19 research outputs found

    Approximate Capacities of Two-Dimensional Codes by Spatial Mixing

    Full text link
    We apply several state-of-the-art techniques developed in recent advances of counting algorithms and statistical physics to study the spatial mixing property of the two-dimensional codes arising from local hard (independent set) constraints, including: hard-square, hard-hexagon, read/write isolated memory (RWIM), and non-attacking kings (NAK). For these constraints, the strong spatial mixing would imply the existence of polynomial-time approximation scheme (PTAS) for computing the capacity. It was previously known for the hard-square constraint the existence of strong spatial mixing and PTAS. We show the existence of strong spatial mixing for hard-hexagon and RWIM constraints by establishing the strong spatial mixing along self-avoiding walks, and consequently we give PTAS for computing the capacities of these codes. We also show that for the NAK constraint, the strong spatial mixing does not hold along self-avoiding walks

    FPTAS for Hardcore and Ising Models on Hypergraphs

    Get PDF
    Hardcore and Ising models are two most important families of two state spin systems in statistic physics. Partition function of spin systems is the center concept in statistic physics which connects microscopic particles and their interactions with their macroscopic and statistical properties of materials such as energy, entropy, ferromagnetism, etc. If each local interaction of the system involves only two particles, the system can be described by a graph. In this case, fully polynomial-time approximation scheme (FPTAS) for computing the partition function of both hardcore and anti-ferromagnetic Ising model was designed up to the uniqueness condition of the system. These result are the best possible since approximately computing the partition function beyond this threshold is NP-hard. In this paper, we generalize these results to general physics systems, where each local interaction may involves multiple particles. Such systems are described by hypergraphs. For hardcore model, we also provide FPTAS up to the uniqueness condition, and for anti-ferromagnetic Ising model, we obtain FPTAS where a slightly stronger condition holds

    Improved Bounds on the Phase Transition for the Hard-Core Model in 2-Dimensions

    Full text link
    For the hard-core lattice gas model defined on independent sets weighted by an activity λ\lambda, we study the critical activity λc(Z2)\lambda_c(\mathbb{Z}^2) for the uniqueness/non-uniqueness threshold on the 2-dimensional integer lattice Z2\mathbb{Z}^2. The conjectured value of the critical activity is approximately 3.7963.796. Until recently, the best lower bound followed from algorithmic results of Weitz (2006). Weitz presented an FPTAS for approximating the partition function for graphs of constant maximum degree Δ\Delta when λ<λc(TΔ)\lambda<\lambda_c(\mathbb{T}_\Delta) where TΔ\mathbb{T}_\Delta is the infinite, regular tree of degree Δ\Delta. His result established a certain decay of correlations property called strong spatial mixing (SSM) on Z2\mathbb{Z}^2 by proving that SSM holds on its self-avoiding walk tree Tsawσ(Z2)T_{\mathrm{saw}}^\sigma(\mathbb{Z}^2) where σ=(σv)v∈Z2\sigma=(\sigma_v)_{v\in \mathbb{Z}^2} and σv\sigma_v is an ordering on the neighbors of vertex vv. As a consequence he obtained that λc(Z2)≥λc(T4)=1.675\lambda_c(\mathbb{Z}^2)\geq\lambda_c( \mathbb{T}_4) = 1.675. Restrepo et al. (2011) improved Weitz's approach for the particular case of Z2\mathbb{Z}^2 and obtained that λc(Z2)>2.388\lambda_c(\mathbb{Z}^2)>2.388. In this paper, we establish an upper bound for this approach, by showing that, for all σ\sigma, SSM does not hold on Tsawσ(Z2)T_{\mathrm{saw}}^\sigma(\mathbb{Z}^2) when λ>3.4\lambda>3.4. We also present a refinement of the approach of Restrepo et al. which improves the lower bound to λc(Z2)>2.48\lambda_c(\mathbb{Z}^2)>2.48.Comment: 19 pages, 1 figure. Polished proofs and examples compared to earlier versio

    FPTAS for #BIS with Degree Bounds on One Side

    Full text link
    Counting the number of independent sets for a bipartite graph (#BIS) plays a crucial role in the study of approximate counting. It has been conjectured that there is no fully polynomial-time (randomized) approximation scheme (FPTAS/FPRAS) for #BIS, and it was proved that the problem for instances with a maximum degree of 66 is already as hard as the general problem. In this paper, we obtain a surprising tractability result for a family of #BIS instances. We design a very simple deterministic fully polynomial-time approximation scheme (FPTAS) for #BIS when the maximum degree for one side is no larger than 55. There is no restriction for the degrees on the other side, which do not even have to be bounded by a constant. Previously, FPTAS was only known for instances with a maximum degree of 55 for both sides.Comment: 15 pages, to appear in STOC 2015; Improved presentations from previous version

    Correlation Decay up to Uniqueness in Spin Systems

    Full text link
    We give a complete characterization of the two-state anti-ferromagnetic spin systems which are of strong spatial mixing on general graphs. We show that a two-state anti-ferromagnetic spin system is of strong spatial mixing on all graphs of maximum degree at most \Delta if and only if the system has a unique Gibbs measure on infinite regular trees of degree up to \Delta, where \Delta can be either bounded or unbounded. As a consequence, there exists an FPTAS for the partition function of a two-state anti-ferromagnetic spin system on graphs of maximum degree at most \Delta when the uniqueness condition is satisfied on infinite regular trees of degree up to \Delta. In particular, an FPTAS exists for arbitrary graphs if the uniqueness is satisfied on all infinite regular trees. This covers as special cases all previous algorithmic results for two-state anti-ferromagnetic systems on general-structure graphs. Combining with the FPRAS for two-state ferromagnetic spin systems of Jerrum-Sinclair and Goldberg-Jerrum-Paterson, and the very recent hardness results of Sly-Sun and independently of Galanis-Stefankovic-Vigoda, this gives a complete classification, except at the phase transition boundary, of the approximability of all two-state spin systems, on either degree-bounded families of graphs or family of all graphs.Comment: 27 pages, submitted for publicatio

    Approximation algorithms for two-state anti-ferromagnetic spin systems on bounded degree graphs

    Get PDF
    In a seminal paper [10], Weitz gave a deterministic fully polynomial approximation scheme for counting exponentially weighted independent sets (which is the same as approximating the partition function of the hard-core model from statistical physics) in graphs of degree at most d, up to the critical activity for the uniqueness of the Gibbs measure on the in nite d-regular tree. More recently Sly [8] (see also [1]) showed that this is optimal in the sense that if there is an FPRAS for the hard-core partition function on graphs of maximum degree d for activities larger than the critical activity on the in nite d-regular tree then NP = RP. In this paper we extend Weitz's approach to derive a deterministic fully polynomial approximation scheme for the partition function of general two-state anti-ferromagnetic spin systems on graphs of maximum degree d, up to the corresponding critical point on the d-regular tree. The main ingredient of our result is a proof that for two-state anti-ferromagnetic spin systems on the d-regular tree, weak spatial mixing implies strong spatial mixing. This in turn uses a message-decay argument which extends a similar approach proposed recently for the hard-core model by Restrepo et al [7] to the case of general two-state anti-ferromagnetic spin systems

    Spatial mixing and approximation algorithms for graphs with bounded connective constant

    Full text link
    The hard core model in statistical physics is a probability distribution on independent sets in a graph in which the weight of any independent set I is proportional to lambda^(|I|), where lambda > 0 is the vertex activity. We show that there is an intimate connection between the connective constant of a graph and the phenomenon of strong spatial mixing (decay of correlations) for the hard core model; specifically, we prove that the hard core model with vertex activity lambda < lambda_c(Delta + 1) exhibits strong spatial mixing on any graph of connective constant Delta, irrespective of its maximum degree, and hence derive an FPTAS for the partition function of the hard core model on such graphs. Here lambda_c(d) := d^d/(d-1)^(d+1) is the critical activity for the uniqueness of the Gibbs measure of the hard core model on the infinite d-ary tree. As an application, we show that the partition function can be efficiently approximated with high probability on graphs drawn from the random graph model G(n,d/n) for all lambda < e/d, even though the maximum degree of such graphs is unbounded with high probability. We also improve upon Weitz's bounds for strong spatial mixing on bounded degree graphs (Weitz, 2006) by providing a computationally simple method which uses known estimates of the connective constant of a lattice to obtain bounds on the vertex activities lambda for which the hard core model on the lattice exhibits strong spatial mixing. Using this framework, we improve upon these bounds for several lattices including the Cartesian lattice in dimensions 3 and higher. Our techniques also allow us to relate the threshold for the uniqueness of the Gibbs measure on a general tree to its branching factor (Lyons, 1989).Comment: 26 pages. In October 2014, this paper was superseded by arxiv:1410.2595. Before that, an extended abstract of this paper appeared in Proc. IEEE Symposium on the Foundations of Computer Science (FOCS), 2013, pp. 300-30
    corecore