64 research outputs found

    Enhancing cooperation in wireless networks using different concepts of game theory

    Get PDF
    PhDOptimizing radio resource within a network and across cooperating heterogeneous networks is the focus of this thesis. Cooperation in a multi-network environment is tackled by investigating network selection mechanisms. These play an important role in ensuring quality of service for users in a multi-network environment. Churning of mobile users from one service provider to another is already common when people change contracts and in a heterogeneous communication environment, where mobile users have freedom to choose the best wireless service-real time selection is expected to become common feature. This real time selection impacts both the technical and the economic aspects of wireless network operations. Next generation wireless networks will enable a dynamic environment whereby the nodes of the same or even different network operator can interact and cooperate to improve their performance. Cooperation has emerged as a novel communication paradigm that can yield tremendous performance gains from the physical layer all the way up to the application layer. Game theory and in particular coalitional game theory is a highly suited mathematical tool for modelling cooperation between wireless networks and is investigated in this thesis. In this thesis, the churning behaviour of wireless service users is modelled by using evolutionary game theory in the context of WLAN access points and WiMAX networks. This approach illustrates how to improve the user perceived QoS in heterogeneous networks using a two-layered optimization. The top layer views the problem of prediction of the network that would be chosen by a user where the criteria are offered bit rate, price, mobility support and reputation. At the second level, conditional on the strategies chosen by the users, the network provider hypothetically, reconfigures the network, subject to the network constraints of bandwidth and acceptable SNR and optimizes the network coverage to support users who would otherwise not be serviced adequately. This forms an iterative cycle until a solution that optimizes the user satisfaction subject to the adjustments that the network provider can make to mitigate the binding constraints, is found and applied to the real network. The evolutionary equilibrium, which is used to 3 compute the average number of users choosing each wireless service, is taken as the solution. This thesis also proposes a fair and practical cooperation framework in which the base stations belonging to the same network provider cooperate, to serve each other‘s customers. How this cooperation can potentially increase their aggregate payoffs through efficient utilization of resources is shown for the case of dynamic frequency allocation. This cooperation framework needs to intelligently determine the cooperating partner and provide a rational basis for sharing aggregate payoff between the cooperative partners for the stability of the coalition. The optimum cooperation strategy, which involves the allocations of the channels to mobile customers, can be obtained as solutions of linear programming optimizations

    Radio resource scheduling and smart antennas in cellular CDMA communication systems

    Get PDF
    This thesis discusses two important subjects in multi-user wireless communication systems, radio resource scheduler (RRS) and smart antenna. RRS optimizes the available resources among users to increase the capacity and enhance the system performance. The RRS optimization procedure is based on the network conditions (link gain, interference, …) and the required quality of service (QoS) of each user. The CDMA system capacity and performance can be greatly enhanced by reducing the interferences. One of the techniques to reduce the interferences is by exploiting the spatial structure of the interferences. This could be done by using smart antennas which are the second subject of this thesis. The joining procedures of the smart antennas and RRS are discussed as well. Multi-Objective optimization approach is proposed to solve the radio resource scheduler problems. New algorithms are derived namely the Multi-Objective Distributed Power Control (MODPC) algorithm, Multi-Objective Distributed Power and Rate Control (MODPRC) algorithm, and Maximum Throughput and Minimum Power Control (MTMPC) algorithm. Other modified versions of these algorithms have been obtained such as Multi-Objective Totally Distributed Power and Rate Control (MOTDPRC) algorithm, which can be used when only one-bit quantized Carrier to Interference Ratio (CIR) is available. Kalman filter is proposed as a second technique to solve the RRS problem. The motivation to use Kalman filter is the known fact that Kalman filter is the optimum linear tracking device on the basis of second order statistics. The RRS is formulated in state space form. Two different formulations are introduced. New simple and efficient estimation of the CIR is presented. The method is used to construct a novel power control algorithm called Estimated Step Power Control (ESPC) algorithm. The smart antenna concepts and algorithms are discussed. New adaptation algorithm is proposed. It is called General Minimum Variance Distortionless Response (GMVDR) algorithm. The joining of MIMO smart antennas and radio resource scheduler is investigated. Kalman filter is suggested as a simple algorithm to join smart antenna and multi-rate power control in a new way. The performance of the RRS of CDMA cellular communication systems in the presence of smart antenna is studied.reviewe

    Hybrid Access Control Mechanism in Two-Tier Femtocell Networks

    Get PDF
    The cellular industry is undergoing a major paradigm shift from voice-centric, structured homogeneous networks to a more data-driven, distributed and heterogeneous architecture. One of the more promising trends emerging from this cellular revolution is femtocells. Femtocells are primarily viewed as a cost-effective way to improve both capacity and indoor coverage, and they enable offloading data-traffic from macrocell network. However, efficient interference management in co-channel deployment of femtocells remains a challenge. Decentralized strategies such as femtocell access control have been identified as an effective means to mitigate cross-tier interference in two-tier networks. Femtocells can be configured to be either open access or closed access. Prior work on access control schemes show that, in the absence of any coordination between the two tiers in terms of power control and user scheduling, closed access is the preferred approach at high user densities. Present methods suggest that in the case of orthogonal multiple access schemes like TDMA/OFDMA, femtocell access control should be adaptive according to the estimated cellular user density. The approach we follow, in this work, is to adopt an open access policy at the femtocell access points with a cap on the maximum number of users allowed on a femtocell. This ensures the femto owner retains a significant portion of the femtocell resources. We design an iterative algorithm for hybrid access control for femtocells that integrates the problems of uplink power control and base station assignment. This algorithm implicitly adapts the femtocell access method to the current user density. The distributed power control algorithm, which is based on Yates' work on standard interference functions, enables users to overcome the interference in the system and satisfy their minimum QoS requirements. The optimal allocation of femtocell resources is incorporated into the access control algorithm through a constrained sum-rate maximization to protect the femto owner from starvation at high user densities. The performance of a two-tier OFDMA femtocell network is then evaluated under the proposed access scheme from a home owner viewpoint, and network operator perspective. System-level simulations show that the proposed access control method can provide a rate gain of nearly 52% for cellular users, compared to closed access, at high user densities and under moderate-to-dense deployment of femtocells. At the same time, the femto owner is prevented from going into outage and only experiences a negligible rate loss. The results obtained establish the quantitative performance advantage of using hybrid access at femtocells with power control at high user densities. The convergence properties of the proposed iterative hybrid access control algorithm are also investigated by varying the user density and the mean number of femto access points in the network. It is shown that for a given system model, the algorithm converges quickly within thirty iterations, provided a feasible solution exists

    The 2nd Conference of PhD Students in Computer Science

    Get PDF

    Discrete Event Simulations

    Get PDF
    Considered by many authors as a technique for modelling stochastic, dynamic and discretely evolving systems, this technique has gained widespread acceptance among the practitioners who want to represent and improve complex systems. Since DES is a technique applied in incredibly different areas, this book reflects many different points of view about DES, thus, all authors describe how it is understood and applied within their context of work, providing an extensive understanding of what DES is. It can be said that the name of the book itself reflects the plurality that these points of view represent. The book embraces a number of topics covering theory, methods and applications to a wide range of sectors and problem areas that have been categorised into five groups. As well as the previously explained variety of points of view concerning DES, there is one additional thing to remark about this book: its richness when talking about actual data or actual data based analysis. When most academic areas are lacking application cases, roughly the half part of the chapters included in this book deal with actual problems or at least are based on actual data. Thus, the editor firmly believes that this book will be interesting for both beginners and practitioners in the area of DES

    EdgeDASH: Exploiting Network-Assisted Adaptive Video Streaming for Edge Caching

    Get PDF
    While edge video caching has great potential to decrease the core network traffic as well as the users' experienced latency, it is often challenging to exploit the caches in current client-driven video streaming solutions due to two key reasons. First, even those clients interested in the same content might request different quality levels as a video content is encoded into multiple qualities to match a wide range of network conditions and device capabilities. Second, the clients, who select the quality of the next chunk to request, are unaware of the cached content at the network edge. Hence, it becomes imperative to develop network-side solutions to exploit caching. This can also mitigate some performance issues, in particular for the scenarios in which multiple video clients compete for some bottleneck capacity. In this paper, we propose a network-side control logic running at a WiFi AP to facilitate the use of cached video content. In particular, an AP can assign a client station a different video quality than its request, in case the alternative quality provides a better utility. We formulate the quality assignment problem as an optimization problem and develop several heuristics with polynomial complexity. Compared to the baseline where the clients determine the quality adaptation, our proposals, referred to as EdgeDASH, offer higher video quality, higher cache hits, and lower stalling ratio which are essential for user's satisfaction. Our simulations show that EdgeDASH facilitates significant cache hits and decreases the buffer stalls only by changing the client's request by one quality level. Moreover, from our analysis, we conclude that the network assistance provides significant performance improvement, especially when the clients with identical interests compete for a bottleneck link's capacity

    Interference mitigation and interference avoidance for cellular OFDMA-TDD networks

    Get PDF
    In recent years, cellular systems based on orthogonal frequency division multiple access – time division duplex (OFDMA-TDD) have gained considerable popularity. Two of the major reasons for this are, on the one hand, that OFDMA enables the receiver to effectively cope with multipath propagation while keeping the complexity low. On the other hand, TDD offers efficient support for cell-specific uplink (UL)/downlink (DL) asymmetry demands by allowing each cell to independently set its UL/DL switching point (SP). However, cell-independent SP gives rise to crossed slots. In particular, crossed slots arise when neighbouring cells use the same slot in opposing link directions, resulting in base station (BS)-to-BS interference and mobile station (MS)-to-MS interference. BS-to-BS interference, in particular, can be quite detrimental due to the exposed location of BSs, which leads to high probability of line-of-sight (LOS) conditions. The aim of this thesis is to address the BS-to-BS interference problem in OFDMA-TDDcellular networks. A simulation-based approach is used to demonstrate the severity of BS-to-BS interference and a signal-to-interference-plus-noise ratio (SINR) equation for OFDMA is formulated to aid system performance analysis. The detrimental effects of crossed slot interference in OFDMA-TDD cellular networks are highlighted by comparing methods specifically targeting the crossed slots interference problem. In particular, the interference avoidance method fixed slot allocation (FSA) is compared against state of the art interference mitigation approaches, viz: random time slot opposing (RTSO) and zone division (ZD). The comparison is done based on Monte Carlo simulations and the main comparison metric is spectral efficiency calculated using the SINR equation formulated in this thesis. The simulation results demonstrate that when LOS conditions among BSs are present, both RTSO and ZD perform worse than FSA for all considered performance metrics. It is concluded from the results that current interference mitigation techniques do not offer an effective solution to the BS-to-BS interference problem. Hence, new interference avoidance methods, which unlike FSA, do not sacrifice the advantages of TDD are open research issues addressed in this thesis. The major contribution of this thesis is a novel cooperative resource balancing technique that offers a solution to the crossed slot problem. The novel concept, termed asymmetry balancing, is targeted towards next-generation cellular systems, envisaged to have ad hoc and multi-hop capabilities. Asymmetry balancing completely avoids crossed slots by keeping the TDD SPs synchronised among BSs. At the same time, the advantages of TDD are retained, which is enabled by introducing cooperation among the entities in the network. If a cell faces resource shortage in one link direction, while having free resources in the opposite link direction, the free resources can be used to support the overloaded link direction. In particular, traffic can be offloaded to near-by mobile stations at neighbouring cells that have available resources. To model the gains attained with asymmetry balancing, a mathematical framework is developed which is verified by Monte Carlo simulations. In addition, asymmetry balancing is compared against both ZD and FSA based on simulations and the results demonstrate the superior performance of asymmetry balancing. It can be concluded that the novel interference avoidance approach is a very promising candidate t

    QoS constrained cellular ad hoc augmented networks

    Get PDF
    In this dissertation, based on different design criteria, three novel quality of service (QoS) constrained cellular ad hoc augmented network (CAHAN) architectures are proposed for next generation wireless networks. The CAHAN architectures have a hybrid architecture, in which each MT of CDMA cellular networks has ad hoc communication capability. The CAHAN architectures are an evolutionary approach to conventional cellular networks. The proposed architectures have good system scalability and high system reliability. The first proposed architecture is the QoS constrained minimum-power cellular ad hoc augmented network architecture (QCMP CAHAN). The QCMP CAHAN can find the optimal minimum-power routes under the QoS constraints (bandwidth, packet-delay, or packet-error-rate constraint). The total energy consumed by the MTs is lower in the case of QCMP CAHAN than in the case of pure cellular networks. As the ad hoc communication range of each MT increases, the total transmitted power in QCMP CAHAN decreases. However, due to the increased number of hops involved in information delivery between the source and the destination, the end-to-end delay increases. The maximum end-to-end delay will be limited to a specified tolerable value for different services. An MT in QCMP CAHAN will not relay any messages when its ad hoc communication range is zero, and if this is the case for all MTs, then QCMP CAHAN reduces to the traditional cellular network. A QoS constrained network lifetime extension cellular ad hoc augmented network architecture (QCLE CAHAN) is proposed to achieve the maximum network lifetime under the QoS constraints. The network lifetime is higher in the case of QCLE CAHAN than in the case of pure cellular networks or QCMP CAHAN. In QCLE CAHAN, a novel QoS-constrained network lifetime extension routing algorithm will dynamically select suitable ad-hoc-switch-to-cellular points (ASCPs) according to the MT remaining battery energy such that the selection will balance all the MT battery energy and maximizes the network lifetime. As the number of ASCPs in an ad hoc subnet decreases, the network lifetime will be extended. Maximum network lifetime can be increased until the end-to-end QoS in QCLE CAHAN reaches its maximum tolerable value. Geocasting is the mechanism to multicast messages to the MTs whose locations lie within a given geographic area (target area). Geolocation-aware CAHAN (GA CAHAN) architecture is proposed to improve total transmitted power expended for geocast services in cellular networks. By using GA CAHAN for geocasting, saving in total transmitted energy can be achieved as compared to the case of pure cellular networks. When the size of geocast target area is large, GA CAHAN can save larger transmitted energy

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters
    corecore