28,099 research outputs found

    Higher-order CIS codes

    Full text link
    We introduce {\bf complementary information set codes} of higher-order. A binary linear code of length tktk and dimension kk is called a complementary information set code of order tt (tt-CIS code for short) if it has tt pairwise disjoint information sets. The duals of such codes permit to reduce the cost of masking cryptographic algorithms against side-channel attacks. As in the case of codes for error correction, given the length and the dimension of a tt-CIS code, we look for the highest possible minimum distance. In this paper, this new class of codes is investigated. The existence of good long CIS codes of order 33 is derived by a counting argument. General constructions based on cyclic and quasi-cyclic codes and on the building up construction are given. A formula similar to a mass formula is given. A classification of 3-CIS codes of length ≤12\le 12 is given. Nonlinear codes better than linear codes are derived by taking binary images of Z4\Z_4-codes. A general algorithm based on Edmonds' basis packing algorithm from matroid theory is developed with the following property: given a binary linear code of rate 1/t1/t it either provides tt disjoint information sets or proves that the code is not tt-CIS. Using this algorithm, all optimal or best known [tk,k][tk, k] codes where t=3,4,…,256t=3, 4, \dots, 256 and 1≤k≤⌊256/t⌋1 \le k \le \lfloor 256/t \rfloor are shown to be tt-CIS for all such kk and tt, except for t=3t=3 with k=44k=44 and t=4t=4 with k=37k=37.Comment: 13 pages; 1 figur

    A linear lower bound for incrementing a space-optimal integer representation in the bit-probe model

    Get PDF
    We present the first linear lower bound for the number of bits required to be accessed in the worst case to increment an integer in an arbitrary space- optimal binary representation. The best previously known lower bound was logarithmic. It is known that a logarithmic number of read bits in the worst case is enough to increment some of the integer representations that use one bit of redundancy, therefore we show an exponential gap between space-optimal and redundant counters. Our proof is based on considering the increment procedure for a space optimal counter as a permutation and calculating its parity. For every space optimal counter, the permutation must be odd, and implementing an odd permutation requires reading at least half the bits in the worst case. The combination of these two observations explains why the worst-case space-optimal problem is substantially different from both average-case approach with constant expected number of reads and almost space optimal representations with logarithmic number of reads in the worst case.Comment: 12 pages, 4 figure

    Towards the Efficient Generation of Gray Codes in the Bitprobe Model

    Get PDF
    We examine the problem of representing integers modulo L so that both increment and decrement operations can be performed efficiently. This problem is studied in the bitprobe model, where the complexity of the underlying problem is measured by the number of bit operations performed on the data structure. In this thesis, we will primarily be interested in constructing space-optimal data structures. That is, we would like to use exactly n bits to represent integers modulo 2^n. Brodal et al. gave such a data structure, which requires n-1 bit reads and 3 bit writes, in the worst case, to perform increment and decrement operations We provide several improvements to their data structure. First, we give a data structure that requires n-1 bit reads and 2 bit writes, in the worst case, to perform increment and decrement operations. Then, we refine this result to obtain a data structure that requires n-1 bit reads and a single bit write to perform both operations. This disproves the conjecture that, when a space-optimal data structure uses only 1 bit write to perform these operations, then every bit in the data structure must be inspected in the worst case

    Space-Optimal Quasi-Gray Codes with Logarithmic Read Complexity

    Get PDF
    A quasi-Gray code of dimension n and length l over an alphabet Sigma is a sequence of distinct words w_1,w_2,...,w_l from Sigma^n such that any two consecutive words differ in at most c coordinates, for some fixed constant c>0. In this paper we are interested in the read and write complexity of quasi-Gray codes in the bit-probe model, where we measure the number of symbols read and written in order to transform any word w_i into its successor w_{i+1}. We present construction of quasi-Gray codes of dimension n and length 3^n over the ternary alphabet {0,1,2} with worst-case read complexity O(log n) and write complexity 2. This generalizes to arbitrary odd-size alphabets. For the binary alphabet, we present quasi-Gray codes of dimension n and length at least 2^n - 20n with worst-case read complexity 6+log n and write complexity 2. This complements a recent result by Raskin [Raskin \u2717] who shows that any quasi-Gray code over binary alphabet of length 2^n has read complexity Omega(n). Our results significantly improve on previously known constructions and for the odd-size alphabets we break the Omega(n) worst-case barrier for space-optimal (non-redundant) quasi-Gray codes with constant number of writes. We obtain our results via a novel application of algebraic tools together with the principles of catalytic computation [Buhrman et al. \u2714, Ben-Or and Cleve \u2792, Barrington \u2789, Coppersmith and Grossman \u2775]
    • …
    corecore