11 research outputs found

    General Vectorization of Line Objects in Drawn Maps

    Get PDF
    Drawn maps consist of multiple object types. The most important are line objects which represent infrastructure. Attributes of these objects are essential for many tasks but in raster format they provide only low level information. Vectorization must be used to obtain vector data. In this paper general vectorization process consisting of five stages is proposed. For these stages short discussion and basic recommendations are given and some proper methods are presented

    AUTOMATIC VECTORIZATION OF INPUT DATA FOR MODELS OF TRANSPORTATION SYSTEMS

    Get PDF
    Digitálne (vektorové) údaje tvoria základ pre modelovanie dopravných systémov a riešenie optimalizačných úloh. V praxi sú tieto vstupné údaje často reprezentované rastrovými mapami a náčrtkami, ktoré je potrebné vektorizovať. Manuálna a poloautomatická vektorizácia je pomerne časovo a finančne náročná a tak sa otvára priestor pre automatizáciu tohto procesu. V dnešnej dobe existuje pomerne veľa nástrojov pre rozpoznávanie objektov a vzorov v rastrových obrázkoch spadajúcich do problematiky digitálneho spracovania obrazu. Aj keď sa v prípade máp s dopravnou infraštruktúrou jedná o pomerne rozsiahlu problematiku, v prípade kreslených máp je možné pomerne presne definovať základné vlastnosti a požiadavky, ktoré má proces automatickej vektorizácie spĺňať. V tomto príspevku je ukázaný postup procesu automatickej vektorizácie máp s dopravnou infraštruktúrou.Digital (vector) data is essential for modeling of transportation systems and solving of optimization problems. This input data is often represented by raster maps and drawings in practice and it is necessary to vectorize them. Manual and semi-automatic vectorization is expensive and time consuming and that’s why the room for automation of this process is opened. Today there are many tools for pattern recognition in raster images which are part of the digital image processing tasks. Although vectorization of maps with transportation infrastructure is complex problem, in case of drawing maps it is possible to define the main features for the process of automatic vectorizaion. In this paper process of automatic vectorization of maps with transportation infrastructure is shown

    Скелетизация изображений на основе комбинации одно- и двухподытерационных моделей

    Get PDF
    This paper is focused on the field of the skeletonization of the binary image. Skeletonization makes it possible to represent a binary image in the form of many thin lines, the relative position, sizes and shape of which adequately describe the size, shape and orientation in space of the corresponding image areas. Skeletonization has many variety methods. Iterative parallel algorithms provide high quality skeletons. They can be implemented using one or more sub-iterations. In each iteration, redundant pixels, the neighborhoods of which meet certain conditions, are removed layer by layer along the contour and finally they leave only the skeleton. Many one-sub-iterations algorithms are characterized by a breakdown in connectivity and the formation of excess skeleton fragments. The highest-quality skeletons are formed by the well-known single-iteration OPTA algorithm, which based on 18 binary masks, but it is sensitive to contour noise and has a high computational complexity. The Zhang and Suen two-iteration algorithm (ZS), which is based on 6 logical conditions, is widely used due to its relative simplicity. But it suffers from the problem of the blurs of the diagonal lines with a thickness of 2 pixels and the lost of the square which size is 2×2 pixels. Besides, both algorithms mentioned above do not achieve the unit pixel thickness of the skeleton lines (many non-node pixels have more than two neighbors). Mathematical model and OPCA (One-Pass Combination Algorithm) algorithm which is based on a combination and simplification of single-iterative OPTA and two-iterative ZS are proposed for constructing extremely thin bound skeletons of binary images with low computational complexity. These model and algorithm also made it possible to accelerate the speed of skeletonization, to enhance recoverability of the original image on the skeleton and to reduce the redundancy of the bonds of the skeleton elements.Рассматривается задача скелетизации бинарных изображений. Скелетизация дает возможность представить бинарное изображение в виде множества тонких линий, взаимное расположение, размеры и форма которых адекватно описывают размеры, форму и ориентацию в пространстве соответствующих областей изображения. Высокое качество скелетов обеспечивают итерационные параллельные алгоритмы. Они могут реализовываться с использованием одной или нескольких подытераций. На каждой из них происходит удаление избыточных элементов, окрестности которых удовлетворяют определенным условиям. Для многих одноподытерационных алгоритмов характерно нарушение связности и формирование избыточных фрагментов скелета. Наиболее качественные скелеты формирует известный одноподытерационный алгоритм OPTA (One-Pass Thinning Algorithm), основанный на 18 бинарных масках, который, однако, чувствителен к контурному шуму и имеет высокую вычислительную сложность. Благодаря относительной простоте широкую известность получил двухподытерационный алгоритм Zhang – Suen (ZS), основанный на шести логических условиях, но он размывает диагональные линии толщиной 2 пиксела и удаляет области размером 2×2 пиксела. Оба алгоритма не обеспечивают достижение минимальной толщины линий скелета (многие неузловые элементы имеют более двух соседей). Для построения предельно тонких связанных скелетов бинарных изображений с низкой вычислительной сложностью предлагаются математическая модель и алгоритм OPCA (One-Pass Combination Algorithm) одноподытерационной скелетизации на основе комбинации и упрощения моделей одно- и двухподытерационной скелетизации. Данные модель и алгоритм позволяют повысить скорость скелетизации, восстановить исходное изображение по скелету, снизить избыточность связей элементов скелета

    Modeling and tracking relative movement of object parts

    Get PDF
    Video surveillance systems play an important role in many civilian and military applications, for the purposes of security and surveillance. Object detection is an important component in a video surveillance system, used to identify possible objects of interest and to generate data for tracking and analysis purposes. Not much exploration has been done to track the moving parts of the object which is being tracked. Some of the promising techniques like Kalman Filter, Mean-shift algorithm, Matching Eigen Space, Discrete Wavelet Transform, Curvelet Transform, Distance Metric Learning have shown good performance for keeping track of moving object. Most of this work is focused on studying and analyzing various object tracking techniques which are available. Most of the techniques which are available for object tracking have heavy computation requirements. The intention of this research is to design a technique, which is not computationally intensive and to be able to track relative movements of object parts in real time. The research applies a technique called foreground detection (also known as background subtraction) for tracking the object as it is not computationally intensive. For tracking the relative movement of object parts, a skeletonization technique is used. During implementation, it is found that using skeletonization technique, it is harder to extract the objects parts

    Shape analysis and description based on the isometric invariances of topological skeletonization

    Get PDF
    ilustracionesIn this dissertation, we explore the problem of how to describe the shape of an object in 2D and 3D with a set of features that are invariant to isometric transformations. We focus to based our approach on the well-known Medial Axis Transform and its topological properties. We aim to study two problems. The first is how to find a shape representation of a segmented object that exhibits rotation, translation, and reflection invariance. The second problem is how to build a machine learning pipeline that uses the isometric invariance of the shape representation to do both classification and retrieval. Our proposed solution demonstrates competitive results compared to state-of-the-art approaches. We based our shape representation on the medial axis transform (MAT), sometimes called the topological skeleton. Accepted and well-studied properties of the medial axis include: homotopy preservation, rotation invariance, mediality, one pixel thickness, and the ability to fully reconstruct the object. These properties make the MAT a suitable input to create shape features; however, several problems arise because not all skeletonization methods satisfy all the above-mentioned properties at the same time. In general, skeletons based on thinning approaches preserve topology but are noise sensitive and do not allow a proper reconstruction. They are also not invariant to rotations. Voronoi skeletons also preserve topology and are rotation invariant, but do not have information about the thickness of the object, making reconstruction impossible. The Voronoi skeleton is an approximation of the real skeleton. The denser the sampling of the boundary, the better the approximation; however, a denser sampling makes the Voronoi diagram more computationally expensive. In contrast, distance transform methods allow the reconstruction of the original object by providing the distance from every pixel in the skeleton to the boundary. Moreover, they exhibit an acceptable degree of the properties listed above, but noise sensitivity remains an issue. Therefore, we selected distance transform medial axis methods as our skeletonization strategy, and focused on creating a new noise-free approach to solve the contour noise problem. To effectively classify an object, or perform any other task with features based on its shape, the descriptor needs to be a normalized, compact form: Φ\Phi should map every shape Ω\Omega to the same vector space Rn\mathrm{R}^{n}. This is not possible with skeletonization methods because the skeletons of different objects have different numbers of branches and different numbers of points, even when they belong to the same category. Consequently, we developed a strategy to extract features from the skeleton through the map Φ\Phi, which we used as an input to a machine learning approach. After developing our method for robust skeletonization, the next step is to use such skeleton into the machine learning pipeline to classify object into previously defined categories. We developed a set of skeletal features that were used as input data to the machine learning architectures. We ran experiments on MPEG7 and ModelNet40 dataset to test our approach in both 2D and 3D. Our experiments show results comparable with the state-of-the-art in shape classification and retrieval. Our experiments also show that our pipeline and our skeletal features exhibit some degree of invariance to isometric transformations. In this study, we sought to design an isometric invariant shape descriptor through robust skeletonization enforced by a feature extraction pipeline that exploits such invariance through a machine learning methodology. We conducted a set of classification and retrieval experiments over well-known benchmarks to validate our proposed method. (Tomado de la fuente)En esta disertación se explora el problema de cómo describir la forma de un objeto en 2D y 3D con un conjunto de características que sean invariantes a transformaciones isométricas. La metodología propuesta en este documento se enfoca en la Transformada del Eje Medio (Medial Axis Transform) y sus propiedades topológicas. Nuestro objetivo es estudiar dos problemas. El primero es encontrar una representación matemática de la forma de un objeto que exhiba invarianza a las operaciones de rotación, translación y reflexión. El segundo problema es como construir un modelo de machine learning que use esas invarianzas para las tareas de clasificación y consulta de objetos a través de su forma. El método propuesto en esta tesis muestra resultados competitivos en comparación con otros métodos del estado del arte. En este trabajo basamos nuestra representación de forma en la transformada del eje medio, a veces llamada esqueleto topológico. Algunas propiedades conocidas y bien estudiadas de la transformada del eje medio son: conservación de la homotopía, invarianza a la rotación, su grosor consiste en un solo pixel (1D), y la habilidad para reconstruir el objeto original a través de ella. Estas propiedades hacen de la transformada del eje medio un punto de partida adecuado para crear características de forma. Sin embargo, en este punto surgen varios problemas dado que no todos los métodos de esqueletización satisfacen, al mismo tiempo, todas las propiedades mencionadas anteriormente. En general, los esqueletos basados en enfoques de erosión morfológica conservan la topología del objeto, pero son sensibles al ruido y no permiten una reconstrucción adecuada. Además, no son invariantes a las rotaciones. Otro método de esqueletización son los esqueletos de Voronoi. Los esqueletos de Voronoi también conservan la topología y son invariantes a la rotación, pero no tienen información sobre el grosor del objeto, lo que hace imposible su reconstrucción. Cuanto más denso sea el muestreo del contorno del objeto, mejor será la aproximación. Sin embargo, un muestreo más denso hace que el diagrama de Voronoi sea más costoso computacionalmente. Por el contrario, los métodos basados en la transformada de la distancia permiten la reconstrucción del objeto original, ya que proporcionan la distancia desde cada píxel del esqueleto hasta su punto más cercano en el contorno. Además, exhiben un grado aceptable de las propiedades enumeradas anteriormente, aunque la sensibilidad al ruido sigue siendo un problema. Por lo tanto, en este documento seleccionamos los métodos basados en la transformada de la distancia como nuestra estrategia de esqueletización, y nos enfocamos en crear un nuevo enfoque que resuelva el problema del ruido en el contorno. Para clasificar eficazmente un objeto o realizar cualquier otra tarea con características basadas en su forma, el descriptor debe ser compacto y estar normalizado: Φ\Phi debe relacionar cada forma Ω\Omega al mismo espacio vectorial Rn\mathrm{R}^{n}. Esto no es posible con los métodos de esqueletización en el estado del arte, porque los esqueletos de diferentes objetos tienen diferentes números de ramas y diferentes números de puntos incluso cuando pertenecen a la misma categoría. Consecuentemente, en nuestra propuesta desarrollamos una estrategia para extraer características del esqueleto a través de la función Φ\Phi, que usamos como entrada para un enfoque de aprendizaje automático. % TODO completar con resultados. Después de desarrollar nuestro método de esqueletización robusta, el siguiente paso es usar dicho esqueleto en un modelo de aprendizaje de máquina para clasificar el objeto en categorías previamente definidas. Para ello se desarrolló un conjunto de características basadas en el eje medio que se utilizaron como datos de entrada para la arquitectura de aprendizaje automático. Realizamos experimentos en los conjuntos de datos: MPEG7 y ModelNet40 para probar nuestro enfoque tanto en 2D como en 3D. Nuestros experimentos muestran resultados comparables con el estado del arte en clasificación y consulta de formas (retrieval). Nuestros experimentos también muestran que el modelo desarrollado junto con nuestras características basadas en el eje medio son invariantes a las transformaciones isométricas. (Tomado de la fuente)Beca para Doctorados Nacionales de Colciencias, convocatoria 725 de 2015DoctoradoDoctor en IngenieríaVisión por computadora y aprendizaje automátic

    Improved low complexity fully parallel thinning algorithm

    No full text

    Improved Low Complexity Fully Parallel Thinning Algorithm

    No full text
    A fully parallel iterative thinning algorithm called MB2 is presented. It favourably competes with the best known algorithms regarding homotopy, mediality; thickness, rotation invariance and noise immunity, while featuring a speed improvement by a factor two or more owing to a smaller number of operations to perform. MB2 is grounded on a simple physics-based thinning principle that conveys both quality, efficiency and conceptual clarity. It is particularly suited to data parallel execution. Machine vision has often to deal with elongated shapes, of which the length is much larger than the thickness. Exemplary applications are found in character recognition or medical imaging. It is often worth representin
    corecore