each addi-

tional 1 in of rainfall from baseline [89].

In contrast, several studies have identified an increase in the risk of dengue associated with

increasing rainfall. These reports used statistical models that assumed a linear relationship

between rainfall and dengue incidence [19,30,37,39,48]. This approach may obscure a high non-

linearity in the studied association, where a positive relationship is observed for low to moderate

levels of rainfall and a negative relationship for high rainfall patterns. As excessively high rainfall

patterns are rare as compared with more moderate and close to average rainfall patterns, linear

models tend to reflect a strong positive relationship between rainfall and dengue incidence

observed at low and moderate levels of rainfall [4,30]. Further, several of these and other studies

characterized rainfall using a single variable (monthly or weekly average rainfall) [4,10,19,25–

30,37,39]. Our analysis has shown that no single variable was sufficient to describe flushing and

the associated reduction in dengue outbreak risk. The association was made visible through

using a combination of variables reflecting the temporal rainfall pattern over several weeks.
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Interestingly, we observed that when fewer than five flushing events occurred per week

there was an increase in the risk of a dengue outbreak six to 19 weeks after the flushing events

occurred. We believe this association is due to the increased rainfall associated with flushing,

but not flushing itself. For example, with increased rainfall new breeding sites may be created,

increasing Ae. aegypti abundance and subsequent dengue outbreak risk. This finding high-

lights the role of moderate rainfall in promoting dengue transmission which has been previ-

ously observed [19,30,37,39,48].

There are several limitations to the study. In developing the PLUM model, we could not

account for the potential effect of El Niño Southern Oscillation because entomological data

were obtained from a single year and the majority of flushed observations (88%) occurred dur-

ing an El Niño period. Future studies should account for this possibility by analyzing entomo-

logical data from El Niño, La Niña, and neutral periods.

The PLUM model was developed using data obtained from 53 breeding sites from a single

neighborhood and during a 12-month period. If the drainage thresholds for the roadside

storm drains significantly varied across the time or location, PLUM model accuracy and gen-

eralizability would be negatively affected resulting in a biased model. Despite these potential

limitations, we validated the generalization of the PLUM model on unseen data and found its

performance to be robust (Table 2). Furthermore, the drainage conditions should be relatively

invariant over time unless the storm drain is damaged or physically changed.

In the current study, we were only able to estimate the effect of the flushing out of breeding

sites occurring in road side storm drains. There are other key-breeding sites (e.g., roof gutters,

flower pots, and domestic containers) defined by the National Environmental Agency of Sin-

gapore that were not evaluated due to ethical and legal considerations [34]. Additional work is

needed to evaluate how the flushing of other breeding habitats influence dengue spread.

We did not have information on vector control campaigns during the study period, an

important confounding factor that is missing in our study. To compensate for its effect, we sta-

tistically adjusted the models for season, as vector control measures vary by season in Singapore.

The developed model associating flushing and dengue outbreak incidence relies on weekly

flushing occurrence variable values, which have been inferred though the PLUM model. Even

though the PLUM model achieved very high accuracy on the unseen test data (92% correct;

Table 2), it still introduced misclassification error in defining days with flushing in the data,

though we estimate the influence of such misclassification on the final results to be small.

As with any epidemiological data, the dengue incidence might have been significantly

underreported. We assumed this bias be non-differential; at worst we would expect that the

effect of underreporting would make results biased towards no association—indicating that

the magnitude of the unbiased protective association would be stronger [91].

Conclusions

We proposed a non-linear approach to understanding the relationship between excessive rain-

fall, flushing, and dengue outbreak occurrence in Singapore. According to the PLUM model,

flushing conditions are characterized by rainfall patterns indicating excess rainfall. We demon-

strated that rainfall-induced flushing is associated with a statistically significant decreased risk

of dengue outbreak, with association being significant up to six weeks after the week when

flushing occurred.
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structure. Aëdes Aegypti Yellow Fever Mosq Its Life Hist Bionomics Struct. 1960; https://www-

cabdirect-org.ezproxy.bu.edu/cabdirect/abstract/19602901825

8. Focks DA, Haile DG, Daniels E, Mount GA. Dynamic life table model for Aedes aegypti (Diptera: Culici-

dae): analysis of the literature and model development. J Med Entomol. 1993; 30: 1003–1017. PMID:

8271242

Association between mosquito breeding site flushing and dengue in Singapore

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006935 December 6, 2018 14 / 18

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006935.s002
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006935.s003
https://doi.org/10.1186/1471-2458-12-72
https://doi.org/10.1186/1471-2458-12-72
http://www.ncbi.nlm.nih.gov/pubmed/22272602
https://doi.org/10.1371/journal.pntd.0001908
http://www.ncbi.nlm.nih.gov/pubmed/23209852
https://doi.org/10.1371/journal.pntd.0002805
https://doi.org/10.1371/journal.pntd.0002805
http://www.ncbi.nlm.nih.gov/pubmed/24786517
https://doi.org/10.1371/journal.pone.0050972
https://doi.org/10.1371/journal.pone.0050972
http://www.ncbi.nlm.nih.gov/pubmed/23226436
https://www-cabdirect-org.ezproxy.bu.edu/cabdirect/abstract/19602901825
https://www-cabdirect-org.ezproxy.bu.edu/cabdirect/abstract/19602901825
http://www.ncbi.nlm.nih.gov/pubmed/8271242
https://doi.org/10.1371/journal.pntd.0006935


9. Hopp MJ, Foley JA. Global-scale relationships between climate and the dengue fever vector, Aedes

aegypti. Clim Change. 2001; 48: 441–463.

10. Johansson MA, Cummings DA, Glass GE. Multiyear climate variability and dengue—El Nino southern

oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data

analysis. PLoS Med. 2009; 6: e1000168. https://doi.org/10.1371/journal.pmed.1000168 PMID:

19918363

11. Rueda LM, Patel KJ, Axtell RC, Stinner RE. Temperature-dependent development and survival rates of

Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). J Med Entomol. 1990; 27: 892–898.

PMID: 2231624

12. Chien L-C, Yu H-L. Impact of meteorological factors on the spatiotemporal patterns of dengue fever inci-

dence. Environ Int. 2014; 73: 46–56. https://doi.org/10.1016/j.envint.2014.06.018 PMID: 25084561

13. Brady OJ, Johansson MA, Guerra CA, Bhatt S, Golding N, Pigott DM, et al. Modelling adult Aedes

aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasit

Vectors. 2013; 6: 351. https://doi.org/10.1186/1756-3305-6-351 PMID: 24330720

14. Surtees G. Effects of irrigation on mosquito populations and mosquito-borne diseases in man, with par-

ticular reference to ricefield extension. Int J Environ Stud. 1970; 1: 35–42. https://doi.org/10.1080/

00207237008709393

15. Russell RC. Mosquito-borne arboviruses in Australia: the current scene and implications of climate

change for human health. Int J Parasitol. 1998; 28: 955–969. https://doi.org/10.1016/S0020-7519(98)

00053-8 PMID: 9673874

16. Faull KJ, Williams CR. Intraspecific variation in desiccation survival time of Aedes aegypti (L.) mosquito

eggs of Australian origin. J Vector Ecol. 2015; 40: 292–300. https://doi.org/10.1111/jvec.12167 PMID:

26611964

17. Karim MN, Munshi SU, Anwar N, Alam MS. Climatic factors influencing dengue cases in Dhaka city: A

model for dengue prediction. Indian J Med Res. 2012; 136: 32–39. PMID: 22885261

18. Depradine CA, Lovell EH. Climatological variables and the incidence of Dengue fever in Barbados. Int J

Environ Health Res. 2004; 14: 429–441. https://doi.org/10.1080/09603120400012868 PMID: 15545038

19. Gomes AF, Nobre AA, Cruz OG. Temporal analysis of the relationship between dengue and meteoro-

logical variables in the city of Rio de Janeiro, Brazil, 2001–2009. Cad Saude Publica. 2012; 28: 2189–

2197. PMID: 23147960

20. Fuller DO, Troyo A, Beier JC. El Niño Southern Oscillation and vegetation dynamics as predictors of

dengue fever cases in Costa Rica. Environ Res Lett ERL Web Site. 2009; 4: 140111–140118. https://

doi.org/10.1088/1748-9326/4/1/014011 PMID: 19763186

21. Stewart-Ibarra AM, Lowe R. Climate and non-climate drivers of dengue epidemics in southern coastal

ecuador. Am J Trop Med Hyg. 2013; 88: 971–981. https://doi.org/10.4269/ajtmh.12-0478 PMID:

23478584

22. Gharbi M, Quenel P, Gustave J, Cassadou S, La Ruche G, Girdary L, et al. Time series analysis of den-

gue incidence in Guadeloupe, French West Indies: forecasting models using climate variables as pre-

dictors. BMC Infect Dis. 2011; 11: 166. https://doi.org/10.1186/1471-2334-11-166 PMID: 21658238

23. Hurtado-Dı́az M, Riojas-Rodrı́guez H, Rothenberg SJ, Gomez-Dantés H, Cifuentes E. Short communi-

cation: impact of climate variability on the incidence of dengue in Mexico. Trop Med Int Health TM IH.

2007; 12: 1327–1337. https://doi.org/10.1111/j.1365-3156.2007.01930.x PMID: 17956543

24. Wu P-C, Guo H-R, Lung S-C, Lin C-Y, Su H-J. Weather as an effective predictor for occurrence of den-

gue fever in Taiwan. Acta Trop. 2007; 103: 50–57. https://doi.org/10.1016/j.actatropica.2007.05.014

PMID: 17612499

25. Pinto E, Coelho M, Oliver L, Massad E. The influence of climate variables on dengue in Singapore. Int J

Environ Health Res. 2011; 21: 415–426. https://doi.org/10.1080/09603123.2011.572279 PMID:

21557124

26. Cheong YL, Burkart K, Leitão PJ, Lakes T. Assessing weather effects on dengue disease in Malaysia.

Int J Environ Res Public Health. 2013; 10: 6319–6334. https://doi.org/10.3390/ijerph10126319 PMID:

24287855

27. Fan J, Lin H, Wang C, Bai L, Yang S, Chu C, et al. Identifying the high-risk areas and associated meteo-

rological factors of dengue transmission in Guangdong Province, China from 2005 to 2011. Epidemiol

Infect. 2014; 142: 634–643. https://doi.org/10.1017/S0950268813001519 PMID: 23823182

28. Lu L, Lin H, Tian L, Yang W, Sun J, Liu Q. Time series analysis of dengue fever and weather in Guang-

zhou, China. BMC Public Health. 2009; 9: 395. https://doi.org/10.1186/1471-2458-9-395 PMID:

19860867

Association between mosquito breeding site flushing and dengue in Singapore

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006935 December 6, 2018 15 / 18

https://doi.org/10.1371/journal.pmed.1000168
http://www.ncbi.nlm.nih.gov/pubmed/19918363
http://www.ncbi.nlm.nih.gov/pubmed/2231624
https://doi.org/10.1016/j.envint.2014.06.018
http://www.ncbi.nlm.nih.gov/pubmed/25084561
https://doi.org/10.1186/1756-3305-6-351
http://www.ncbi.nlm.nih.gov/pubmed/24330720
https://doi.org/10.1080/00207237008709393
https://doi.org/10.1080/00207237008709393
https://doi.org/10.1016/S0020-7519(98)00053-8
https://doi.org/10.1016/S0020-7519(98)00053-8
http://www.ncbi.nlm.nih.gov/pubmed/9673874
https://doi.org/10.1111/jvec.12167
http://www.ncbi.nlm.nih.gov/pubmed/26611964
http://www.ncbi.nlm.nih.gov/pubmed/22885261
https://doi.org/10.1080/09603120400012868
http://www.ncbi.nlm.nih.gov/pubmed/15545038
http://www.ncbi.nlm.nih.gov/pubmed/23147960
https://doi.org/10.1088/1748-9326/4/1/014011
https://doi.org/10.1088/1748-9326/4/1/014011
http://www.ncbi.nlm.nih.gov/pubmed/19763186
https://doi.org/10.4269/ajtmh.12-0478
http://www.ncbi.nlm.nih.gov/pubmed/23478584
https://doi.org/10.1186/1471-2334-11-166
http://www.ncbi.nlm.nih.gov/pubmed/21658238
https://doi.org/10.1111/j.1365-3156.2007.01930.x
http://www.ncbi.nlm.nih.gov/pubmed/17956543
https://doi.org/10.1016/j.actatropica.2007.05.014
http://www.ncbi.nlm.nih.gov/pubmed/17612499
https://doi.org/10.1080/09603123.2011.572279
http://www.ncbi.nlm.nih.gov/pubmed/21557124
https://doi.org/10.3390/ijerph10126319
http://www.ncbi.nlm.nih.gov/pubmed/24287855
https://doi.org/10.1017/S0950268813001519
http://www.ncbi.nlm.nih.gov/pubmed/23823182
https://doi.org/10.1186/1471-2458-9-395
http://www.ncbi.nlm.nih.gov/pubmed/19860867
https://doi.org/10.1371/journal.pntd.0006935


29. Limper M, Thai KTD, Gerstenbluth I, Osterhaus A, Duits AJ, Gorp ECM. Climate factors as important
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