
A Linear Lower Bound for Incrementing a
Space-Optimal Integer Representation in the
Bit-Probe Model∗

Mikhail Raskin

Department of Computer Science, Aarhus University, Aarhus, Denmark
raskin@mccme.ru

Abstract
We present the first linear lower bound for the number of bits required to be accessed in the
worst case to increment an integer in an arbitrary space-optimal binary representation. The best
previously known lower bound was logarithmic. It is known that a logarithmic number of read
bits in the worst case is enough to increment some of the integer representations that use one
bit of redundancy, therefore we show an exponential gap between space-optimal and redundant
counters.

Our proof is based on considering the increment procedure for a space optimal counter as a
permutation and calculating its parity. For every space optimal counter, the permutation must be
odd, and implementing an odd permutation requires reading at least half the bits in the worst case.
The combination of these two observations explains why the worst-case space-optimal problem is
substantially different from both average-case approach with constant expected number of reads
and almost space optimal representations with logarithmic number of reads in the worst case.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics

Keywords and phrases binary counter, data structure, integer representation, bit-probe model,
lower bound

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.88

1 Introduction

We consider the problem of representing integers in a certain range by binary codes to support
efficient increment operations in the bit-probe model. Our main interest is representing
integers in the range 0, . . . , 2n − 1 by exactly n bits.

Most computational tasks require storing integers, and in some cases special encodings
are better suited to the task. Probably the first encodings used in bit-based memory are
the standard positional binary notation and binary coded decimal. We will consider the
task of incrementing an integer counter in the bit probe model. Following [5], an increment
algorithm is defined as a decision assignment tree (DAT), a binary tree where each inner
node specifies a bit of the code that has to be read to make a decision, and every leaf node
contains a set of changes to the code to perform. In this model the number of bits read by

∗ The author acknowledges support from the Danish National Research Foundation and The National
Science Foundation of China (under the grant 61361136003) for the Sino-Danish Center for the Theory
of Interactive Computation. This work was partially supported by the French National Research Agency
(ANR project GraphEn / ANR-15-CE40-0009).

EA
T

C
S

© Mikhail Raskin;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 88; pp. 88:1–88:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84869138?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.88
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

88:2 A Linear Lower Bound for Incrementing a Space-Optimal Integer Representation

Table 1 A summary of best known results.

Number of bits read
to increment

Space-optimal Single extra bit

Average Θ(1) (binary notation)
Worst-case > log2 n [4]

6 n − 1 [2]

> n
2 our contribution

> log2 n [4]
6 log2 n + O(1) [8]

an increment is the depth of the corresponding leaf, and the number of bits written is the
number of changes in the leaf.

The standard binary notation with n bits reads and writes only 2 bits on average, but has
to read and write n bits in the worst case. It is also space-optimal, i.e. every combination of
bits represents a unique integer. Gray codes [6] allow writing only one bit for each increment
operation, but they still require reading all n bits. In the article [5] Fredman introduces the
notion of DAT and considers codes that can use more bits than necessary but still require
writing only a single bit per update. A logarithmic lower bound is proven for the number of
bits read in the worst case for such a code. This bound is sometimes cited in connection with
the codes that write a constant number of bits per increment; while the bound is correct, the
proof in [5] does use the fact that only one bit is written. Fredman also gave a construction of
a code such that the increment procedure needs to read only O(logn) bits in the worst case,
but the code length is worse than for the standard notation by a large multiplicative factor.
Frandsen, Miltersen and Skyum consider a more general problem of encoding elements of
a generic monoid; their article [4] provides a general lower bound for the number of bits
read by an increment procedure for integers in the worst case and a construction of a code
with an increment procedure that needs to read log2 n+ 1 bits in the worst case. This code
needs log2 n extra bits. Constructions developed by Bose et al. in [1] and Rahman and
Munro [8] require a single extra bit or less and achieve logarithmic number of bits read by
the corresponding increment procedures. Rahman and Munro also prove a lower bound of
Ω(
√
n) bits read in the worst case for the special case when increment reads a different subset

of bits for every input or at least each subset of bits is read only for a constant number
of inputs (this is a strong condition; for example, the standard binary notation reads only
the last bit for half of all the inputs). Elmasry and Katajainen provide a code [3] that uses
a logarithmic number of extra bits and requires the increment procedure to read only a
logarithmic number of bits in the worst case while ensuring efficient implementation on a
word-based RAM machine.

For the space-optimal case there is a code [2] that allows reading n− 1 bits in the worst
case and writes no more than 3 bits for each increment operation. This code has been found
by brute force search. The best previously known lower bound on the number of bits to read
in the worst case given in [4] is logarithmic in n.

In this paper we close the exponential gap and settle the complexity of the problem up
to a multiplicative factor of 2 by proving that every representation of integers from 0 to
2n − 1 using n bits require the increment operation to read at least n

2 bits in the worst
case. The proof uses properties of permutations to explain why the space-optimal codes
and the redundant codes are qualitatively different from the point of view of the worst-case
complexity of the increment operation.

In the next section we give the standard definitions related to permutations and cite their
standard properties. Then we define our model of computation. In the section 3 we give an
overview of the core ideas and an outline of the proof.

M. Raskin 88:3

The Section 4 contains the detailed definitions of the constructions and the proofs of
their basic properties. The Section 5 contains the combinatorial details and the final part of
the proof. The purpose of the Sections 4 and 5 is to remove any remaining uncertainty after
the brief presentation of the proof in the Section 3.

2 Preliminaries

2.1 Algebraic preliminaries
In this subsection we recall algebraic notions and the standard theorems about permutations
required by our proof. We follow the definitions from [7], but equivalent definitions can be
found in many other abstract algebra books. This subsection can be skipped at the reader’s
discretion.

I Definition 1. A group is a pair (G, ◦) consisting of a set G and a function ◦ : G×G→ G,
such that the following conditions hold:

Associativity: ∀a, b, c ∈ G : a ◦ (b ◦ c) = (a ◦ b) ◦ c.
Neutral element: ∃e ∈ G : ∀a ∈ G : e ◦ a = a ◦ e = a.
e is called a neutral element of a group
Inverse element: ∀a ∈ G : ∃b ∈ G : a ◦ b = b ◦ a = e.
b is called an inverse element of a.

I Theorem 2. There can be only one neutral element in a group G. Let e denote the unique
neutral element in the group. Also, for every a ∈ G there can be only one inverse element.
Let a−1 denote the unique inverse element of a. The inverse element of a composition a ◦ b
is b−1 ◦ a−1.

I Definition 3. The symmetric group Sn is the group of all bijections (one-to-one corres-
pondences) from the set {1, 2, 3, . . . , n} to itself. The group operation ◦ is the composition
of functions. Each bijection in the symmetric group is called a permutation. The neutral
element in the symmetric group is the identity permutation σ(x) = x. The inverse element
of a permutation σ is the inverse function σ−1, also called the inverse permutation of σ.
A permutation σ ∈ Sn can be denoted by

(
1

σ(1)
2

σ(2)
3

σ(4) · · ·
n

σ(n)

)
. In the present paper ◦ will

always be written explicitly.

I Definition 4. Suppose we are given k 6 n different elements x1, . . . , xk ∈ {1, . . . , n}. A
permutation σ given by

σ(x1) = x2, σ(x2) = x3, σ(x3) = x4, . . . , σ(xk−1) = xk, σ(xk) = x1

and σ(x) = x if x /∈ {x1, . . . , xk} is called a k-cycle. It is denoted σ = (x1 x2 . . . xk). A
2-cycle is also called a transposition.

I Definition 5. Let σ ∈ Sn be a permutation. A pair of indices (i, j) where 1 6 i < j 6 n is
called an inversion (of the permutation σ) if σ(i) > σ(j) (i.e. if the permutation inverts the
order in which i and j go).

I Definition 6. A permutation is called even if it has an even number of inversions; otherwise
it is called odd.

I Theorem 7. The composition of two even permutations or two odd permutations is an
even permutation. The composition of an even permutation and an odd permutation in any
order is an odd permutation. A k-cycle is an odd permutation if k is even and an even
permutation if k is odd. The inverse of a permutation has the same parity.

ICALP 2017

88:4 A Linear Lower Bound for Incrementing a Space-Optimal Integer Representation

2.2 The model
I Definition 8. A space-optimal code is an encoding function Enc from {0, 1, 2, . . . , 2n−1}
to the set of bit sequences of length n. Each code implicitly defines the decoding function
Dec = Enc−1 and the increment function Inc(x) = Enc(Dec(x) + 1). We will also call
such codes counters.

I Definition 9. A decision assignment tree (DAT) is a binary tree where each inner
node specifies a single position in the code and every leaf node contains a set of changes
(assignments) in the code. Execution of a DAT on an input bit sequence starts in the root
node and then the next node is the left child of the current node if the bit in the specified
position of the input code is 0 and the right child of the current node otherwise. When a
leaf node is reached, the output is calculated by taking the input and setting the bits in the
positions specified for this leaf node to the specified values.

Each DAT defines a function from bit sequences of some length to bit sequences of the
same length. We will say that all the nodes visited during execution of DAT on some input
(including the root and the leaf node) handle this input. The number of bits read is the
depth of the corresponding leaf, and the number of bits written to the code is the number of
assignments in the leaf.

I Definition 10. The set {0, 1}n is called an n-dimensional hypercube. An element of
a hypercube is called a vertex. Every vertex has n coordinates. A k-dimensional face is
a subset of the n-dimensional hypercube defined by specifying the values of some n − k
coordinates (we will call these coordinates fixed) and allowing all the possible combinations
of values of the remaining k coordinates (we will call these coordinates free). Each vertex of
a hypercube is a bit sequence; we will identify each vertex with the integer it represents in
the standard binary notation. The order on the hypercube vertices given by comparing the
vertices as integers is called the lexicographic order.

3 The bound and the proof outline

The main result of the present paper is: the increment function for every space-optimal code
representing integers from 0 to 2n − 1 must read at least n

2 bits in the worst case. In other
words, there is no space optimal code such that the corresponding increment function never
reads more than L(n) := n

2 − 1 bits.
In this section we present an informal outline of the proof. The core idea of the proof

is representing the permutation specified by Inc as a composition of two permutations,
Before and After , defined in terms of vertices handled by the same leaf node in the DAT
implementing Inc.

Assume that for some n there is a way to encode integers such that the corresponding
increment function Inc can be implemented by a DAT that reads at most L(n) bits in the
worst case. Without loss of generality we can consider an implementation that always reads
exactly L(n) bits. The increment function maps the n-dimensional hypercube into itself and
can be considered as a permutation. This permutation is a cycle of length 2n, and, therefore,
an odd permutation.

We will use a representation of the increment function as a composition of two permuta-
tions, Before and After . Each leaf of the DAT implementing Inc handles some (n− L(n))-
dimensional face of the n-dimensional hypercube. By definition, the restriction of Inc on
each of these faces changes some of the bits in the same way for all the vertices in the face.

M. Raskin 88:5

We also know that Inc is a bijection, therefore only the fixed bits can be changed. This
can be interpreted as a parallel translation of the face. The image of each of the faces in
F under Inc is again a (n − L(n))-dimensional face. Let F denote the set of all the faces
handled by any leaf of the DAT. The set of their images, Inc(F), is also a set of faces.
Every vertex lies in exactly one face from F and in exactly one face from Inc(F). Let’s
fix some order of enumeration of F , i.e. F = {F0, F1, . . . , F2n−L(n)−1}. This also defines
an order on Inc(F), namely, Inc(F) = {Inc(F0), . . . , Inc(F2n−L(n)−1)}. We can consider
three orders on the hypercube: the standard lexicographic ordering; the ordering where
we compare two vertices by first compare their corresponding faces in F and fall back to
lexicographic order inside each face; and the ordering where we first compare the containing
faces from Inc(F). We can enumerate all the vertices of the hypercube according to these
three orders. Enumeration in the lexicographic order is the identity permutations. The
remaining two orders give non-trivial permutations; we will call them Before and After . Note
that Inc = After ◦ Before−1, because the i-th vertex in the j-th face of F is by definition of
F mapped to the i-th vertex of the j-th face of Inc(F).

We prove that Before and After are both even. The proof is the same for both per-
mutations. We need to calculate the number of inversions. Every face is enumerated in
lexicographic order, so there can be no inversion including two vertices from the same face.
When we consider two different faces, they do not intersect and therefore have to have a
coordinate which is fixed in both the faces and has a different value. There have to be at
least two common free coordinates between the faces if each of them has L(n) < n

2 fixed bits
and at least one fixed bit position is shared. Faces with two common free coordinates have
an even number of inversions using one vertex from each of the faces, because inversions
where the less significant common free coordinate doesn’t affect the comparison come in
multiples of four (two bits in the less significant common position can be flipped at will), and
those where the bits in the less significant common position matter come in the multiples of
two (the coordinates in the more significant common position must match, and it doesn’t
matter if both are equal to zero or to one). Therefore the total number of inversions in the
permutation Before (the same holds for the permutation After) is even.

But if Before and After are both even, Inc = After ◦ Before−1 has to be even. The
contradiction proves that our initial assumption was wrong and the implementation of Inc
has to read at least n

2 bits in the worst case.

4 Defining the constructions used in the proof

To illustrate some of the notation, we will use the space-optimal integer representation from
[2]. This representation was initially found by a brute-force search. Its increment function
was presented as a decision assignment tree (Figure 1).

4.1 The cycle defined by the increment function
I Observation 11. If the increment function can be described by a decision assignment tree
(DAT), it can be represented by a DAT of the same depth with all the leaves having the same
depth.

I Lemma 12. For a space-optimal representation of integers in the range {0, . . . , 2n − 1}
the increment function is a bijection of the set of bit strings of length n. By interpreting these
strings as integers using standard binary notation, we can represent the increment function
as a permutation of {0, 1, 2, . . . , 2n − 1}. This permutation is a cycle of length 2n. This cycle
is an odd permutation.

ICALP 2017

88:6 A Linear Lower Bound for Incrementing a Space-Optimal Integer Representation

x0

x1 x2

x3 x3 x1 x3

x0 ← 1; x1 ← 1; x0 ← 1; x3 ← 0; x0 ← 0,
x2 ← 1;

x0 ← 0,
x1 ← 0;

x3 ← 1; x2 ← 0;

Figure 1 The decision tree from [2].

0000 [0]
0001 [1]

0100 [4]

0101 [5]

1101 [13]

1001 [9]

1100 [12]

1110 [14]
0110 [6]

0111 [7]

1111 [15]

1011 [11]

1000 [8]

1010 [10]

0010 [2]

0011 [3]

Figure 2 The cycle corresponding to the example from [2].

Proof. The increment function Inc maps Enc(2n − 1) to Enc(0), Enc(0) to Enc(1), Enc(1)
to Enc(2), etc. Enc(0), . . . ,Enc(2n − 1) are all the different binary strings of length n with
each string used exactly once, so Inc is a bijection. If we interpret the bit strings as integers
we get the cycle (Enc(0) Enc(1) . . . Enc(2n − 1)). The cycle is an odd permutation because
its length is even.

In the example from [2] the cycle is as shown in the figure. The “first” (x0) bit from the
algorithm’s explanation is used as the least significant bit. We can also write this cycle as a
table of Inc function values:

code Inc(code) code Inc(code) code Inc(code) code Inc(code)
0000 [0] 0001 [1] 0100 [4] 0101 [5] 1000 [8] 1010 [10] 1100 [12] 1110 [14]
0001 [1] 0100 [4] 0101 [5] 1101 [13] 1001 [9] 1100 [12] 1101 [13] 1001 [9]
0010 [2] 0011 [3] 0110 [6] 0111 [7] 1010 [10] 0010 [2] 1110 [14] 0110 [6]
0011 [3] 0000 [0] 0111 [7] 1111 [15] 1011 [11] 1000 [8] 1111 [15] 1011 [11]

The standard notation for this permutation is
(0

1
1
4

2
3

3
0

4
5

5
13

6
7

7
15

8
10

9
12

10
2

11
8

12
14

13
9

14
6

15
11

)
, the cycle

notation is (0 1 4 5 13 9 12 14 6 7 15 11 8 10 2 3). This permutation has 39 inversions, so it is an
odd permutation. J

M. Raskin 88:7

4.2 Decision assignment trees and the corresponding faces
I Lemma 13. Given a DAT for a n-bit integer representation and a node of depth k, the set
of all inputs handled (in the sense of Definition 9) by the chosen node is an (n−k)-dimensional
face.

Proof. The proof goes by induction. The root has depth 0 and handles all the hypercube,
which can be considered an n-dimensional face. A child of node of depth k has depth k + 1;
the set of vertices handled by the child node can be obtained from the set of vertices handled
by the parent node by fixing the coordinate inspected in the parent node to one of the two
possible values. This coordinate was a free coordinate, so we get an (n− k − 1)-dimensional
face out of a (n− k)-dimensional one. J

I Lemma 14. If a DAT implements a bijection, every coordinate in every assignment in
the leaf nodes is a fixed coordinate of the face handled by the corresponding node, i.e. this
coordinate is inspected in one of the ancestor nodes of the leaf node.

Proof. All the vertices need to have different images. Assume a leaf node handled two
vertices which differ in the assigned coordinate. This leaf node would handle some face
containing both vertices, and this face would also contain some two vertices that differ only
in the assigned coordinate. But these two latter vertices would have the same image, and
this is not allowed. J

I Lemma 15. If a DAT implements a bijection, the image of the face handled by a leaf node
is a translation of this face. In particular, the image is also a face of the hypercube.

Proof. Changing some of the fixed coordinates of a face performs a parallel translation. J

We will now illustrate how the faces are moved. The 4-bit counter using 3 reads for
every increment corresponds to a 4-dimensional hypercube. It is more convenient to draw it
as two 3-dimensional cubes side by side (so the extra coordinate is projected to the vector
proportionate to the projection of the first coordinate). In this case the faces corresponding
to the decision assignment tree (DAT) leaves are 1-dimensional faces. We will represent
the faces corresponding to the DAT leaves by solid lines. Both pictures use the same set of
arrows to represent the movement of the faces. The top picture shows the faces before the
moves, and the bottom picture shows the faces after the moves.

We can list the vertices by face. Initially they are split in the following way:

face vertices vertices (decimal) face vertices vertices (decimal)
a 0000 and 0100 0 and 4 e 0001 and 1001 1 and 9
b 1000 and 1100 8 and 12 f 0011 and 1011 3 and 11
c 0010 and 0110 2 and 6 g 0101 and 0111 5 and 7
d 1010 and 1110 10 and 14 h 1101 and 1111 13 and 15

and after the faces are moved we get a new split:

face vertices vertices (decimal) face vertices vertices (decimal)
a 0001 and 0101 1 and 5 e 0100 and 1100 4 and 12
b 1010 and 1110 10 and 14 f 0000 and 1000 0 and 8
c 0011 and 0111 3 and 7 g 1101 and 1111 13 and 15
d 0010 and 0110 2 and 6 h 1001 and 1011 9 and 11

ICALP 2017

88:8 A Linear Lower Bound for Incrementing a Space-Optimal Integer Representation

Figure 3 The translations corresponding to the counter from [2]; two pictures show the positions
of the 1-dimensional “faces” before and after applying the increment operation.

4.3 Enumerating the faces and the vertices
Assume we have a balanced DAT implementing the increment function Inc for a space-optimal
integer representation. Each leaf handles the vertices forming a face, these faces are disjoint,
have the same dimension and cover the entire hypercube. The Inc-images of these faces are
again disjoint faces of the same dimension covering the entire hypercube. We need to choose
some order on the faces handled by different leaves; it is not important which order we use
so we will use the order of leaves in the DAT.

I Definition 16. Let Fi denote the i-th face in the chosen order.

I Definition 17. Let Inc be a permutation implemented by a balanced DAT of depth l.
The Before permutation is the enumeration of all the vertices in the hypercube by first
enumerating all the vertices in F0 in the lexicographic order, then all the vertices in F1, etc.
In general, the j-th vertex in the lexicographic order on the face Fi will have the number
i× 2l + j. We could write Before(i × 2 l + j) = Fi[j]. The After permutation is defined in a
similar way with the j-th vertex in the face Inc(Fj) having the number i× 2l + j.

I Lemma 18. The Inc permutation is the composition of permutations Before−1 and
After , i.e. Inc = After ◦ Before−1. This can also be written as ∀k ∈ {0, . . . , 2n − 1} :
Inc(Before(k)) = After(k).

M. Raskin 88:9

Proof. Let k be represented as i×2l+j. We have Inc(Before(k)) = Inc(Before(i×2l+j)) =
Inc(Fi[j]) = Inc(Fi)[j] = After(i× 2l + j) = After(k) (the j-th element in the i-th face gets
translated together with the entire face).

For the example algorithm the Before(·) numbering is:(
0000
0000

0001
0100

0010
1000

0011
1100

0100
0010

0101
0110

0110
1010

0111
1110

1000
0001

1001
1001

1010
0011

1011
1011

1100
0101

1101
0111

1110
1101

1111
1111

)
in binary, or

(0
0

1
4

2
8

3
12

4
2

5
6

6
10

7
14

8
1

9
9

10
3

11
11

12
5

13
7

14
13

15
15

)
in decimal notation. The After numbering is(

0000
0001

0001
0101

0010
1010

0011
1110

0100
0011

0101
0111

0110
0010

0111
0110

1000
0100

1001
1100

1010
0000

1011
1000

1100
1101

1101
1111

1110
1001

1111
1011

)
or

(0
1

1
5

2
10

3
14

4
3

5
7

6
2

7
6

8
4

9
12

10
0

11
8

12
13

13
15

14
9

15
11

)
. We first enumerate the two vertices in the a face, then

the two vertices in the b face, etc. using the positions of the faces before and after the move,
respectively. We can see that the Before permutation is odd and the After permutation
is even. As the example algorithm reads more than a half of all the bits, getting an odd
permutation is possible.

As an illustration, 10 is the first vertex in the d face before the translation of the face
by the increment function, Inc(10) = 2. The first vertex in the face d (the fourth face) has
number 6 in the Before ordering; we see that Before−1(10) = 6. After the shift the first
vertex in the face d is 2. We see that After(6) = 2 and Inc(10) = After(Before−1(10)) =
(After ◦ Before−1)(10) = 2. J

5 Calculating the parity of the permutations

Both of the permutations Before and After are specified in the same way, by cutting the
hypercube into faces and enumerating the faces. It is now sufficient to show that any
permutation specified in that way is even if the faces have no more than L(n) = n

2 − 1 fixed
coordinates. We will prove that the After permutation is even; exactly the same proof will
work for the Before permutation.

5.1 Faces and the inversions
Recall that an inversion of a permutation σ is a pair of numbers x < y such that σ(x) > σ(y).

I Lemma 19. There are no inversions of the permutation After such that After(x) and
After(y) are in the same face.

Proof. If After(x) and After(y) are in the same face and x < y then x has a lower number
inside the face than y. But the face is enumerated in the lexicographic order, so After(x) <
After(y). J

I Lemma 20. Consider two faces, Inc(Fi) and Inc(Fi′) such that i < i′. The number of
inversions such that After(x) ∈ Inc(Fi) and After(y) ∈ Inc(Fi′) is even.

I Note 21. If i > i′ then there are no inversions because x would always be larger than y.

Proof. Note that the vertices are enumerated face-by-face, so the condition that After(x) ∈
Inc(Fi) and After(y) ∈ Inc(Fi′) guarantees x < y. Every vertex in each face has exactly one
number, so we can just count the number of pairs (u, v) where u ∈ Inc(Fi) and v ∈ Inc(Fi′)
and u > v. We will use the assumption that each of the faces has L(n) = n

2 − 1 fixed
coordinates. This means that no more than n− 2 coordinates are fixed in any of the two

ICALP 2017

88:10 A Linear Lower Bound for Incrementing a Space-Optimal Integer Representation

faces. Therefore there are at least two coordinates that are free for both faces. We can
write the faces’ coordinates one on top of the other one: 0

0
0
∗
∗
1 · · · Let us consider the least

significant of the common free coordinates and call it p.
We will split all the pairs (u, v) into two groups based on the number of coordinates that

have to be checked to perform a lexicographic comparison if we read from the most significant
bit. Either it is enough to read only some of the coordinates that are more significant than
p, or we need to to read the coordinate p and maybe some more.

(1) The number of pairs of codes where the comparison can be made without considering
the bits on the position p (and less significant positions) is even, because half of these codes
have 0 in the first face on the position p and the other half have 1.

(2) If we have to consider the bits in the position p, the bits in every more significant
common position must be equal. There is an even number of such pairs because changing a
pair of bits in the same position from 0, 0 to 1, 1 doesn’t affect the comparison.

We have split all the pairs with u > v into two even-sized sets, as we have to consider
either only bits more significant that the position p or the bits including position p. Therefore
the total number of such pairs is even.

This finishes the proof that the number of inversions containing two vertices in the two
given faces is even. J

5.2 Summarizing the inversion counts
I Lemma 22. The After permutation (and the Before permutation) for a Inc function
represented by a DAT of depth less than n

2 are even.

Proof. In the previous subsection we have proven that every inversion of the After permuta-
tion has to include elements from different faces (Lemma 19). We have also proven that for
every pair of faces the number of inversions represented by their elements is even (Lemma 20).
If we sum the inversions for all the pairs of faces we get all the inversions of the permutation.
Therefore the number of inversions of the permutation is even. J

Now we can prove the main theorem.

I Theorem 23. The increment function for every space-optimal binary code representing
integers from 0 to 2n − 1 must read at least n

2 bits in the worst case. In other words, there
is no space optimal binary code such that the corresponding increment function never reads
more than L(n) := n

2 − 1 bits.

Proof. If there is an increment function for a space-optimal binary integer representation
reading at most L(n) bits in the worst case, the corresponding Before and After permutation
would both be even. Then the Inc function would be an even permutation. But the increment
function for a space-optimal binary integer representation has to be a cycle of length 2n, i.e.
an odd permutation. The contradiction proves that our assumption was impossible. J

6 Handling a weaker definition of increment

Our definition of increment assumed that incrementing the largest value always yields zero.
This requirement can be removed from the definition.

I Theorem 24. Consider an increment procedure for a space-optimal integer representation
that correctly handles all the possible values except the maximum and always leaves at least
two bits unread. Such a procedure always maps the encoding of the maximum value to the
encoding of zero.

M. Raskin 88:11

Proof. Let n denote the total amount of bits in the code. Let us assume that the increment
procedure applied to the maximum values doesn’t yield zero. Let k denote a position where
the encoding of zero and the result of incrementing the encoding of the maximum value differ.
Without loss of generality we can assume that the encoding of zero has 0 at the position k
and the value a = Inc(Enc(2n − 1)) has 1 at the position k.

Let us count the vertices x such that Inc(x) has the value 1 at the position k. Almost all
vertices have exactly one preimage, Enc(0) has no preimages and a has 2 preimages, so the
answer should be 2n−1 + 1. On the other hand, a face corresponding to a vertex of the DAT
can have no, all or half of its vertices in the set, depending on the orientation; in any case
this is an even number and the total sum has to be an even number.

The contradiction proves that our assumption is false and incrementing the maximum
values has to yield zero as the result. J

7 Future directions

Minor tweaks of the presented proof allow to extend the result to cover nondeterministic
increment procedures. For n > 10 the same bound can be proven even if we allow arbitrary
changes of the inspected bits together with an arbitrary reversible linear transformation of
the unread bits in every leaf node of a DAT.

Closing the gap between the n
2 lower bound and n − 1 upper bound remains an open

problem. Our conjecture is that the true value is n− o(n).

Acknowledgements. I am grateful to Gerth Brodal for attracting attention to this problem
and his help with editing the present paper. I am extremely grateful to Gudmund Frandsen
for a lot of useful discussions and the efforts he has spent on reading multiple draft versions
of this proof. I am grateful to the anonymous reviewers of this and previous versions of the
present paper for their valuable advice regarding presentation. I am grateful to an anonymous
reviewer for the suggestion that the existence of common fixed coordinates for disjunct faces
improves the bound by one; and for the suggestion that the image of the maximum element
can be proven to be zero even if this assumption is not included in the definition.

References
1 Prosenjit Bose, Paz Carmi, Dana Jansens, Anil Maheshwari, Pat Morin, and Michiel H. M.

Smid. Improved methods for generating quasi-gray codes. In Algorithm Theory – SWAT
2010, 12th Scandinavian Symposium and Workshops on Algorithm Theory, Bergen, Norway,
June 21-23, 2010. Proceedings, pages 224–235, 2010. doi:10.1007/978-3-642-13731-0_
22.

2 Gerth Stølting Brodal, Mark Greve, Vineet Pandey, and Srinivasa Rao Satti. Integer
representations towards efficient counting in the bit probe model. J. Discrete Algorithms,
26:34–44, 2014. doi:10.1016/j.jda.2013.11.001.

3 Amr Elmasry and Jyrki Katajainen. In-place binary counters. In Mathematical
Foundations of Computer Science 2013 – 38th International Symposium, MFCS 2013,
Klosterneuburg, Austria, August 26-30, 2013. Proceedings, pages 349–360, 2013. doi:
10.1007/978-3-642-40313-2_32.

4 Gudmund Skovbjerg Frandsen, Peter Bro Miltersen, and Sven Skyum. Dynamic word
problems. J. ACM, 44(2):257–271, 1997. doi:10.1145/256303.256309.

5 Michael L. Fredman. Observations on the complexity of generating quasi-gray codes. SIAM
J. Comput., 7(2):134–146, 1978. doi:10.1137/0207012.

ICALP 2017

http://dx.doi.org/10.1007/978-3-642-13731-0_22
http://dx.doi.org/10.1007/978-3-642-13731-0_22
http://dx.doi.org/10.1016/j.jda.2013.11.001
http://dx.doi.org/10.1007/978-3-642-40313-2_32
http://dx.doi.org/10.1007/978-3-642-40313-2_32
http://dx.doi.org/10.1145/256303.256309
http://dx.doi.org/10.1137/0207012

88:12 A Linear Lower Bound for Incrementing a Space-Optimal Integer Representation

6 F. Gray. Pulse code communication, March 17 1953. US Patent 2,632,058. URL: https:
//www.google.com/patents/US2632058.

7 N. Lauritzen. Concrete Abstract Algebra: From Numbers to Gröbner Bases. Concrete
Abstract Algebra: From Numbers to Gröbner Bases. Cambridge University Press, 2003.

8 M. Ziaur Rahman and J. Ian Munro. Integer representation and counting in the bit probe
model. Algorithmica, 56(1):105–127, 2010. doi:10.1007/s00453-008-9247-2.

https://www.google.com/patents/US2632058
https://www.google.com/patents/US2632058
http://dx.doi.org/10.1007/s00453-008-9247-2

	Introduction
	Preliminaries
	Algebraic preliminaries
	The model

	The bound and the proof outline
	Defining the constructions used in the proof
	The cycle defined by the increment function
	Decision assignment trees and the corresponding faces
	Enumerating the faces and the vertices

	Calculating the parity of the permutations
	Faces and the inversions
	Summarizing the inversion counts

	Handling a weaker definition of increment
	Future directions

