425 research outputs found

    Interpolation Cryptanalysis of Unbalanced Feistel Networks with Low Degree Round Functions

    Get PDF
    Arithmetisierungs-Orientierte Symmetrische Primitive (AOSPs) sprechen das bestehende Optimierungspotential bei der Auswertung von Blockchiffren und Hashfunktionen als Bestandteil von sicherer Mehrparteienberechnung, voll-homomorpher VerschlĂŒsselung und Zero-Knowledge-Beweisen an. Die Konstruktionsweise von AOSPs unterscheidet sich von traditionellen Primitiven durch die Verwendung von algebraisch simplen Elementen. ZusĂ€tzlich sind viele EntwĂŒrfe ĂŒber Primkörpern statt ĂŒber Bits definiert. Aufgrund der Neuheit der VorschlĂ€ge sind eingehendes VerstĂ€ndnis und ausgiebige Analyse erforderlich um ihre Sicherheit zu etablieren. Algebraische Analysetechniken wie zum Beispiel Interpolationsangriffe sind die erfolgreichsten Angriffsvektoren gegen AOSPs. In dieser Arbeit generalisieren wir eine existierende Analyse, die einen Interpolationsangriff mit geringer SpeicherkomplexitĂ€t verwendet, um das Entwurfsmuster der neuen Chiffre GMiMC und ihrer zugehörigen Hashfunktion GMiMCHash zu untersuchen. Wir stellen eine neue Methode zur Berechnung des SchlĂŒssels basierend auf Nullstellen eines Polynoms vor, demonstrieren Verbesserungen fĂŒr die KomplexitĂ€t des Angriffs durch Kombinierung mehrere Ausgaben, und wenden manche der entwickelten Techniken in einem algebraischen Korrigierender-Letzter-Block Angriff der Schwamm-Konstruktion an. Wir beantworten die offene Frage einer frĂŒheren Arbeit, ob die verwendete Art von Interpolationsangriffen generalisierbar ist, positiv. Wir nennen konkrete empfohlene untere Schranken fĂŒr Parameter in den betrachteten Szenarien. Außerdem kommen wir zu dem Schluss dass GMiMC und GMiMCHash gegen die in dieser Arbeit betrachteten Interpolationsangriffe sicher sind. Weitere kryptanalytische Anstrengungen sind erforderlich um die Sicherheitsgarantien von AOSPs zu festigen

    MiMC:Efficient Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity

    Get PDF
    We explore cryptographic primitives with low multiplicative complexity. This is motivated by recent progress in practical applications of secure multi-party computation (MPC), fully homomorphic encryption (FHE), and zero-knowledge proofs (ZK) where primitives from symmetric cryptography are needed and where linear computations are, compared to non-linear operations, essentially ``free\u27\u27. Starting with the cipher design strategy ``LowMC\u27\u27 from Eurocrypt 2015, a number of bit-oriented proposals have been put forward, focusing on applications where the multiplicative depth of the circuit describing the cipher is the most important optimization goal. Surprisingly, albeit many MPC/FHE/ZK-protocols natively support operations in \GF{p} for large pp, very few primitives, even considering all of symmetric cryptography, natively work in such fields. To that end, our proposal for both block ciphers and cryptographic hash functions is to reconsider and simplify the round function of the Knudsen-Nyberg cipher from 1995. The mapping F(x):=x3F(x) := x^3 is used as the main component there and is also the main component of our family of proposals called ``MiMC\u27\u27. We study various attack vectors for this construction and give a new attack vector that outperforms others in relevant settings. Due to its very low number of multiplications, the design lends itself well to a large class of new applications, especially when the depth does not matter but the total number of multiplications in the circuit dominates all aspects of the implementation. With a number of rounds which we deem secure based on our security analysis, we report on significant performance improvements in a representative use-case involving SNARKs

    Arion: Arithmetization-Oriented Permutation and Hashing from Generalized Triangular Dynamical Systems

    Full text link
    In this paper we propose the (keyed) permutation Arion and the hash function ArionHash over Fp\mathbb{F}_p for odd and particularly large primes. The design of Arion is based on the newly introduced Generalized Triangular Dynamical System (GTDS), which provides a new algebraic framework for constructing (keyed) permutation using polynomials over a finite field. At round level Arion is the first design which is instantiated using the new GTDS. We provide extensive security analysis of our construction including algebraic cryptanalysis (e.g. interpolation and Groebner basis attacks) that are particularly decisive in assessing the security of permutations and hash functions over Fp\mathbb{F}_p. From a application perspective, ArionHash is aimed for efficient implementation in zkSNARK protocols and Zero-Knowledge proof systems. For this purpose, we exploit that CCZ-equivalence of graphs can lead to a more efficient implementation of Arithmetization-Oriented primitives. We compare the efficiency of ArionHash in R1CS and Plonk settings with other hash functions such as Poseidon, Anemoi and Griffin. For demonstrating the practical efficiency of ArionHash we implemented it with the zkSNARK libraries libsnark and Dusk Network Plonk. Our result shows that ArionHash is significantly faster than Poseidon - a hash function designed for zero-knowledge proof systems. We also found that an aggressive version of ArionHash is considerably faster than Anemoi and Griffin in a practical zkSNARK setting

    Algorithm 959: VBF: A Library of C plus plus Classes for Vector Boolean Functions in Cryptography

    Full text link
    VBF is a collection of C++ classes designed for analyzing vector Boolean functions (functions that map a Boolean vector to another Boolean vector) from a cryptographic perspective. This implementation uses the NTL library from Victor Shoup, adding new modules that call NTL functions and complement the existing ones, making it better suited to cryptography. The class representing a vector Boolean function can be initialized by several alternative types of data structures such as Truth Table, Trace Representation, and Algebraic Normal Form (ANF), among others. The most relevant cryptographic criteria for both block and stream ciphers as well as for hash functions can be evaluated with VBF: it obtains the nonlinearity, linearity distance, algebraic degree, linear structures, and frequency distribution of the absolute values of the Walsh Spectrum or the Autocorrelation Spectrum, among others. In addition, operations such as equality testing, composition, inversion, sum, direct sum, bricklayering (parallel application of vector Boolean functions as employed in Rijndael cipher), and adding coordinate functions of two vector Boolean functions are presented. Finally, three real applications of the library are described: the first one analyzes the KASUMI block cipher, the second one analyzes the Mini-AES cipher, and the third one finds Boolean functions with very high nonlinearity, a key property for robustness against linear attacks

    Ongoing Research Areas in Symmetric Cryptography

    Get PDF
    This report is a deliverable for the ECRYPT European network of excellence in cryptology. It gives a brief summary of some of the research trends in symmetric cryptography at the time of writing. The following aspects of symmetric cryptography are investigated in this report: ‱ the status of work with regards to different types of symmetric algorithms, including block ciphers, stream ciphers, hash functions and MAC algorithms (Section 1); ‱ the recently proposed algebraic attacks on symmetric primitives (Section 2); ‱ the design criteria for symmetric ciphers (Section 3); ‱ the provable properties of symmetric primitives (Section 4); ‱ the major industrial needs in the area of symmetric cryptography (Section 5)

    Affine-Power S-Boxes over Galois Fields with Area-Optimized Logic Implementations

    Get PDF
    Cryptographic S-boxes are fundamental in key-iterated sub- stitution permutation network (SPN) designs for block ciphers. As a natural way for realizing Shannon’s confusion and diffusion properties in cryptographic primitives through nonlinear and linear behavior, re- spectively, SPN designs served as the basis for the Advanced Encryption Standard and a variety of other block ciphers. In this work we present a methodology for minimizing the logic resources for n-bit affine-power S- boxes over Galois fields based on measurable security properties and find- ing corresponding area-efficient combinational implementations in hard- ware. Motivated by the potential need for new and larger S-boxes, we use our methodology to find area-optimized circuits for 8- and 16-bit S-boxes. Our methodology is capable of finding good upper bounds on the number of XOR and AND gate equivalents needed for these circuits, which can be further optimized using modern CAD tools

    D.STVL.7 - Algebraic cryptanalysis of symmetric primitives

    Get PDF
    The recent development of algebraic attacks can be considered an important breakthrough in the analysis of symmetric primitives; these are powerful techniques that apply to both block and stream ciphers (and potentially hash functions). The basic principle of these techniques goes back to Shannon's work: they consist in expressing the whole cryptographic algorithm as a large system of multivariate algebraic equations (typically over F2), which can be solved to recover the secret key. Efficient algorithms for solving such algebraic systems are therefore the essential ingredients of algebraic attacks. Algebraic cryptanalysis against symmetric primitives has recently received much attention from the cryptographic community, particularly after it was proposed against some LFSR- based stream ciphers and against the AES and Serpent block ciphers. This is currently a very active area of research. In this report we discuss the basic principles of algebraic cryptanalysis of stream ciphers and block ciphers, and review the latest developments in the field. We give an overview of the construction of such attacks against both types of primitives, and recall the main algorithms for solving algebraic systems. Finally we discuss future research directions

    Algebraic Cryptanalysis of STARK-Friendly Designs:Application to MARVELlous and MiMC

    Get PDF
    The block cipher Jarvis and the hash function Friday, both members of the MARVELlous family of cryptographic primitives, are among the first proposed solutions to the problem of designing symmetric-key algorithms suitable for transparent, post-quantum secure zero-knowledge proof systems such as ZK-STARKs. In this paper we describe an algebraic cryptanalysis of Jarvis and Friday and show that the proposed number of rounds is not sufficient to provide adequate security. In Jarvis, the round function is obtained by combining a finite field inversion, a full-degree affine permutation polynomial and a key addition. Yet we show that even though the high degree of the affine polynomial may prevent some algebraic attacks (as claimed by the designers), the particular algebraic properties of the round function make both Jarvis and Friday vulnerable to Gröbner basis attacks. We also consider MiMC, a block cipher similar in structure to Jarvis. However, this cipher proves to be resistant against our proposed attack strategy. Still, our successful cryptanalysis of Jarvis and Friday does illustrate that block cipher designs for “algebraic platforms” such as STARKs, FHE or MPC may be particularly vulnerable to algebraic attacks

    D.STVL.9 - Ongoing Research Areas in Symmetric Cryptography

    Get PDF
    This report gives a brief summary of some of the research trends in symmetric cryptography at the time of writing (2008). The following aspects of symmetric cryptography are investigated in this report: ‱ the status of work with regards to different types of symmetric algorithms, including block ciphers, stream ciphers, hash functions and MAC algorithms (Section 1); ‱ the algebraic attacks on symmetric primitives (Section 2); ‱ the design criteria for symmetric ciphers (Section 3); ‱ the provable properties of symmetric primitives (Section 4); ‱ the major industrial needs in the area of symmetric cryptography (Section 5)
    • 

    corecore