
KIT – The Research University in the Helmholtz Association www.kit.edu

Interpolation Cryptanalysis
of Unbalanced Feistel Networks

with Low Degree Round Functions

Master’s Thesis
in partial fulfillment of the requirements

for the Degree of
Master of Science

Ferdinand Sauer

Competence Center for Applied Security Technology
Karlsruhe Institute of Technology

in cooperation with the

Computer Security and Industrial Cryptography group (COSIC)
KU Leuven

Reviewer: Prof. Dr. Jörn Müller-Quade
2nd Reviewer: Prof. Dr. Dennis Hofheinz
Supervising Professor: Prof. Dr. Bart Preneel
Supervisor (COSIC and DTU): Prof. Dr. Elena Andreeva
Supervisor (University of Bristol): Dr. Arnab Roy
Supervisor (KIT): Dr. Willi Geiselmann

2019-07-01 – 2019-12-31

Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfs-
mittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus
Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde.

Karlsruhe, den 2019-12-31

I assure truthfully that I wrote this thesis independently, that I have indicated all used
aids completely and exactly and that I have marked everything that has been taken from
the work of others unchanged or with changes.

Karlsruhe, the 2019-12-31

Abstract

Arithmetization Oriented Symmetric Primitives (AOSPs) address optimization potential of
evaluating block ciphers and hash functions as part of Secure Multi-Party Computations, in
Fully Homomorphic Encryption, or in Zero Knowledge Proof Systems. Their design differs
from traditional primitives by using algebraically simple building blocks. Many proposals
natively work over prime fields as opposed to bits. Because the proposals have only
recently emerged, an improved understanding and analysis is required to demonstrate their
security. Algebraic cryptanalysis like interpolation attacks are among the most powerful
attack vectors on AOSPs. In this thesis, we generalize a prior analysis using interpolation
attacks with low memory complexity to the design paradigm of the recently proposed
GMiMC and its associated Sponge-based hash function GMiMCHash. More concretely,
we propose a novel key recovery technique using root finding, demonstrate complexity
improvements by combining multiple outputs, and apply some of the developed techniques
in an algebraic Correcting-Last-Block Attack for Sponge constructions. Earlier work has
posed the open question whether low memory interpolation analysis is applicable in more
general settings, which we answer positively. We give concrete recommended lower bounds
for the parameters of the different scenarios considered. We conclude that GMiMC and
GMiMCHash are secure against the interpolation attacks developed in this thesis. Further
cryptanalytic efforts considering additional attack vectors are required to firmly establish
the security of AOSPs.

vi

Zusammenfassung

Arithmetisierungs-Orientierte Symmetrische Primitive (AOSPs) sprechen das bestehende
Optimierungspotential bei der Auswertung von Blockchiffren und Hashfunktionen als
Bestandteil von sicherer Mehrparteienberechnung, voll-homomorpher Verschlüsselung und
Zero-Knowledge-Beweisen an. Die Konstruktionsweise von AOSPs unterscheidet sich von
traditionellen Primitiven durch die Verwendung von algebraisch simplen Elementen. Zusätz-
lich sind viele Entwürfe über Primkörpern statt über Bits definiert. Aufgrund der Neuheit
der Vorschläge sind eingehendes Verständnis und ausgiebige Analyse erforderlich um ihre
Sicherheit zu etablieren. Algebraische Analysetechniken wie zum Beispiel Interpolationsan-
griffe sind die erfolgreichsten Angriffsvektoren gegen AOSPs. In dieser Arbeit generalisieren
wir eine existierende Analyse, die einen Interpolationsangriff mit geringer Speicherkomple-
xität verwendet, um das Entwurfsmuster der neuen Chiffre GMiMC und ihrer zugehörigen
Hashfunktion GMiMCHash zu untersuchen. Wir stellen eine neue Methode zur Berechnung
des Schlüssels basierend auf Nullstellen eines Polynoms vor, demonstrieren Verbesserungen
für die Komplexität des Angriffs durch Kombinierung mehrere Ausgaben, und wenden
manche der entwickelten Techniken in einem algebraischen Korrigierender-Letzter-Block
Angriff der Schwamm-Konstruktion an. Wir beantworten die offene Frage einer früheren
Arbeit, ob die verwendete Art von Interpolationsangriffen generalisierbar ist, positiv. Wir
nennen konkrete empfohlene untere Schranken für Parameter in den betrachteten Szena-
rien. Außerdem kommen wir zu dem Schluss dass GMiMC und GMiMCHash gegen die
in dieser Arbeit betrachteten Interpolationsangriffe sicher sind. Weitere kryptanalytische
Anstrengungen sind erforderlich um die Sicherheitsgarantien von AOSPs zu festigen.

viii

Acknowledgments

This thesis resulted from a cooperation between the Competence Center for Applied Security
Technology (KASTEL) of the Karlsruhe Institute of Technology and the Computer Security
and Industrial Cryptography group (COSIC) of KU Leuven. I would like to thank Marcel
Tiepelt for bringing the possibility of doing my master’s thesis in Leuven to my attention
and clearing many organizational hurdles by being a forerunner. My gratitude goes to Péla
Noë and Willi Geiselmann for helping with any and all formalities required for my stay in
COSIC, and to Elena Andreeva and Bart Preneel for granting me the opportunity of doing
my master’s thesis abroad.

I am grateful for the guidance of my supervisors Elena Andreeva and Arnab Roy, who
taught me many aspects of cryptography I had not been aware of before.

My gratitude goes to my wonderful colleagues Siemen Dhooghe, Liliya Kraleva, Adrián
Ranea, Tim Beyne, Sayon Duttagupta, Enrique Rúa, and really everyone in COSIC, for an
incredibly warm welcome, for plenty of interesting and funny discussions, for board game
nights and mountain biking, and making me feel at home.

x

Contents

Glossary xiii

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Motivation . 2

1.2 Outline and Contributions . 3

2 Preliminaries 5

2.1 Mathematical Background . 5

2.2 Block Ciphers . 8

2.2.1 Unbalanced Generalized Feistel Networks 10

2.2.2 Attack Vectors . 12

2.3 Hash Functions . 13

2.3.1 The Sponge Construction . 14

2.4 Block Ciphers and Hash Functions in Secure Computation 15

2.4.1 MPC, FHE, and ZK . 15

2.4.2 Arithmetization Oriented Symmetric Primitives 17

2.5 Polynomial Interpolation . 18

3 Low Memory Interpolation Cryptanalysis of UFNs 21

3.1 Analysis of Output Polynomials . 21

3.1.1 Expanding Round Function Analysis 21

3.1.2 Contracting Round Function Analysis 27

3.2 Attack Outline . 29

3.3 Cryptanalysis of UFNerf . 30

3.3.1 Key Recovery with Single Round Key 31

3.3.2 Key Recovery with Multiple Round Keys 33

3.3.3 Complexity Improvements via Branch Subtraction 34

3.3.4 Summary of Complexities . 37

3.3.5 Experimental Verification . 38

3.4 Cryptanalysis of UFNcrf . 38

3.5 Application of the Analysis to GMiMC . 41

3.6 Correcting Block Attacks against UFN-Based Sponges 41

3.6.1 Attack Setup . 42

3.6.2 Experimental Verification . 44

xii Contents

4 Conclusion 49

A Code 51
A.1 Unbalanced Feistel Networks . 51
A.2 Key Recovery of UFNs . 52
A.3 Collisions and Second Preimages for Sponges 59

Bibliography 65

Glossary

Fp finite field with p ∈ P

Fq finite field with q = pn elements, p ∈ P, n ∈ N

P the set of prime numbers

AES Advanced Encryption Standard

AIR Algebraic Intermediate Representation

AOC Arithmetization Oriented Cipher

AOHF Arithmetization Oriented Hash Function

AOSP Arithmetization Oriented Symmetric Primitive

CRF Contracting Round Function

DES Data Encryption Standard

ERF Expanding Round Function

FHE Fully Homomorphic Encryption

GCD Greatest Common Divisor

GMiMC Generalized MiMC

GMiMCHash Sponge-based hash function using GMiMC

MPC Multi Party Computation

SHA-3 Secure Hash Algorithm 3

SPN Substitution Permutation Network

UFN Unbalanced Feistel Network

ZK Zero Knowledge

List of Figures

2.1 Big-O notation. 8

2.2 Generic iterated cipher. 9

2.3 One round of Feistel and Lai-Massey networks. 10

2.4 Unbalanced Feistel Network. 12

2.5 Interpolating a block cipher. 13

2.6 Sponge construction over Fp. 15

2.7 Central idea of three currently proposed AOC designs. 17

3.1 Branch development in a UFNerf [p, 4, 3]. 23

3.2 Branch development in a UFNcrf [p, 4, 3]. 28

3.3 Example of summands being added in a UFNerf 35

3.4 Sponge attack setup. 42

3.5 Second preimages in experiments. 46

3.6 Collisions in experiments. 47

List of Tables

2.1 Addition and multiplication tables for F2. 6

3.1 Complexity summary for UFNerf . 37

3.2 Running times for UFNerf experiments. 38

3.3 Complexity summary for UFNcrf . 40

3.4 Running times for UFNcrf experiments. 41

3.5 Recommended minimum number of rounds for GMiMC. 41

3.6 Running times for GMiMCerfHash experiments on second preimages. 45

3.7 Running times for GMiMCerfHash experiments on collisions. 45

1. Introduction

An individual’s ability to selectively share information has positively contributed to its
reproductive success ever since higher life forms evolved. With the emergence of language,
and consequently the possibility to have messages carried by third parties that are neither
sender nor receiver of the information, the problem of hiding information has taken on
new forms. Consider a case where sender and receiver know each other well, or are even
the same entity, sharing some knowledge a third party does not. Any information to be
transmitted by that third party might somehow be encoded based on the shared knowledge,
for example “I vote as I did at the great convention five years ago.” This prevents the
third party from learning the information. In this näıve approach, the encoding depends
on the message to be delivered, making the process both cumbersome and error prone,
and ultimately insecure. The fundamental study that emerged from this struggle is called
cryptography.

Throughout most of human history, the need to selectively share information was the
greatest when lives depended on it, namely during times of conflict. Many of the early
developments in cryptography are thus mainly military technology, like the Caesar Cipher
or the infamous Enigma used in the second World War. With the advent of modern and
electronic communication, the field of cryptography was no longer confined to military
usage and experienced a surge of research in academia. With today’s added ubiquity
of computing devices like phones or the Internet of Things, the problems of selectively
hiding information have only increased. In order to address these challenges while still
benefiting from the data multitude, new cryptographic protocol types like Multi Party
Computation (MPC) or Fully Homomorphic Encryption (FHE) have emerged. They are
greatly contributing to the motivation of this thesis and further outlined below.

The design of cryptographic primitives is based on a central conjecture: If there is no
known way to circumvent a method, it is secure. In order to establish security in this way,
a primitive needs to withstand rigorous cryptanalysis, demonstrating that a circumvention
of the technique is impossible or infeasible. Possible attack vectors have accumulated
over the last decades and centuries, and new methods of analysis are frequently proposed.
Furthermore, proposals for new primitives are published to allow their analysis by anyone,

2 1. Introduction

increasing the probability that potential flaws are found. In part, this cryptanalysis is
usually done by the “cryptographic community,” and this thesis is part of that effort.

The rest of this section is structured as follows. In Section 1.1, we motivate and summarize
the questions answered in this thesis. The contributions of this work as well as an outline
of the rest of the document are given in Section 1.2.

1.1 Motivation

The fields of MPC [22, 28, 40, 65, 80], FHE [23, 31, 35, 36, 71], and Zero Knowledge (ZK)
proof systems [9–11, 17, 20, 21, 41] fundamentally address privacy preserving computations
on data. A more ubiquitous availability of devices like phones or the Internet of things, the
associated increasing threat to the privacy of users, and practicality improvements in all
three fields leads to their gaining popularity. Symmetric primitives like hash functions or
block ciphers are part of various applications in the three protocol types [1, 3, 10, 11, 49].
For example, they can be used to realize oblivious pseudo random functions, allowing privacy
preserving access to databases by keyword searches [34], or private set intersection enabling
privacy preserving data mining [46]. Another example are zero knowledge proofs of correct
computation using algebraic intermediate representations [11, 21]. The evaluation of such
symmetric primitives is orders of magnitudes slower when evaluated as part of, for example,
an MPC, compared to traditional execution [4, 37, 65]. Furthermore, most symmetric
primitives work over bits, while many of the protocols use arithmetic modulo p, making
conversions necessary [3, 6, 10, 11]. The field of Arithmetization Oriented Symmetric
Primitives (AOSPs) has recently emerged to address these two issues and thus speed up
the evaluation of symmetric primitives when part of an MPC, FHE, or ZK proof system.

The potential for optimization arises from a similarity shared by all three protocol types:
A non-linear operation, i. e. multiplication, is far less efficient than a linear operation, i. e.
addition. This is not the case when considering traditional cost models for computation,
where additions and multiplications take roughly the same time to execute in software
implementations, and (linear) XOR and (non-linear) AND gates use about the same amount
of space on a chip in hardware implementations [4]. In contrast, the cost models for MPC,
FHE, and ZK proof systems are of asymmetric nature: Additions can be performed locally
while multiplications require time consuming communication between parties in MPC
when using additively homomorphic secret sharing, which allows easy distribution of linear
operations; evaluation of an XOR gate requires only local xor-ing of labels while AND
gates need to be sent by time consuming Oblivious Transfers in MPC when using garbled
circuits [48]; additions add only a little noise to an FHE ciphertext while multiplications
increase the noise a lot; and additions do not increase the size of a polynomial representing
a computational trace for a ZK proof, while multiplications do [10, 11]. Even though
there are subtle differences in the exact metrics for the different protocol types [5], we use
“number of multiplications” as an sufficiently approximate metric for this thesis.

In the last few years, several AOSPs have been proposed. These primitives minimize the
use of multiplications while aiming to provide the same levels of security as their traditional
counterparts, like the AES [26] or SHA-3 [14]. The initial proposition in this line, LowMC [4],
is defined over binary extension fields Fn2 , which we will not regarded further in this
thesis. Currently, four major designs for Arithmetization Oriented Ciphers (AOCs) using
modulo-p arithmetic are proposed: The Hades framework [42], the MARVELlous suite [5, 8],

1.2. Outline and Contributions 3

MiMC [1], and Generalized MiMC (GMiMC) [3]. The latter two works also propose the
Arithmetization Oriented Hash Functions (AOHFs) MiMChash and GMiMCHash based
on the Sponge construction [12]. All AOSP proposals primarily use algebraic operations
optimized for the respective efficiency metric as their building blocks, thus differing from
traditional cipher design. Particular attention needs to be put on algebraic attacks due to
the algebraically simple nature of the proposals. One such attack vector are interpolation
attacks, successfully used against a version of MiMC [54]. The question whether a similar
type of attack works against GMiMC was left open.

GMiMC and derived GMiMCHash are competitors in a recent challenge about AOSPs [72]
and have very competitive evaluation times for large amounts of data. This thesis is an
effort to improve the understanding and knowledge about the design principle of GMiMC,
namely Unbalanced Feistel Networks (UFNs). More specifically, the following two questions
are considered:

• What is the upper bound on the number of rounds for which UFNs are vulnerable to
interpolation attacks?
• What is the upper bound on the number of rounds for which Sponge constructions

with UFNs are vulnerable to collision, preimage, and second preimage attacks?

1.2 Outline and Contributions

In this thesis, a form of Lagrange interpolation using only constant amount of memory is
applied to analyze block ciphers based on the UFN paradigm in both variants Expanding
Round Function (ERF) and Contracting Round Function (CRF) over finite fields Fp
of prime order. This analysis is directly applicable to GMiMC in both variants ERF
and CRF. It positively answers the open question whether the interpolation analysis of
MiMC in its Feistel variant is applicable to GMiMC [54]. Albeit more intricate, the
methodology is similar to the analysis of Feistel MiMC: First, a key-dependent coefficient
of the interpolation polynomial is computed. Then, after fixing some of the inputs, the
actual coefficient of the polynomial is recovered through interpolation. Lastly, the key
is recovered using the previously introduced Greatest Common Divisor (GCD) approach
or through a root finding technique, which is introduced for the first time. Also for the
first time, multiple branches are taken into account when analyzing UFNs with ERF,
improving run time complexities of the analysis. Summarizing the results, key recovery is
more efficient than brute force for UFNs with ERF with a number of rounds smaller than
dlogd pe+ 2t− 2, while for UFNs with CRF it is more efficient if the number of rounds is
smaller than dlogd pe+ t− 1, where d is the algebraic degree of the round function, p is the
size of the finite field, and t is the number of branches of the UFN.

An analysis of hash functions based on the Sponge paradigm using UFNs is also undertaken
by extending the methods used in the block cipher analysis. More specifically, Lagrange
interpolation or symbolic evaluation combined with the root finding technique allows
mounting an algebraic correcting-last-block attack. The proposed method is applicable
for finding collisions, preimages, and second preimages. Summarizing the result, for hash
functions generating exactly one field element collisions can be found more efficiently than
the birthday bound if the UFN has fewer rounds than dlogd pe+ t− 1.

All the discussed methods are demonstrated through application in proof-of-concept exper-
iments. The results are presented in Sections 3.3.5 and 3.6.2 and Table 3.4.

4 1. Introduction

The rest of this document is structured as follows. In Chapter 2, the mathematical and
technical background is discussed. This includes an overview of some symmetric primitives,
with a focus on UFNs. Furthermore, a form of Lagrange interpolation using constant
memory is introduced. Chapter 3 analyzes UFNs algebraically and proposes several attack
vectors for key recovery on the different UFNs variants. The analysis is extended to
UFN-based Sponge constructions. Our results are summarized in Chapter 4.

2. Preliminaries

Modern cryptography has evolved to create a fundamental understanding of how to
selectively share information. This is a non-trivial challenge when considering the presence
of potentially malicious third parties. A cryptographic protocol is thus one which can
fulfill only its intended functionality, even when actively attacked [39]. Complex protocols
usually rely on so called cryptographic primitives as building blocks. These primitives
include block ciphers, hash functions, message authentication codes, and many more. A
cryptographic protocol can have completely different security goals than the primitives it
uses, but rely on their security to achieve these goals. This makes the primitive’s resilience
to attacks detrimental. Even though formal security models exist, they are not applicable
to any concrete block cipher, requiring rigorous cryptanalysis of a primitive instead to
demonstrate its resilience to attacks.

In order to provide one such cryptanalytic effort, we first give some mathematical back-
ground and basic notation in Section 2.1. The focus is then shifted to block ciphers in
general as well as the cipher motivating this thesis, Generalized MiMC (GMiMC), and its
design paradigm of Unbalanced Feistel Networks (UFNs) in particular, in Section 2.2. We
introduce the cryptographic primitive of hash functions and the Sponge construction, a
popular approach also used to realize GMiMCHash, in Section 2.3. Lastly, the concept of
and techniques for polynomial interpolation are introduced in Section 2.5.

2.1 Mathematical Background

This section covers the algebraic concepts as well as some notions from the field of computer
science this thesis builds on. More concretely, we recapitulate finite fields, polynomials
over finite fields, the factor theorem, and Fermat’s little theorem.

Finite Fields

A finite field Fq is a set of size q for which the operations “addition” and “multiplica-
tion” satisfy the field axioms. These entail associativity of addition and multiplication;
commutativity of addition and multiplication; neutral elements for addition and for multi-
plication (usually referred to as “0” and “1”, respectively); inverse elements under addition

6 2. Preliminaries

+ 0 1

0 0 1
1 1 0

(a) Addition

· 0 1

0 0 0
1 0 1

(b) Multiplication

Table 2.1: Addition and multiplication tables for F2, corresponding to operations XOR
and AND on bits.

(i. e. subtraction); inverse elements under multiplication except for 0 (i. e. division); and
distributivity of multiplication over addition.

The order of a finite field Fq is its size, i. e. the number of elements q. All finite fields of
the same order q are isomorphic [60] and therefore simply identified as Fq. A finite field of
order q exists if and only if q is a prime power q = pn, p ∈ P, n ∈ N.

Example 2.1. Examples for finite fields are the objects Z/pZ where p ∈ P is prime. The
addition and multiplication tables of field F2 ' Z/2Z are given in Table 2.1. Field F2 and
its vector space extensions Fn2 are of particular interest in computer science because of
their natural correspondence to bits and bit strings, respectively.

The multiplicative group F∗p of a finite field Fp consists of all elements invertible under
multiplication, i. e. F∗p = (Fp\{0}, ·). A generator α of F∗p , i. e. 〈α〉 = F∗p , is called a
primitive element of Fp. Thus, each non-zero element in Fp can be written as a power of α.

Polynomials over Finite Fields A polynomial is an expression combining variables
with constants from an underlying algebraic object (e. g. Fp) using only addition, multipli-
cation, and exponentiation to a non-negative power. The variables are commonly referred
to as indeterminates. A polynomial with a single indeterminate is univariate. Combining
more than one variable leads to multivariate polynomials. Any polynomial f univariate in
x can be represented as

f =
d∑
i=0

aix
i

where each summand aix
i is called term and the constant ai is that term’s coefficient.

The coefficients are elements from some underlying algebraic object, e. g. Fp. This can be
expressed by writing f ∈ Fp[x], i. e. “the polynomial f in indeterminate x with coefficients
in Fp.”

The exponent of the indeterminate of a term is the degree of that term, e. g. aix
i has

degree i. The degree of the polynomial is the largest degree of its terms with non-zero
coefficient, i. e. deg(f) = d assuming ad 6= 0. If the coefficient of that term with the largest
exponent is 1, the polynomial is called monic, i. e. f = xd +

∑d−1
i=0 aix

i.

Note. For ease of writing, we informally refer to the coefficient of the term with the highest
degree as the highest coefficient in this thesis. The same holds for the coefficient of the
term with second highest degree being referred to as second highest coefficient.

2.1. Mathematical Background 7

The Factor Theorem Polynomial f can be seen as a function with argument x, i. e.
f : x 7→ f(x). With this perspective, equation

f(x) = 0

is called the polynomial equation associated with f . The solutions of the polynomial
equation are called the roots of f .

The Factor Theorem states that r is a root of f if and only if (x− r) is a linear factor of f .
In other words, there exists a polynomial f ′ such that f(x) = f ′(x)(x− r).

Fermat’s Little Theorem Let Fp be a finite field of prime order and a an element of
Fp. Then, Fermat’s Little Theorem states the following:

ap ≡ a

This has direct implications for the maximum degree of a polynomial f ∈ Fp[x]. More
precisely, over domain Fp, the function of any polynomial f of degree p or greater is
equivalent to the function of a polynomial g of degree at most (p− 1).

Example 2.2. Consider the function of polynomial f = x7 + 2x5 + 4x3 ∈ F5[x], namely
F5 → F5, x 7→ f(x). From Fermat’s little theorem follows that x5 ≡ x, and x7 = x2x5 ≡ x3,
thus f(x) ≡ 5x3 + 2x ≡ 2x = g(x). The example demonstrates that the function of
polynomial f , which has degree deg(f) = 7, is equivalent to the function of polynomial g
with degree deg(g) = 1.

Note. For the remainder of this thesis, we don’t distinguish between a polynomial and its
associated function.

Big-O notation

In computer science, and specifically in algorithmics, the amount of resources required by
an algorithm is of great importance for its classification. The two resources most commonly
considered in this context are run time and memory or space requirements In cryptography,
an additional resource commonly considered is number of executions of a function f . A
uniform way to talk about the resource requirements is the algorithm’s asymptotic behavior
on inputs of size n. The required amount of a resource can be described by a function g.
For asymptotic behavior, the “details” of g do not matter. This notion of “ignoring details”
is formally captured in Big-O notation, which describes the order of the growth rate,
denoted O(g).

Note. For more concise summaries, we also use soft-O in this document. Notated as Õ(g(x)),
soft-O ignores any logarithmic factors logi x in g(x), behaving like Big-O otherwise.

Note. We use mathematically correct “f(x) ∈ O(g(x))”, not colloquial “f(x) = O(g(x)).”

Example 2.3. An example can be found in Figure 2.1. Even though f is sometimes bigger
than g, the growth rate of g is ultimately faster, starting from n0.

8 2. Preliminaries

x

y

f

g

n0

Figure 2.1: Big-O notation: f ∈ O(g).

2.2 Block Ciphers

A block cipher is a pair of deterministic algorithms (Enc,Dec) both acting as permutation
on some set M = {0, . . . , q − 1}n with q ∈ Z+ and traditionally q = 2. The algorithms
perform operations commonly referred to as encryption and decryption, respectively. Both
algorithms depend on an additional value k ∈ K, the key from key space K. For any k,
algorithm Deck is the inverse of Enck:

Enc : K ×M →M

Dec : K ×M →M

∀k ∈ K : ∀m ∈M : Deck(Enck(m)) = m

For a message, or cleartext, m ∈ M , the value c = Enck(m) is the associated ciphertext
under key k.

Security In order to argue about a block cipher’s security, an attacker trying to break
the cipher can be assumed. We further need to specify the attacker’s capabilities and
her goal to define what “security” means. For capabilities, consider the known plaintext
scenario, where it is assumed that the attacker knows the decryption of some ciphertexts.
The chosen plaintext notion allows the attacker to additionally choose which ciphertexts
she learns. A possible goal is recovery of the message for a given ciphertext. Another
option is ciphertext predictability, where security of the cipher is considered broken if the
attacker successfully predicts the ciphertext for a given message. If one can reasonably
argue that no attacker with specific capabilities can achieve the stated goal for a certain
cipher, it is considered secure in that scenario. More notions for both capabilities and
goals exist, the discussion of which is beyond the scope of this thesis. Any analysis is only
considered to be a successful attack if the computational effort is less than brute forcing
the key, further discussed in Section 2.2.2.

In this thesis we argue about the security of a cipher by considering its resilience to crypto-
graphic analysis, or cryptanalysis. Over the past decades, many powerful attack strategies
have been developed: Linear cryptanalysis [58, 59, 61], differential cryptanalysis [16, 51, 52],
slide attacks, meet-in-the-middle attacks [29, 30], boomerang attacks [15, 79] and many

2.2. Block Ciphers 9

f f . . . f fm c

Key Expansion

k

k0 k1 kr−2 kr−1

Figure 2.2: Generic iterated cipher.

more have been successfully applied to break ciphers. A more detailed discussion of some
common attack vectors can be found in Section 2.2.2.

Note. The notion of provable security exists but is, to the best of our knowledge, not
applicable to the block ciphers we consider in this thesis.

Design principles The definition and requirements above do not indicate how to build
a secure block cipher. Over the last decades, several “best practices” have emerged. One
of those principles, prevalent to the point of being universal, is that of the iterated block
cipher. In essence, instead of constructing the entire cipher in one piece, a so called round
function is designed. The block cipher’s key is incorporated in the round function, often
in the form of round keys generated by applying a key expansion function to the key.
The round function by itself might only provide weak security properties, but is iterated
over several rounds. This process amplifies the security properties if the round function
is designed “correctly.” Thus, designing a secure block cipher is essentially reduced to
designing a secure round function and choosing the required number of rounds. A high-level
view of a generic iterated cipher can be found in Figure 2.2. Constructing a block cipher
in an iterated fashion eases (a) construction, (b) analysis, and (c) implementation of the
cipher, explaining the popularity of the approach.

Principles on how to construct a round function producing a secure block cipher when
iterated sufficiently many times also exist. For example, in a Substitution Permutation
Network (SPN) the round function consists of two layers. The first applies non-linear
substitution boxes (or S-Boxes), while the second applies a linear permutation (or P-Box).
Orthogonal approaches to SPNs are Feistel [33] and Lai-Massey networks [50, 77]. Both
these constructions turn any function into a permutation. This allows a wider design
space for the round function at the cost of additional rounds. In fact, there are theoretical
results for both Feistel and Lai-Massey networks stating that they behave like random
permutations if instantiated with random functions [56, 57, 64]. Another advantage of
both constructions is re-usability of an implementation for encryption and decryption: The
inverse of a Feistel or Lai-Massey network with key (k0, . . . , kr−1) is the same network
with reversed key (kr−1, . . . , k0). One round of a general Feistel network is depicted in
Figure 2.3a, while Figure 2.3b shows one round of a general Lai-Massey network, where σ
denotes an orthomorphism. Due to our focus on Feistel networks, the interested reader is
referred to the available literature for the Lai-Massey construction [47, 50, 77].

10 2. Preliminaries

f

ki

(a) Feistel

σ

fki

(b) Lai-Massey

Figure 2.3: One round of networks often used to create block ciphers.

Examples Over the last decades, numerous block ciphers have been developed and
standardized. Two of the most prominent examples are the Data Encryption Standard
(DES) [33] and the Advanced Encryption Standard (AES) [27]. Both standards operate on
bits, i. e. q = 2, although on different block sizes: The DES has message space {0, 1}64,
the AES operates over {0, 1}128. Their design principles also differ vastly. Although both
standards have an iterative design, the DES uses an SPN in a Feistel construction while
the AES interprets the input as a matrix, successively permuting first elements, then rows,
and lastly columns in each round. From today’s viewpoint, both the DES and the AES are
traditional block ciphers.

2.2.1 Unbalanced Generalized Feistel Networks

The original Feistel construction [33] outlined above is using two branches, visualized in
Figure 2.3a. This can be generalized in one of two ways: (a) by using more than one
(not necessarily distinct) round function distributing each function’s output to exactly one
branch [62], or (b) by still using only one round function and “bundling” many branches
for either input or output [70]. The balanced generalized networks of approach (a) are not
considered in this thesis. Approaches (b) are called Unbalanced Feistel Networks (UFNs).
A UFN is usually constructed in one of two variants, Expanding Round Function (ERF) or
Contracting Round Function (CRF), which are defined in the following and depicted in
Figure 2.4.

Just like a Feistel network with two branches, a UFN is a permutation on the input space
independent of whether or not the round function is a permutation itself. Again, this allows
for more freedom when choosing the round function, at the expense of more rounds for the
cipher. A security result like that for two-branch Feistel networks mentioned above also
exists for UFNs [44]. Namely, if the round function is a (truly) random function, then the
UFN is asymptotically indistinguishable from a (truly) random permutation after enough
rounds. Again, this result is of great theoretical interest with limited applicability for a
concrete round function operating on a set of fixed size.

2.2. Block Ciphers 11

Expanding Round Function A UFNerf [p, r, t] is a UFN with ERF over Fp with r rounds

and t branches. Let P
(i)
j be the value of branch j before round i. For example, P

(0)
0 is the

leftmost input, and P
(r)
t−1 is the rightmost output. Let f be a monic polynomial over Fp.

f =

d−1∑
i=0

aix
i + xd

Applying f to the sum of the leftmost branch, the round key, and the round constant of
round i gives the round function for that round, the output of which is denoted σi.

σi = f
(
P

(i)
0 + ki + ci

)
The output of the round function is added to the rightmost t− 1 branches. After that, all
the branches get rotated to the left by one position, with the leftmost branch going the
rightmost position.

(P
(i+1)
0 , . . . , P

(i+1)
t−1) = (P

(i)
1 + σi, . . . , P

(i)
t−1 + σi, P

(i)
0) (2.1)

One round of a UFNerf is shown in Figure 2.4a.

Contracting Round Function A UFNcrf [p, r, t] is a UFN with CRF over Fp with
r rounds and t branches. Applying f to the sum of the rightmost t− 1 branches, the round
key, and the round constant of round i gives the round function for that round, the output
of which is denoted σi.

σi = f

 t−1∑
j=1

P
(i)
j + ki + ci

 .

The output of the round function is added to the leftmost branch. After that, all the
branches get rotated to the left by one position, with the leftmost branch going the
rightmost position.

(P
(i+1)
0 , . . . , P

(i+1)
t−1) = (P

(i)
1 , . . . , P

(i)
t−1, P

(i)
0 + σi) (2.2)

One round of a UFNcrf is shown in Figure 2.4b.

Note. We use the same nomenclature for both UFNerf and UFNcrf . In the remainder of
the thesis, the variant being referred to is clear from context.

Generalized MiMC

GMiMC [3] is an instantiation of UFNs. The round function used is cubing.

f(x) = x3

The cubic function is an Almost Perfect Nonlinear (APN) Function providing excellent
resistance against linear and differential cryptanalysis when used as round function in
a block cipher [1, 63]. Additionally, cubing is algebraically simple, requiring only two
multiplications.

GMiMC exists in both variants GMiMCerf and GMiMCcrf . Independent of the variant,
there is univariate and multivariate GMiMC. In univariate GMiMC, only one round key k̄
exists and is being used after applying the following key schedule [55].

ki = (i+ 1)k̄

12 2. Preliminaries

f

ki

ci

P
(i)
0 P

(i)
1 P

(i)
2 P

(i)
t−1

. . .

σi

P
(i+1)
t−1P

(i+1)
0 P

(i+1)
1 P

(i+1)
2

(a) Expanding Round Function

f

ki

ci

σi

P
(i)
0 P

(i)
1 P

(i)
2 P

(i)
t−1

. . .

P
(i+1)
t−1P

(i+1)
0 P

(i+1)
1 P

(i+1)
2

(b) Contracting Round Function

Figure 2.4: Unbalanced Feistel Network.

Note. The described key schedule corresponds to an update [55] of the proposal unpublished
at the point of this thesis’s writing. It prevents a recent attack on many variants of univariate
GMiMC leveraging the previous key schedule ki = k̄ into a one-round characteristic [18].

In multivariate GMiMC, t keys k̄i are used, where t is the number of branches of the UFN
and r the number of rounds. The round key ki for round i is discerned as follows:

(kj·t, kj·t+1, . . . , k(j+1)·t−1) =

{
(k̄0, k̄1, . . . , k̄t−1) j = 0

(k(j−1)·t, k(j−1)·t+1, . . . , kj·t−1)×M> 1 6 j 6 dr/te

Matrix M is invertible and raising M to a power 1 6 j 6 dr/te must not introduce a zero
at any position.

Note. Above key schedules are introduced for the sake of completeness. For univariate
UFNs, i. e. with one round key, our analysis considers any linear key schedule. The analysis
of multivariate UFNs, i. e. when using distinct round keys, is not limited to any specific
key schedule.

2.2.2 Attack Vectors

Traditionally, block ciphers were almost always over bits strings, i. e. M = {0, 1}n. Thus,
many attacks for this scenario have emerged, including differential cryptanalysis, linear
cryptanalysis, and many more. These attacks are generally classified as statistical attacks,
since they exploit the non-uniform distribution of certain bits or combination of bits. These
attacks generally cannot be extended to work beyond bits in a straightforward manner.
Because the analysis of this thesis is on UFNs over Fp, the introduction of attacks limited
to bits is omitted. The interpolation attack and the Gröbner basis analysis introduced
below fall in the broader category of algebraic attacks, while the brute force attack is a
generic attack against any keyed primitive.

Brute Force Attack Any analytic technique is considered an “attack” only if its com-
putational complexity is lower than that of a brute force attack. A brute force attack is
possible for any block cipher, and in fact for any keyed cryptographic primitive. It is the
simplest attack conceivable: For a given pair of cleartext & ciphertext (m, c), the attacker
tries all possible keys k in the key space K. If Enck(m) = c, the correct key has been

2.3. Hash Functions 13

Enc

k̄

m c

PEnck̄
(x)

Figure 2.5: Interpolating a block cipher.

found. The only way to defend against brute force attacks is with a big enough key space.
For example, with a key space of size |K| = 2128 and one evaluation of Enc taking one
femtosecond, the search would go on for orders of magnitude longer than the observable
universe exists.

Interpolation Attacks Interpolation attacks were introduced to attack block ciphers
constructed from algebraically simple components [1, 45, 54]. Using pairs of cleartext &
ciphertext as control points for polynomial interpolation, a representation of the cipher
in form of a polynomial is constructed. This representation exhibits the same behavior
as the cipher. The technique of polynomial interpolation is explained in greater detail in
Section 2.5. We give a high-level overview of the concept in Figure 2.5, where PEnck̄

(x) is
the polynomial recovered through interpolation. The computational complexity as well as
the data complexity of the attack grows with the number of coefficients of the polynomial
that is to be recovered, i. e. the degree, assuming non-sparseness of the polynomial. A
cipher is secure against this attack if the polynomial is of maximum possible degree, which
depends on the underlying field, making the attack more expensive than brute forcing the
key.

Gröbner Bases One of the more advanced algebraic attack vectors are Gröbner basis
analyses. A Gröbner basis is a generating set of an ideal over a polynomial ring with
additional properties that ease computation [19]. By expressing a cipher as a compact
and low degree set of multivariate polynomials with the key as a variable, the resulting
variety can be described using the associated Gröbner basis. The multivariate system
describes a zero dimensional ideal, and factorization of the basis allows to recover potential
key candidates. Computing the Gröbner basis is computationally the most expensive
step. Several different algorithms for this purpose exist, most notably F4 [32]. The run
time complexity of these algorithms for general polynomial sets is not particularly well
understood, making a cipher’s resistance difficult to estimate.

The cipher Jarvis from the MARVELlous suite [8] was recently attacked successfully using
a Gröbner basis analysis [2]. We don’t further consider this attack vector in the remainder
of this thesis.

2.3 Hash Functions

Cryptographic hash functions serve a multitude of purposes as cryptographic primitives.
For example, they can be used for message authentication codes and in digital signatures.

14 2. Preliminaries

The output of a hash function f is deterministic and called the message’s hash. The input,
i. e. the message, can be of arbitrary size while the hash is of fixed length.

f : {0, . . . , q − 1}∗ → {0, . . . , q − 1}n

with q ∈ Z+ and traditionally q = 2, i. e. f operates on bits.

Security A hash function f needs to satisfy some security criteria in order to be considered
a cryptographic hash function. The weakest property is preimage resistance: An attacker
given hash h and function f should not be able to find the inverse of h, i. e. a message m
with f(m) = h, faster than by brute forcing the message. If this is the case, f is called one
way. Preimage resistance is implied1 by second preimage resistance: An attacker given a
message m0 and f should not be able to find a second message m1 with the same hash,
i. e. f(m0) = f(m1), faster than through brute force. Second preimage resistance, in turn,
is implied by collision resistance: For any attacker, it should be infeasible to find two
messages m0,m1 resulting in the same hash, i. e. f(m0) = f(m1), faster than through brute
force.

A generic collision attack on hash functions makes use of the birthday paradox. Roughly
summarizing the result, brute forcing a collision by evaluating possible input values takes
time in O(

√
qn) and not, as might be first suspected, in O(qn). Intuitively, this is due to

the fact that the hash of any new input value can be compared to all the previous hashes.
Much like the brute force attack on keyed primitives described in Section 2.2.2, this attack
is always possible. A collision attack is only considered successful if it outperforms the
birthday attack.

Correcting Block Attacks A correcting block attack [66] is a way to find collisions,
preimages, or second preimages. A hash function f that iteratively works on message blocks,
i. e. messages of the form M = (m0, . . . ,mn), can be susceptible to this type of attack. For
second preimage attacks with message M , the general approach is as follows: The attacker
chooses an arbitrary message (m′0, . . . ,m

′
i) and then finds one or more correcting blocks

(m′i+1, . . . ,m
′
`) such that f ((m0, . . . ,mn)) = f ((m′0, . . . ,m

′
`)). For preimage and collision

attacks, the approach is similar, where the correcting blocks are chosen to influence the
hash value in the desired way. If only the last block mi+1 is required , the attack is a
correcting-last-block attack [38, 66]. Correcting block attacks have been used to successfully
attack the Message Digest Algorithm MD5 [67, 73, 74], among others [25, 38].

2.3.1 The Sponge Construction

The Sponge construction [12] is a way to turn a random permutation into a compressing
random function. The length of the output can be fixed, allowing the construction of cryp-
tographic hash functions. Sponges are defined over inputs and outputs from some group, for
which we will consider Fp throughout this thesis. Internally, a state S = (Sr,Sc) ∈ Fp × Ft−1

p

is used,2 where r = log2 p is the so-called rate and c = (t− 1) log2 p the capacity. When
evaluating a Sponge for message (m0, . . . ,m`) ∈ F`p , the state is initiated to S = (0, . . . , 0).

1Special care has to be taken with this implication. For some functions, it does not hold at all. For the
others, a statistical argument depending on the relative size of domain and range is necessary [68].

2.4. Block Ciphers and Hash Functions in Secure Computation 15

Absorbing phase Squeezing phase

m0

ra
te

ca
p
a
ci

ty

F1
p

Ft−1
p

0

0
...
0

U
F

N

k = 0

m1 m`

U
F

N

k = 0

z0

U
F

N

k = 0

z1

U
F

N

k = 0

zn

Figure 2.6: Sponge construction over Fp using a UFN with t branches. The rate is r = log2 p
and capacity is c = (t− 1) log2 p.

At each iteration, a message block mi is added to Sr, after which the permutation f is
applied to the current state, thus updating it. Once all message blocks are consumed, the
absorbing phase ends and the squeezing phase starts. The current value of Sr is output,
after which the state S is updated by applying permutation f . This is repeated until the
output length has reached the desired length, which depends on the design choice and the
use case of the Sponge.

A Sponge construction can be instantiated with a block cipher by fixing the key, turning
the cipher into a permutation. In this thesis, we consider Sponges instantiated with UFNs
and key k = 0. A visualization of such a Sponge construction can be found in Figure 2.6.

One of the most important theoretical results on Sponges states that the Sponge construction
is indifferentiable from a random function if instantiated with a random permutation [13].
However, when a concrete permutation, like a block cipher with fixed key, is being used,
the security of that instantiation needs to be established through cryptanalysis.

2.4 Block Ciphers & Hash Functions in Secure Computation

Both block ciphers and hash functions are often used as primitives in some bigger cryp-
tographic protocol. The security of a specific cipher or hash function can influence the
security, performance, and other properties of the protocol. If the protocol is executed in a
Multi Party Computation (MPC) setting, using Fully Homomorphic Encryption (FHE), or
employs Zero Knowledge (ZK) proof systems, performance is especially important since
many of the current techniques are generally slow. Section 2.4.1 introduces the three
settings mentioned above. In Section 2.4.2, generic and concrete propositions to increase
performance are reviewed.

2.4.1 MPC, FHE, and ZK

The three cryptographic protocol types MPC, FHE, and ZK proof systems have gotten
a lot of attention in the last few decades. Albeit efficiency is measured by respectively
different metrics, as summarized in Section 1.1, all fields share the common trait that

2The definition of Sponges considers more general states not relevant for this thesis.

16 2. Preliminaries

non-linear operations are a lot more expensive than linear operations. This section roughly
outlines the goals of the different areas as well as the challenges involved when evaluating
block ciphers or hash functions in the different settings.

Multi Party Computation In MPC [22, 28, 40, 65, 80], as the name suggests, multiple
parties P0, . . . , Pn cooperate to jointly compute the output of a predefined function f . The
inputs i0, . . . , in to f held by the parties are private and should stay that way: Informally,
no information on the inputs should leak, other than what can already be inferred from
the computation’s output f(i0, . . . , in). The two main techniques used to achieve this are
garbled circuits [81] and verifiable secret sharing [24], the explanations of which are beyond
the scope of this document. Both techniques share a common trait: Linear operations, i. e.
additions, are very easy to perform, while non-linear operations, i. e. multiplications, are
more complicated, requiring time consuming communication between the parties. More
concretely, when using linear verifiable secret sharing, additions can be performed by each
party locally, while the parties need to cooperate for multiplications. When using garbled
circuits, evaluation of the linear XOR gate requires only local addition, while the non-linear
AND gates are evaluated by performing multiple Oblivious Transfers [48].

Fully Homomorphic Encryption A different field that recently has seen tremendous
advancements is FHE [23, 31, 35, 36, 71]. This form of encryption allows computation
on encrypted data. To be more precise, there are operations on ciphertexts which allow
addition and multiplication of the underlying messages. Among other things, this allows to
offload computations to a more powerful computer without having to trust the correct use
of the shared data since the data is never accessible. Both, additions and multiplications
introduce noise to the ciphertext. However, linear operations, i. e. additions, introduce
little noise, while non-linear operations, i. e. multiplications, introduce a lot of noise. If the
noise grows too big, the message cannot be recovered from its encrypted form. To prevent
this, an operation called boot strapping is performed, reducing the noise. Boot strapping
is computationally heavy and thus time consuming, and minimizing its need optimizes
running time of the protocol.

Zero Knowledge Proof Systems A third protocol type sharing the similarity of
cheaper linear operations are certain ZK proof systems [9, 41]. Research on ZK proof
systems recently experienced a surge due to their applicability in privacy preserving
blockchains [10, 11, 17, 20, 21]. A proof system is a protocol between two parties (P, V)
in which P tries to convince V that a certain statement is true. P should be able to
convince V only if the statement actually is true. A proof system has the ZK property if
V learns nothing in the interaction apart from the fact that the statement is true. One
kind of statements provable with ZK proof systems are the correctness of a computation.
For this, a computation’s execution trace is used, i. e. a step-by-step summary of the
computation. For Scalable Transparent Arguments-of-Knowledge (STARKs) [10], the type
of computation are often evaluations of a hash functions [69]. The execution trace of the
hash function’s evaluation is expressed as an Algebraic Intermediate Representation (AIR),
i. e. a set of polynomials. Verifying the correctness of an AIR requires less computation if
the polynomials are of low algebraic degree, e. g. the evaluated hash function is algebraically
simple. Because addition of two polynomials does not raise the degree but multiplications

2.4. Block Ciphers and Hash Functions in Secure Computation 17

(·)3

ki

(a) MiMC [1]

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

. . .

. . .

. . .

. . .

S

S

S

S

S

S

Identity

(b) Hades [42]

S2i−2

x
1
α

...x
1
α

M

xα...xα

+ K 2i−1

M

S2i

+ K 2i

(c) Rescue [5]

Figure 2.7: Central idea of three currently proposed AOC designs.

do, linear operations do not increase the computational complexity of ZK-STARKs, while
non-linear operations do.

2.4.2 Arithmetization Oriented Symmetric Primitives

Traditional block ciphers like the AES [26] can be evaluated using MPC or FHE and
hash functions like the Secure Hash Algorithm 3 (SHA-3) [14] can be used for ZK proof
systems built on AIRs described above. However, being designed with different optimization
metrics in mind, traditional primitives don’t usually try to minimize the use of non-linear
operations. This results in relatively poor performance in any of the three protocol types.
Arithmetization Oriented Symmetric Primitives (AOSPs), on the other hand, are designed
with the cost discrepancy between linear and non-linear operations in mind and thus
address the potential for performance optimization.

Even though we treat the optimization metrics for MPC, FHE, and ZK proof systems
summarized in Section 1.1 as the same throughout this thesis, differences do exist. The
interested reader is referred to the introductory section of the MARVELlous cipher suite
for an excellent treatment of the involved subtleties [5].

Current Designs The first cipher proposal optimized for a low number of non-linear
operations was LowMC [4], followed by MiMC [1], the MARVELlous suite [5, 8] including
Rescue and Jarvis, recently attacked using Gröbner basis analysis [2], GMiMC [3] as
introduced in Section 2.2.1, and the Hades framework [42]. A very rough outline of some
of these ciphers can be found in Figure 2.7.

The Arithmetization Oriented Cipher (AOC) proposals for MiMC, GMiMC, and the
MARVELlous suite explicitly consider Arithmetization Oriented Hash Functions (AOHFs).
These are MiMChash, GMiMCHash, and Rescue hash,3 respectively. In all cases the AOHF
is achieved by instantiating the Sponge construction as introduced in Section 2.3.1. The
authors of LowMC also mention the possibility of using the cipher in a Sponge construction
but omit a detailed discussion.

3The MARVELlous suite contains more hash functions, like Vision hash, defined over Fn
2 .

18 2. Preliminaries

Challenges Like most cryptographic primitives, both AOCs and AOHFs strike a delicate
balance between performance and security. Some attacks, especially polynomial interpo-
lation attacks which we consider here, can be thwarted by raising the number of rounds,
which negatively impacts performance. Adding more rounds increases the algebraic degree
of the polynomial, increasing the computation time necessary for its recovery. This is
further elaborated on in Section 2.5. A detailed analysis to find the minimum number of
rounds necessary to defend against any given attack and taking the maximum of the results
guarantees the best performance given maximum security. Naturally, this only works if all
attack vectors can be anticipated. In practice, additional rounds are added as a security
margin.

2.5 Polynomial Interpolation

The concept of interpolation refers to the construction of new data points given a set of
known data points. This can be done in a multitude of ways, e. g. linear interpolation, or
using splines. For the remainder of this thesis, we consider only polynomial interpolation
over Fp, albeit the introduced methods are not necessarily depending on the field. This
approach to interpolation constructs a polynomial f(x) of lowest possible degree for a set of
known data points ((x0, y0), . . . , (xd, yd)). Under these constraints, f can have a maximal
degree of d− 1 for d independent points. Furthermore, f is unique.

The most straightforward way to interpolate a polynomial L(x) =
∑d

j=0mjx
j is by solving

L(xi) = yi for the coefficients mj . This amounts to inversion of the Vandermonde matrix

(xji), which has computational complexity of O
(
d2.8
)

and needs space in O
(
d2
)

[78].

Lagrange Interpolation Another approach is Lagrange interpolation. From a linear
algebra perspective, this amounts to a basis change such that recovering the coefficients
requires inversion of the identity matrix, which is trivial. The new basis is composed of
Lagrange basis polynomials

`j(x) =
∏

06i6d
i 6=j

x− xi
xj − xi

which depend on the known data points. Linearly combining the basis polynomial with yj
as the weights, i. e.

L(x) =

d∑
j=0

yj`j(x)

directly gives the interpolation polynomial. The computational complexity is in O(d log d)
with space requirements linear in d [78].

Low Memory Polynomial Interpolation For recovering the full polynomial, the
computational and space boundaries of Lagrange interpolation are optimal [75]. Indeed,
even if only one coefficient is to be interpolated, the computational complexity cannot
be improved beyond O(d log d). However, when interpolating only one coefficient, a
method with constant space complexity exists. For polynomials of large degree, this allows
cryptanalytic interpolation attacks otherwise prevented by the required amount of memory.
In the following, a way to interpolate the coefficient of the second highest term is presented.

2.5. Polynomial Interpolation 19

The analysis of this thesis substantially relies on the resulting Algorithm 1. The full
derivation is given by Li and Preneel [54].

One key insight is that storing the full set of points ((x0, y0), . . . , (xd, yd)) already requires
memory in O(d). For low memory interpolation, the data points are instead generated in
an online manner, i. e. “on the fly” during the execution of the algorithm. For the x-values,
powers of a primitive element α ∈ Fp are used, ensuring their distinctness. The y-values
are given by an evaluation oracle Of which evaluates the polynomial f at a desired point,
i. e. Of(xj) = f(xj) .

Solving Lagrange’s interpolation formula for the coefficient of the second highest term md−1

gives

md−1 =
d∑
j=0

f(αj)
βj
γj

where

βj = αj −
d∑
i=0

αi,

γj =
∏

06i6d
i 6=j

(αj − αi).

Both βj and γj can be computed recursively, allowing to reuse memory, thus further
lowering the memory requirement. For βj this is relatively straightforward. The more
intricate recursive γj is given in the following:

γj+1 = γj · αd ·
αj − α−1

αj − αd

Combining these insights results in Algorithm 1, which we replicate from [54] for convenience
of the reader. The notation is adapted to be coherent with the rest of this document.
Reiterating, computational complexity of Algorithm 1 is in O(d log d), space complexity is
in O(1), and data complexity is d.

20 2. Preliminaries

Algorithm 1: Algorithm for Low Memory Interpolation of the coefficient of the second
highest term of a polynomial over Fp [54].

Input: Algebraic degree d of the polynomial, primitive element α ∈ Fp, polynomial
evaluation oracle Of

Output: The coefficient z of the second highest term
1 z ← 0

2 β ← −
∑d

i=0 α
i

3 γ ←
∏d
i=0(1− αi)

4 x ← 1
5 for i ∈ {0, . . . , d} do

6 z ← z +Of(x) · β+x
γ

7 if i < d then

8 γ ← γ · αd · x−α−1

x−αd

9 x ← x · α

10 return z

3. Low Memory Interpolation
Cryptanalysis of UFNs

In this chapter, we take a look at Unbalanced Feistel Networks (UFNs) over Fp from an
algebraic perspective. The insights gained are then applied in their analysis. We describe
several key recovery attack vectors, all of which use polynomial interpolation as a core
step. Some of the techniques are re-used to mount a correcting-last-block attack against
Sponge constructions instantiated with UFNs. Parts of this chapter have been submitted
for publication [7].

The remainder of this chapter is structured as follows. In Section 3.1, the algebraic
foundations are set, regarding the output of a UFN as a vector of polynomials. We give
a high-level overview of the attack vectors in Section 3.2. The details of the different
approaches for UFNerf , including optimizations of the involved complexities and experi-
mental results, are given in Section 3.3. In Section 3.4, we point out the differences of
applying the same approaches to UFNcrf . The results of applying our analysis to Gener-
alized MiMC (GMiMC) can be found in Section 3.5. Finally, in Section 3.6, we propose
algebraic correcting-last-block attacks against constructions based on UFNs and validate
them experimentally.

3.1 Analysis of Output Polynomials

In this section, we analyze common properties of UFNs when seen as polynomials of the
input and key variables. For example, take output branch j of a UFNerf [p, r, t] where
the key values K = (k0, . . . , kr−1) are regarded as indeterminates. Given indeterminate
input (x0, x1, . . . , xt−1), output branch j can be interpreted as a multivariate polynomial
in Fp[x0, . . . , xt−1, k0, . . . , kr−1]. Fixing all but one of the input variables to an arbitrary
constant will give a polynomial Fp[x, k0, . . . , kr−1] instead. We extensively use this technique
in this chapter.

3.1.1 Expanding Round Function Analysis

Our analysis starts with output polynomials corresponding to different branches after r
rounds of a UFNerf . In the beginning, only UFNerf [p, 4, 3] are considered, i. e. 4 rounds and

22 3. Low Memory Interpolation Cryptanalysis of UFNs

3 branches. Throughout the section, we progressively lift these limitations in order to give
a clear picture of the analysis. The first generalization is for the number of rounds r, in
Proposition 2. We generalize for the number of branches t in Proposition 3.

Throughout this chapter, we simplify presentation of the analysis by “ignoring” the round
constants without loss of generality. More concretely, let k′i and ci be round key and
round constant of round i, respectively. Our analysis then takes into account their sum
ki = k′i + ci. As will become clear throughout the chapter, this does not affect the analysis
in any way while simplifying notation. Additionally, a round function of degree deg(f) > 3
is assumed.

Proposition 1. Given an input of the form (b, b, x) to a UFNerf [p, 4, 3], the output poly-

nomials P
(4)
0 , P

(4)
1 , P

(4)
2 ∈ Fp[x, k0, k1, k2, k3] for the 3 branches after 4 rounds have the

following properties:

1. deg
(
P

(4)
0

)
= deg

(
P

(4)
1

)
= d2 and deg

(
P

(4)
2

)
= d.

2. coeff
(
P

(4)
0 , xd

2
)

= coeff
(
P

(4)
1 , xd

2
)

= 1,

3. coeff
(
P

(4)
0 , xd

2−1
)

= coeff
(
P

(4)
1 , xd

2−1
)

= d(ad−1 + dβ)

where β = f (b+ f(b+ k0) + k1) + f(b+ k0) + k2 = σ0 + σ1 + k2.

Proof Intuition. In the proof, we develop the output polynomials after 4 rounds in the 3
branches, then expand their form according to the binomial theorem. Finally, the coefficients
of the term with second highest degree are collected. For an illustration of the branch
development, see Figure 3.1.

Proof. After 3 rounds, the branches are:

(
P

(3)
0 , P

(3)
1 , P

(3)
2

)
= (b+ σ1 + σ2, b+ σ0 + σ2, x+ σ0 + σ1)

where

σ0 = f(b+ k0), σ1 = f(b+ σ0 + k1), and σ2 = f(x+ σ0 + σ1 + k2).

Finally, after 4 rounds, the output of the round function and then the UFNerf [p, 4, 3] is:

σ3 = f(b+ σ1 + σ2 + k3)(
P

(4)
0 , P

(4)
1 , P

(4)
2

)
= (b+ σ0 + σ2 + σ3, x+ σ0 + σ1 + σ3, b+ σ1 + σ2)

3.1. Analysis of Output Polynomials 23

f

k0

σ0

f

k1

σ1

f

k2

σ2

f

k3

σ3

b b x

b+ σ0 x+ σ0 b

x+ σ0 + σ1 b+ σ1 b+ σ0

b+ σ1 + σ2 b+ σ0 + σ2 x+ σ0 + σ1

b+ σ0 + σ2 + σ3 x+ σ0 + σ1 + σ3 b+ σ1 + σ2

Figure 3.1: Branch development in a UFNerf [p, 4, 3].

24 3. Low Memory Interpolation Cryptanalysis of UFNs

The first observation is that σ0 and σ1 are independent of x. Further developing σ2 and σ3

using the binomial theorem yields the following:

σ2 = f(x+ σ0 + σ1 + k2)

= (x+ σ0 + σ1 + k2)d + ad−1(x+ σ0 + σ1 + k2)d−1 + · · ·+ a0

= xd + d(σ0 + σ1 + k2)xd−1 +

(
d

2

)
(σ0 + σ1 + k2)2xd−2 + · · ·+ (σ0 + σ1 + k2)d

+ ad−1x
d−1 + ad−1(d− 1)(σ0 + σ1 + k2)xd−2 + · · ·+ ad−1(σ0 + σ1 + k2)d−2

+ · · ·+ a0

= xd + (ad−1 + d(σ0 + σ1 + k2))xd−1 + · · ·+ a0

σ3 = f(b+ σ1 + σ2 + k3)

= (b+ σ1 + σ2 + k3)d + ad−1(b+ σ1 + σ2 + k3)d−1 + · · ·+ a0

= σd2 + d(b+ σ1 + k3)σd−1
2 + · · ·+ (b+ σ1 + k3)d

+ ad−1(b+ σ1 + σ2 + k3)d−1 + · · ·+ a0

= (xd + (ad−1 + d(σ0 + σ1 + k2))xd−1 + · · ·+ a0)d

+ d(b+ σ1 + k3)σd−1
2 + · · ·+ (b+ σ1 + k3)d

+ ad−1(b+ σ1 + σ2 + k3)d−1 + · · ·+ a0

= xd
2

+ d(ad−1 + d(σ0 + σ1 + k2))xd−1(xd)d−1 + . . . a0

= xd
2

+ d(ad−1 + dβ)xd
2−1 + . . . a0

Since deg(σ2) = d and deg(σ3) = d2 and, by assumption, d > 3, this concludes the
proof.

Corollary 1. In a UFNerf [p, 5, 3], it holds that P
(5)
2 = P

(4)
0 in accordance with Equa-

tion (2.1). The following properties are a direct consequence of Proposition 1:

1. deg
(
P

(5)
2

)
= d2

2. coeff
(
P

(5)
2 , xd

2−1
)

= d(ad−1 + dβ).

The next proposition is a generalization of Proposition 1 for r > 4 rounds.

Proposition 2. Given an input of the form (b, b, x) to a UFNerf [p, r, 3], after r > 4 rounds,

the output polynomials P
(r)
0 , P

(r)
1 , P

(r)
2 ∈ Fp[x, k0, . . . , kr−1] for the 3 branches have the

following properties:

1. deg
(
P

(r)
0

)
= deg

(
P

(r)
1

)
= dr−2 and deg

(
P

(r)
2

)
= dr−3

2. coeff
(
P

(r)
0 , xd

r−2
)

= coeff
(
P

(r)
1 , xd

r−2
)

= 1

3. coeff
(
P

(r)
0 , xd

r−2−1
)

= coeff
(
P

(r)
1 , xd

r−2−1
)

= dr−3(ad−1 + dβ)

where β = f(b+ k0) + f (b+ f(b+ k0) + k1) + k2 = σ0 + σ1 + k2.

3.1. Analysis of Output Polynomials 25

Proof Intuition. We prove Proposition 2 by induction over r. The special case of r = 4
is shown in Proposition 1, giving the beginning of the induction. In the induction step,
we apply the round function and developed the polynomials according to the binomial
theorem.

Proof. Suppose that Proposition 2 holds for a fix r. Applying one more round r + 1 yields
the following, according to Equation (2.1):

σr = f
(
P

(r)
0 + kr

)
(
P

(r+1)
0 , P

(r+1)
1 , P

(r+1)
2

)
=
(
P

(r)
1 + σr, P

(r)
2 + σr, P

(r)
0

)
Developing σr by the binomial theorem results in the following:

σr = (P
(r)
0 + kr)

d +
d−1∑
i=0

ai(P
(r)
0 + kr)

i

=
(
xd

r−2
+ dr−3(ad−1 + dβ)xd

r−2−1 + · · ·+ a0 + kr)
d +

d−1∑
i=0

ai(P
(r)
0 + kr)

i

= (xd
r−2

)d + d · dr−3(ad−1 + dβ)xd
r−2−1(xd

r−2
)d−1 + · · ·+ (dr−3(ad−1 + dβ)xd

r−2−1)d

+ · · ·+ ad0 + · · ·+ kdr +

d−1∑
i=0

ai(P
(r)
0 + kr)

i

= xd
r−1

+ dr−2(ad−1 + dβ)xd
r−1−1 + · · ·+ a0

By the assumption of the induction, deg(P
(r)
2) 6 deg(P

(r)
1) 6 dr−2. Thus the degree of σr

dominates, leading to the proof’s first conclusions.

deg
(
P

(r+1)
0

)
= deg

(
P

(r+1)
1

)
= deg (σr) = xd

r−1

coeff
(
P

(r+1)
0 , xd

r−1
)

= coeff
(
P

(r+1)
1 , xd

r−1
)

= coeff
(
σr, x

dr−1
)

= 1

By assumption, d > 3 and r > 4, hence it holds that dr−1 − 1 > dr−2. The coefficients of

the second highest term in P
(r+1)
0 and P

(r+1)
1 are thus solely contributed by σr. This leads

to the proof’s last conclusion.

coeff
(
P

(r+1)
0 , xd

r−1−1
)

= coeff
(
P

(r+1)
1 , xd

r−1−1
)

= coeff
(
σr, x

dr−1−1
)

= dr−2(ad−1 + dβ)

The next generalization is for the number of branches t in the following proposition.

Proposition 3. Given an input of the form (b, . . . , b, x) to a UFNerf [p, r, t], let r > t > 3,

then after r rounds, the output polynomials P
(r)
0 , P

(r)
1 , . . . , P

(r)
t−1 ∈ Fp[x, k0, . . . , kr−1] have

the following properties:

1. deg
(
P

(r)
0

)
= . . . = deg

(
P

(r)
t−2

)
= dr−(t−1) and deg

(
P

(r)
t−1

)
= dr−t

26 3. Low Memory Interpolation Cryptanalysis of UFNs

2. coeff
(
P

(r)
0 , xd

r−(t−1)
)

= . . . = coeff
(
P

(r)
t2
, xd

r−(t−1)
)

= 1

3. coeff
(
P

(r)
0 , xd

r−(t−1)−1
)

= . . . = coeff
(
P

(r)
t−2, x

dr−(t−1)−1
)

= dr−t−1(ad−1 + dβ)

where β =
∑t−2

i=0 σi + kt−1.

Proof Intuition. The variable x is not part of the round function’s input for the first t− 2
rounds. Thus, the round function’s output σt−1 in round (t− 1) is comparable to σ2 of
Proposition 1, albeit differing in the respective β. This is the beginning of an induction
over r like in Proposition 2.

Proof. Because of the position of the variable x, (t− 1) many “swappings” of branches
need to be performed before x becomes part of the input to a round function. Each round
of the UFN performs exactly one such swap. Thus, x does not contribute to σi for the first
(t− 2) rounds, i. e. deg(σi) = 0 for i < t− 1. This leads to the following observations in
the (t− 1)-st round, much like in Proposition 1:

σt−1 = f(x+ σ0 + · · ·+ σt−2 + kt−1)

= f(x+ β)

= (x+ β)d + ad−1(x+ β)d−1 +
d−2∑
i=0

ai(x+ β)i

= xd + dβxd−1 + · · ·+ dβd−1x+ βd

+ ad−1x
d−1 + ad−1(d− 1)βxd−2 + · · ·+ ad−1(d− 1)βd−2x+ ad−1β

d−1

+
d−2∑
i=0

ai(x+ β)i

= xd + (ad−1 + dβ)xd−1 + · · ·+ a0

An induction over r in the same way as in Proposition 2 concludes the proof.

Corollary 2. The property P
(r)
t = P

(r−1)
1 holds in accordance with Equation (2.1). From

Proposition 3 we can thus summarize and further conclude:

1. deg
(
P

(r)
t

)
= deg

(
P

(r−1)
1

)
= dr−t

2. coeff
(
P

(r)
t , xd

r−t−1
)

= coeff
(
P

(r−1)
1 , xd

r−t−1
)

= dr−t−1(ad−1 + dβ)

Corollary 2 states the algebraic expression of the coefficient of the term with second highest

degree in the output polynomial P
(r)
t−1. In the remainder of this thesis, we informally refer

to this coefficient as the second highest coefficient. Lastly, we generalize our result for the
position of indeterminate x.

Proposition 4. Given an input of the form (b, . . . , b, x, b, . . . , b) to a UFNerf [p, r, t], where
the position of x is ` ∈ {0, . . . , t− 1}, after r > ` rounds, the network’s output polynomials

P
(r)
0 , P

(r)
1 , . . . , P

(r)
t−1 ∈ Fp[x, k0, . . . , kr−1] have the following properties:

3.1. Analysis of Output Polynomials 27

1. deg
(
P

(r)
0

)
= . . . = deg

(
P

(r)
t−2

)
= dr−` and deg

(
P

(r)
t−1

)
= dr−`−1

2. coeff
(
P

(r)
0 , xd

r−`
)

= . . . = coeff
(
P

(r)
t−2, x

dr−`
)

= 1

3. coeff
(
P

(r)
0 , xd

r−`−1
)

= . . . = coeff
(
P

(r)
t−2, x

dr−`−1
)

= dr−`−1(ad−1 + dβ)

where β =
∑`−1

i=0 σi + k`

Proof Intuition. Intuitively, the described situation is almost the same as regarding input
(b, . . . , b, x) to a UFNerf [p, r, `+ 1], making Proposition 3 applicable.

Proof. Using the same argumentation as in the proof of Proposition 3, we observe that
deg(σi) = 0 for i < `. The same expansion as in the proof of Proposition 3 results in the
following expanded form for σ`:

σ` = f(x+ σ0 + · · ·+ σ`−1 + k`)

= f(x+ β)

= xd + (ad−1 + dβ)xd−1 + · · ·+ a0

An induction over r in the same way as in Proposition 2 concludes the proof.

Corollary 3. Let σi be the output of the round function in round i of a UFNerf [p, r, t] with
input of the form (b, . . . , b, x, b, . . . , b), where indeterminate x is at position `, and d > 3.
The proof of Proposition 4 allows us to make the following statements:

deg(σi) =

{
0, 0 6 i < `

di−`+1, ` 6 i < r

Note. Generally, the output polynomials in Proposition 4 are of higher degree than those
in Proposition 3, unless ` = t− 1. In this case, Proposition 3 and Proposition 4 coincide.

Summarizing the results of above propositions, the output polynomial of lowest degree

in a UFNerf [p, r, t] is P
(r)
t−1 assuming “optimal” input (b, . . . , b, x), and its second highest

coefficient is described in Proposition 3.

3.1.2 Contracting Round Function Analysis

In this section, the degree as well as the coefficients of the highest and second highest
terms of the output polynomials of UFNcrf [p, r, t] are analyzed. As in Section 3.1.1, we
notationally simplify the analysis by combining actual round key k′i and round constant ci
to ki := k′i + ci. Again, this does not impact the generality of our analysis. Furthermore,
we continue to assume round functions of degree deg(f) > 3.

Proposition 5. Given an input of the form (x, b, . . . , b) to a UFNcrf [p, r, t] with t > 3

branches, after r > 2 rounds, the rightmost output polynomial P
(r)
t−1 ∈ Fp[x, k0, . . . , kr−1]

has the following properties:

1. deg
(
P

(r)
t−1

)
= dr−1

28 3. Low Memory Interpolation Cryptanalysis of UFNs

f

k0

σ0

f

k1

σ1

f

k2

σ2

f

k3

σ3

x b b

b b x+ σ0

b x+ σ0 b+ σ1

x+ σ0 b+ σ1 b+ σ2

b+ σ1 b+ σ2 x+ σ0 + σ3

Figure 3.2: Branch development in a UFNcrf [p, 4, 3].

2. coeff
(
P

(r)
t−1, x

dr−1
)

= 1,

3. coeff
(
P

(r)
t−1, x

dr−1−1
)

= dr−1(ad−1 + dβ)

where β = (t− 2)b+ f((t− 1)b+ k0) + k1

Proof Intuition. Note that σ0 is not dependent on x, but σ1 is. Thus, an induction like
in Proposition 2 with σ1 as the beginning concludes the proof. For a visualizing example
limited to 3 branches and 4 rounds, see Figure 3.2.

Proof. After 1 round, the round function’s output and subsequently the branches are, in
accordance with Equation (2.2):

σ0 = f

 t−1∑
j=1

b+ k0

 = f ((t− 1)b+ k0)

(
P

(1)
0 , . . . , P

(1)
t−2, P

(1)
t−1

)
= (b, . . . , b, x+ σ0)

3.2. Attack Outline 29

After 2 rounds:

σ1 = f

 t−2∑
j=1

b+ x+ σ0 + k1

 = f(x+ β)

(
P

(2)
0 , . . . , P

(2)
t−2, P

(2)
t−1

)
= (b, . . . , x+ σ0, b+ σ1)

Expanding σ1 by the binomial theorem yields the following:

σ1 = f(x+ β)

= (x+ β)d + ad−1(x+ β)d−1 +
d−2∑
i=0

ai(x+ β)i

= xd + dβxd−1 + · · ·+ βd

+ ad−1x
d−1 + ad−1(d− 1)βxd−2 + · · ·+ ad−1β

d−1 +

d−2∑
i=0

ai(x+ β)i

= xd + (ad−1 + dβ)xd−1 + · · ·+ a0

After expanding σ1, an induction over r like in Proposition 2 concludes the proof.

Corollary 4. Proposition 5 allows us to conclude for r > t:

1. deg
(
P

(r)
0

)
= deg

(
P

(r−(t−1))
t−1

)
= dr−t

2. coeff
(
P

(r)
0 , xd

r−t−1
)

= coeff
(
P

(r−(t−1))
t−1 , xd

r−t−1
)

= dr−t−1(ad−1 + dβ)

Corollary 4 gives the algebraic expression of the coefficient of the second term of second

highest degree in the output polynomial P
(r)
0 , the second highest coefficient. The same

corollary shows that P
(r)
0 is the output polynomial of lowest degree in any UFNcrf [p, r, t].

The insight of Proposition 5 allows us to algebraically express the second highest coefficient
in indeterminates ki, specifically as a polynomial in Fp[k0, k1].

3.2 Attack Outline

In this section, we analyze UFNerf and UFNcrf using the results from Section 3.1. The UFNs
are instantiated with uniform randomly fixed but unknown key K̄ ∈ Frp , i. e. round keys
(k̄0, . . . , k̄r−1). Let (EK̄ , DK̄) denote the resulting cipher. When the keys are concrete values
as opposed to indeterminates, the output polynomials developed in Sections 3.1.1 and 3.1.2,
specifically in Corollaries 2 and 4, are elements of Fp[x] and not of Fp[x, k0, . . . , kr−1].
Since the interpolation of a single coefficient requires only constant memory, as outlined in
Section 2.5, the second highest coefficient can be recovered to mount a low memory attack.

We describe the general idea of the cryptanalysis in the following steps:

30 3. Low Memory Interpolation Cryptanalysis of UFNs

1. Obtain the algebraic expression of the second highest coefficient Q(k) of the output
polynomial corresponding to the branch with the lowest algebraic degree. For UFNerf

and UFNcrf these are the rightmost and leftmost branch respectively.

2. Find value z of second highest coefficient of EK̄ of the same branch as in step 1 by
applying the low memory interpolation technique recapitulated in Section 2.5.

3. Recover the key by evaluating relation Q(K) = z by solving for K. Some of the key
recovering techniques require multiple equations Qi(K) = zi.

Independent of the UFN variant, we explore two scenarios: (1) identical round key and
(2) distinct round keys. For an identical, or single, round key it holds that ki = gi(k),
where gi is a linear function of degree one over Fp and k can take values in Fp. For single
round keys, two different techniques are used: (a) the Greatest Common Divisor (GCD)
technique previously used by [54] and (b) a novel root finding technique.

For UFNerf , we further reduce the complexity of the key recovery through a technique
called branch subtraction, introduced in Section 3.3.3. An overview is given in the respective
sections Section 3.3.4 and Section 3.4.

3.3 Cryptanalysis of UFNerf

In this section, we describe attack vectors on UFNs with Expanding Round Function
(ERF). More concretely, details for the three steps outlined in the previous section are
given. We describe UFNs with Contracting Round Function (CRF) in the next section,
Section 3.4.

Algebraic Expression of the Second Highest Coefficient

As in Propositions 1 to 4, we consider the network’s input to be fixed for all but one
input branch. By arranging the terms, the output polynomial of any branch has the
form xd

y
+Q(K)xd

y−1 + · · ·+ a0, where y and Q(K) depend on the number of rounds r,
the number of branches t, and the position ` of indeterminate x in the input. The
coefficient Q(K) is the polynomial we refer to as the second highest coefficient. This
coefficient is computable by applying the results from Section 3.1, as described below.

In a UFNerf [p, r, t], the polynomial representing the rightmost output branch has the lowest
degree, as shown in Proposition 3. For this polynomial, the coefficient of the second highest
degree term has form Q(K) = dr−t−1(ad−1 + dβ), with β =

∑t−2
i=0 σi + kt−1. Algorithm 2

describes the method to obtain the polynomial q(K), representing the second highest
coefficient.

Complexity The computation of the polynomial representing the second highest coeffi-
cient requires multiplications of polynomials over Fp. The complexity of multiplying two
polynomials of degree at most D over Fp is O(d log p log(d log p)) [78]. Hence, this step has
complexity in

O
(
dt−1 log p log(dt−1 log p)

)
= O

(
dt−1(t log d+ log log p) log p

)
.

Space complexity is in O
(
dt−1

)
since only one polynomial of degree at most dt−1 has to be

stored at any given time.

3.3. Cryptanalysis of UFNerf 31

Algorithm 2: Second highest coefficient of rightmost branch in UFNerf [p, r, t] on input
(b, . . . , b, x).

Input: r, t, f , branch constant b, round constants c0, . . . , ct−1

Output: polynomial Q(K) for second highest coefficient of rightmost branch
1 s := 0
2 for i ∈ (0, . . . , t− 2) do
3 σi := f (s+ b+ ci + ki)
4 s := s+ σi

5 β := s+ kt−1 + ct−1

6 return dr−t−1(ad−1 + dβ)

Value of the Second Highest Coefficient

As outlined at the beginning of Section 3.2, the second step of the analysis consists of
recovering the value of the second highest coefficient of the rightmost output polynomial
branch of a UFNerf EK̄ with fixed but unknown key K̄ = (k̄0, . . . , k̄r−1). For this step,
we use the low memory interpolation technique described in Section 2.5. In general,
inputs of form αj are required, where α ∈ Fp is a primitive element, 0 6 j 6 D, and D
is the degree of the underlying polynomial that is to be interpolated. In the current
analysis this means using inputs of the form (b, . . . , b, αj), in accordance with Proposition 3.
The evaluation points yj for the interpolation are the values of the rightmost output
branch. The degree of this polynomial is D = dr−t. More concretely, the inputs to
Algorithm 1 are (1) degree D, (2) primitive element α, and (3) polynomial evaluation oracle
Oerf(x) = last component

(
EK̄
(
(b, . . . , b, x)

))
. The result of the low memory interpolation

is the value z.

Note. We clarify: last component ((x0, . . . , xn)) = xn.

Complexity The time complexity of finding the value of the second highest coefficient
using low memory interpolation is in O(D logD) for polynomials of degree D. Its memory
complexity is in O(1), and data complexity is D+1. For UFNerf , the degree of the rightmost
output polynomial is D = dr−t, resulting in time complexity in O

(
(r − t)dr−t log d

)
. The

approach requires dr−t + 1 pairs of plaintext & ciphertext and uses constant space, i. e. in
O(1). We achieve better time and data complexities by combining branches, as described
in Section 3.3.3.

3.3.1 Key Recovery with Single Round Key

We first consider the case of a single round key ki = gi(k̄) for linear functions gi. The round
keys ki are derived from the one secret key k̄ ∈ Fp by key schedule gi. The polynomial Q(k)
representing the second highest coefficient and the value z of the second highest coefficient
are recovered as described in the previous two sections. For finding the value of the secret
key two different techniques can be employed: (a) finding the GCD and (b) finding roots.

Finding the GCD

The GCD technique was introduced in [1] and used in [54] to analyze two branch Feistel
networks. The procedure is as follows. First, select two different input constants b, b′ for

32 3. Low Memory Interpolation Cryptanalysis of UFNs

the UFNerf . Using these, two different polynomials Q(k), Q′(k) are obtained, as described
in Algorithm 2. Polynomial Q(k) uses b as its branch constant, while Q′(k) uses b′. Next,
the value of the second highest coefficient is interpolated twice: First using b yielding z,
then using b′ yielding z′.

By construction of Q(k) it holds that Q(k̄)− z = 0, where k̄ is the secret key. From the
factor theorem, recapitulated in Section 2.1, it follows that (k − k̄) is a factor in Q(k)− z.
By the same argument, (k − k̄) is also a factor of Q′(k)− z′. With a high probability, this
is the greatest common factor. Thus it holds that

k̄ = k − gcd
(
q(k)− z, q′(k)− z′

)
with high probability, where k is the indeterminate.

Complexity Finding the GCD of two polynomials of degree at most D over Fp has
time complexity O

(
D log2D log logD

)
[78]. For UFNerf , the degree (in k) of the algebraic

second highest coefficient is D = dt−1. Hence the key recovery using the GCD method has
time complexity in O

(
tdt−1 log2 d log log d

)
. The space complexity is in O

(
dt−1

)
.

Finding Roots

By construction, Q(k) satisfies Q(k̄)− z = 0, i. e. secret key k̄ is a root of Q(k)− z.
Identifying all roots of that polynomial equation thus raises a list of key candidates. With
an additional pair of cleartext & ciphertext that had not been used during the interpolation,
the correct key k̄ can be identified from the list by trying decryption with all key candidates.

Note. The degree (in k) of the algebraic second highest coefficient Q(k) is dt−1. Over an
algebraically closed field, the list of key candidates would thus be of size dt−1. However, Fp
is not algebraically closed, meaning that the list of key candidates might be significantly
shorter. For example, the list in our experiments has an average length of less than 2 for
polynomials of degree 27. More details can be found in Section 3.3.5. For a fundamental
treatment of roots of random polynomials over finite fields, see [53], parts of which we
summarize in Section 3.6.

Complexity Finding all roots without multiplicities of a polynomial with degree D over
Fp has time complexity O

(
D log2D log(Dp) log logD

)
[78]. The list of key candidates has

length at most D for a polynomial of degree D, allowing a check in O(D) time and space.
This is dominated by finding the roots. For UFNerf , the degree (in k) of the algebraic
second highest coefficient Q(k) is D = dt−1. Hence the key recovery using the root finding
method has time complexity in O

(
tdt−1 log2 d log(dp) log log d

)
and data complexity of 1.

GCD versus Finding Roots

Theoretically, the complexity of the root finding method is not better than of the GCD
technique since the complexity of the root finding method depends on the size of the
field Fp. However, for realistic target constructions like GMiMC, the size of the field is
bounded and the complexities thus roughly the same. Furthermore, the data complexity of
the GCD approach is almost twice as large compared the root finding method, since the
interpolation step has to be performed twice. More importantly, the root finding method
can be used to find collisions in Sponge constructions, as elaborated on in Section 3.6. We
present a comprehensive comparison of the different complexities in Section 3.3.4.

3.3. Cryptanalysis of UFNerf 33

3.3.2 Key Recovery with Multiple Round Keys

In this section, we consider UFNs with general multiple keys (k0, . . . , kr−1). As opposed to
the variant with a single key from Section 3.3.1, the methods building on Proposition 3 are
not directly applicable. Instead, we use the results of Proposition 4. Furthermore, multiple
instances of the equation Qi(K) = zi for different constants bi, i ∈ {0, 1, 2} are used. This
is an adaptation of the approach used in [54] where the authors analyzed “traditional”
Feistel networks with 2 branches.

In Proposition 4, let ` = 1, which corresponds to inputs of the form (bi, x, bi, . . . , bi).
Then the second highest coefficient of the rightmost branch of the UFNerf is of the
form Qi(K) = dr−2(ad−1 + dβi) where βi = σ0 + k1 = f(bi + k0) + k1. The second highest
coefficient thus depends on only the first two sub keys. Recall that EK̄ is a concrete
UFNerf with secret but fixed key K̄ = (k̄0, . . . , k̄r−1). After obtaining the three equations
Qi(K) = zi, they are first rearranged:

f (b0 + k0) + k1 −
z0

dr−1
+
ad−1

d
= 0

f (b1 + k0) + k1 −
z1

dr−1
+
ad−1

d
= 0

f (b2 + k0) + k1 −
z2

dr−1
+
ad−1

d
= 0

(3.1)

For 0 6 i, j 6 2, subtraction of above equations results in:

∆(i,j) := f(bi + k0)− f(bj + k0)− zi − zj
dr−1

= 0 (3.2)

As in Section 3.3.1, it holds by the factor theorem that (k0 − k̄0) is a factor of ∆(i,j) due to
the construction of Qi(K). Thus

k̄0 = k0 − gcd
(
∆(0,1),∆(0,2)

)
(3.3)

Substituting k0 with k̄0 in any of Equation (3.1) yields k̄1.

k̄1 =
z0

dr−1
− ad−1

d
− f

(
b0 + k̄0

)
(3.4)

After recovering k̄0 and k̄1, a partial decryption of any ciphertext – or partial encryption
of any cleartext – is possible, allowing to “peel off” two rounds. The method described in
this section is then applicable again, allowing an iterative recovery of the entire key K̄.

Complexity For the two sub keys (k̄0, k̄1), computing the algebraic form of the second
highest coefficient can be done in constant time and space. The computational complexity
of getting the second highest coefficient’s value through interpolation is in O(D logD) for
polynomials of degree D, with data complexity being D + 1. From Corollary 3 it follows that
for the current scenario, D = dr−1. The computational complexity is thus in O

(
rdr−1 log d

)
.

Data complexity is 3dr−1 + 3. The algebraic second highest coefficient Qi(K) has degree d
(in k0). Computing the GCD of polynomials of degree d has computational complexity in
O
(
d log2 d log log d

)
[78]. This is dominated by the polynomial interpolation.

To recover the entire key K̄, the three steps above have to be repeated dr/2e many times.
This results in an overall computational complexity of

O
(
r2dr−1 log d

)
.

34 3. Low Memory Interpolation Cryptanalysis of UFNs

3.3.3 Complexity Improvements via Branch Subtraction

When analyzing a UFNerf [p, r, t] EK̄ with K̄ = (k̄0, . . . , k̄r−1), improvements on the com-
plexities discussed above are possible. From Corollary 3 it follows that deg(σi) = di−`−1 for
i > ` and inputs of the form (b, . . . , b, x, b, . . . , b), where b ∈ Fp is a constant and indetermi-
nate x is at position `. After round i, by construction of UFNerf , σi has been added to all
branches except the rightmost one. As we extensively used in the proofs of Propositions 1
to 4, the degree of the output polynomial of any branch is dominated by the largest σi.
Thus, somehow removing one or more of the highest σi from an output branch reduces
the degree of the corresponding polynomial. A lower degree in turn allows interpolation
with reduced time and data complexity. Since we use low memory interpolation, space
complexity cannot be lowered further.

Example 3.1. As a crude example for the branch subtraction effect, consider the output

branches in Figure 3.3, i. e. P
(5)
0 (x), . . . , P

(5)
3 (x). The output branch with the lowest degree,

i. e. P
(5)
3 (x), has degree deg(P

(5)
3 (x)) = deg(σ3) = d. Let P ′(x) := P

(5)
1 (x)− P (5)

0 (x) =
σ1 − σ2. Then, the degree of P ′(x) is deg(P ′(x)) = 0 since σ3 is not a summand. This
elimination of high degree σi is the basic idea behind branch subtraction.

Let output of UFNerf [p, r, t] EK̄ with input (x0, . . . , xt−1) be the vector ~o. We represent ~o
using the matrix notation described in the following. Intuitively, matrix A permutes the
inputs like the last operation in any one round of a UFNerf . The matrix B accumulates the
necessary σi, following the definition of a UFNerf . Figure 3.3 is annotated accordingly.

~o := Ar · ~x+ (Brmodt|

b rt c times︷ ︸︸ ︷
B| . . . |B︸ ︷︷ ︸

r columns

) · ~σ (3.5)

where

A =

— e2 —
— e3 —

...
— et —
— e1 —

 , ~x =

x0

x1
...

xt−1

 , B =

0 1

0

1
.. .

0

 , ~σ =

σ0

σ1
...

σr−1

and Brmodt are the right (r mod t) columns of B. Summarizing the dimensions, A,B ∈ Ft×tp ,
~x ∈ Ftp, and ~σ ∈ Frp .

Note. Equation (3.5) is not recursive. Increasing r to (r + 1) leads to different dimensions
in the composite matrix on the right hand side as well as in ~σ.

Note. Output branches ~o are nonlinear in variables ~x despite the seemingly linear represen-
tation above, since the σi are nonlinear in ~x.

Example 3.2. Consider a UFNerf [p, 5, 4] with inputs (b, b, b, x) like in Figure 3.3. This
instance presents the following scenario:

~o =

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

5

·

b
b
b
x

+

1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
0 1 1 1 0

·

σ0

σ1

σ2

σ3

σ4

 =

b
b
x
b

+

σ0 + σ2 + σ3 + σ4

σ0 + σ1 + σ3 + σ4

σ0 + σ1 + σ2 + σ4

σ1 + σ2 + σ3

3.3. Cryptanalysis of UFNerf 35

f

k0

c0

σ0
B, column 4

A

f

k1

c1

σ1
B, column 1

A

f

k2

c2

σ2
B, column 2

A

f

k3

c3

σ3
B, column 3

A

f

k4

c4

σ4
B, column 4

A

b b b x

b+ σ0 b+ σ0 x+ σ0 b

b+ σ0 + σ1 x+ σ0 + σ1 b+ σ1 b+ σ0

x+ σ0 + σ1 + σ2 b+ σ1 + σ2 b+ σ0 + σ2 b+ σ0 + σ1

b+ σ1 + σ2 + σ3 b+ σ0 + σ2 + σ3 b+ σ0 + σ1 + σ3 x+ σ0 + σ1 + σ2

b+ σ0 + σ2 + σ3 + σ4

b+ σ0 + σ1 + σ3 + σ4

x+ σ0 + σ1 + σ2 + σ4

b+ σ1 + σ2 + σ3

P
(5)
0 P

(5)
1 P

(5)
2 P

(5)
3

Figure 3.3: Example of summands being added in a UFNerf

36 3. Low Memory Interpolation Cryptanalysis of UFNs

Thus, ~o is an alternative representation of P
(5)
0 (x), . . . , P

(5)
3 (x).

Given this representation of the output branches ~o of EK̄ , we apply some linear algebra in
the following way. First, we observe the inverse of matrix B.

B−1 = (t− 1)−1

2− t 1

2− t

1
.. .

2− t

Multiplying the vector of output branches ~o by B−1 limits occurrence of any σi in any
one component of ~o to exactly once. This corresponds to every σi occurring on only one
“combined output branch,” or more specifically:

B−1 · ~o = B−1 ·Ar · ~x+ (Irmodt|

b rt c times︷ ︸︸ ︷
It| . . . |It︸ ︷︷ ︸

r columns

) · ~σ (3.6)

where It ∈ Ft×tp is the identity matrix and Irmodt are the right (r mod t) columns of It.
Combining Equation (3.6) with Corollary 3 and inputs of the form (b, . . . , b, x) results in:

deg(first component(B−1 · ~o))
= deg(σr−t + σr−2t + · · ·+ first component(B−1Ar~x))

= deg(σr−t)

= dr−2t+2

(3.7)

Note. We clarify: first component ((x0, . . . , xn)) = x0.

Example 3.3. (Continued from Example 3.2.) Applying the described operations results
in the following:

3−1

−2 1 1 1
1 −2 1 1
1 1 −2 1
1 1 1 −2

 ·

b + σ0 + σ2 + σ3 + σ4

b + σ0 + σ1 + σ3 + σ4

x+ σ0 + σ1 + σ2 + σ4

b + σ1 + σ2 + σ3

 =

x/3 + σ1
x/3 + σ2

b− 2x/3 + σ3
x/3 + σ0 + σ4

Complexity Improvements First, we consider the scenario with identical round keys
from Section 3.3.1. Using the polynomial first component(B−1·~o) of Equation (3.7) instead
of the rightmost branch in the analysis of Sections 3.3 and 3.3.1 lowers the complexities
involved. Steps 1 and 3 are unaffected by branch subtraction since the complexities do
not depend on the number of rounds r. For step 2, i. e. interpolating the value of the
second highest coefficient, analysis of the new computational complexity requires a little
more care because alongside complexity improvements, we introduced some overhead.
Since only the first component of vector B−1 · ~o is needed, the overhead consists of t
polynomial additions, each of which has run time in O(D) for polynomials of degree
at most D [78]. The components of ~o for the regarded input format are of maximum
degree dr−t+1. The total overhead is thus in O

(
tdr−t+1

)
. In total, computational complexity

3.3. Cryptanalysis of UFNerf 37

Time Space Data

GCD Õ
(
(r − t)dr−t

)
O
(
dt−1

)
2dr−t

GCD (bs) Õ
(
(r − 2t)dr−2t+2 + tdr−t+1

)
O
(
dt−1

)
2dr−2t+2

Root Õ
(
(r − t)dr−t + tdt−1

)
O
(
dt−1

)
dr−t + 2

Root (bs) Õ
(
(r − 2t)dr−2t+2 + tdr−t+1

)
O
(
dt−1

)
dr−2t+2 + 2

Multiple Keys (bs) Õ
(
r(r − t)dr−t + rtdr−t+1

)
O(r) O

(
(r − t)dr−t

)
Table 3.1: Complexities of the low memory interpolation cryptanalysis for UFNerf [p, r, t]
assuming r > 2t, where Õ(·) is ignoring logarithmic factors as defined in Section 2.1. The
branch subtraction technique of Section 3.3.3 is abbreviated as “bs.”

with branch subtraction is in Õ
(
(r − 2t)dr−2t+2 + tdr−t+1

)
as opposed to Õ

(
(r − t)dr−t

)
without, where Õ(·) is ignoring logarithmic factors as defined in Section 2.1. For r > 2t,
polynomial interpolation with branch subtraction has smaller computational complexity
than without. Data complexity with branch subtraction is dr−2t+2 + 1 as opposed to
dr−t + 1 without. Space complexity stays in O(1) since the same low memory algorithm
for recovery is being used.

When considering distinct round keys as in Section 3.3.2, the branch subtraction technique
is applicable as well, lowering the degree of the underlying polynomial by dt−1. As a result,
the total computational complexity for this scenario is in O

(
r(r − t)dr−t log d

)
. A summary

of all the complexities with and without branch subtraction can be found in Section 3.3.4
and Table 3.1.

Note. Branch subtraction only works for UFNerf and not UFNcrf , since every σi is added
to only one branch in a UFNcrf .

3.3.4 Summary of Complexities

In the sections above, we proposed a few approaches to recover keys in a UFNerf . In the
case of a single key k̄, i. e. K̄ = (g0(k̄), . . . , gr−1(k̄)) for linear functions gi, we applied an
existing method using the GCD and pointed out a novel method using root finding. In
the general case K̄ = (k̄0, . . . , k̄r−1), a slightly different GCD approach accounts for the
differing sub keys. The time, space and data complexities of the different approaches are
summarized in Table 3.1. In general, the interpolation step dominates both computational
and data complexity.

The memory requirements are dominated by the second highest coefficient, which requires
memory in O

(
dt−1

)
. If we were to use standard Lagrange interpolation for the interpolation

step, its memory requirements would be in O(dr). Under the sensible assumption r > 2t,
which we further discuss in the next paragraph, the interpolation step would also dominate
the memory complexity. Thus, in using the low memory interpolation technique from
Section 2.5 we lower the memory requirements of the entire attack.

Recommended Minimum Number of Rounds A UFN has maximum possible secu-
rity against interpolation attacks if the output branches when seen as polynomials have
maximum achievable degree. In Fp this is (p−1), as outlined in Section 2.1. The conclusion
of our results is that for the presented single key attack scenarios, this is achieved if the UFN

38 3. Low Memory Interpolation Cryptanalysis of UFNs

root GCD

number of roots 1.89 —

algebraic coefficient 0.09 0.11
coefficient value 1 468.51 3 132.22
key recovery 0.81 0.04
total 1 469.40 3 132.36

Table 3.2: Observed average number of roots and running times in milliseconds for key
recovery of UFNerf [p, 17, 4] using root finding and GCD. The degree of the interpolated
polynomial was 311. (n = 100)

has a number of rounds r > dlogd pe+ 2t− 2. For the distinct key scenario, we conclude
r > dlogd pe+ 1.

3.3.5 Experimental Verification

We validate our analysis by running small scale experiments. The UFN instances use
randomized key, round constants, and coefficients of the round function. Since the analysis
of Section 3.2 is for monic polynomials, the highest coefficient of the round function is
always 1. The fix parameters of the experiments are p = 99 999 989, r = 17, t = 4, chosen
because of hardware limitations. The round function is of degree 3. For these parameters p
and t, we recommended a minimum number of rounds r of 23. Both proposed methods of
key recovery are used, namely root finding and GCD. The branch subtraction technique of
Section 3.3.3 is applied in order to lower the involved complexities. Given above parameters,
the degree of the combined output polynomial for UFNerf is 311.

Note. As an example for realistic parameters, consider a 128-bit prime p, i. e. log2 p ≈ 128,
a round function of degree d = 3, and t = 4 branches. The recommended minimum number
of rounds r is then 87.

The experiments are implemented in python using sagemath [76]. All random values
are generated using python’s built-in “random” module. Measurements were taken on a
machine with standard Intel Core i5-6300U CPU and 7.22 GiB of RAM. Each experiment
is run n = 100 times. The full code is given in Listings A.1 and A.2. A summary of the
observed average running times can be found in Table 3.2.

The key recovery step with the root finding method takes about one order of magnitude
longer than in the GCD approach, reflecting the theoretical results of Section 3.3.4. However,
run time is dominated by the interpolation step, dwarfing recovery of the algebraic coefficient
and subsequent key recovery by about four orders of magnitude. It is interesting to observe
the average number of roots. Although theoretically, up to 34−1 = 27 roots could occur,
the experiments show that in practice, this number is significantly lower, with an average
of less than 2 roots.

3.4 Cryptanalysis of UFNcrf

In this section, we analyze UFNs in the CRF variant according to the steps outlined in
Section 3.2. Since the analysis is quite similar to the ERF variant of section Section 3.3,
we only point out significant differences. Notably, key recovery with only one round key k̄,
i. e. K̄ = (g0(k̄), . . . , gr−1(k̄)), is not reiterated.

3.4. Cryptanalysis of UFNcrf 39

Algorithm 3: Second highest coefficient of leftmost branch in UFNcrf [p, r, t] on input
(x, b, . . . , b).

Input: r, t, f , branch constant b, round constants c0, c1

Output: polynomial Q(K) for second highest coefficient of leftmost branch
1 β := f ((t− 1)b+ k0 + c0) + (t− 2)b+ k1 + c1

2 return dr−t−1(ad−1 + dβ)

Algebraic Expression of Second Highest Coefficient

In a UFNcrf [p, r, t], the polynomial representing the leftmost output branch has the lowest
degree, as shown in Proposition 5. For this branch, as shown in Corollary 4, the second high-
est coefficient Q(K) has form dr−t−1(ad−1 + dβ), with β = (t− 2)b+ f((t− 1)b+ k0) + k1.
This coefficient is simpler when compared to UFNerf as it depends only on k0 and k1.
Consequently, computing Q(K) is simpler, as described in Algorithm 3.

Complexity Calculating the algebraic form of the second highest coefficient requires a
constant number of addition and multiplication of scalars. Thus, the complexity is in O(1).

Value of Second Highest Coefficient

Unlike for UFNerf , the second highest coefficient of the leftmost branch is recovered
for UFNcrf . Thus, evaluation points yj for the interpolation are the values of the left-
most output branch and inputs (αj , b, . . . , b) are used for the low memory interpolation,
where α ∈ Fp is a primitive element as before. These changes allow application of
Corollary 4. The degree of the polynomial is D = dr−t. Summarizing, the inputs to
Algorithm 1 are (1) degree D, (2) primitive element α, and (3) polynomial evaluation oracle
Ocrf(x) = first component

(
EK̄
(
(x, b, . . . , b)

))
. The result of the low memory interpolation

is the value z.

Complexity None of the complexities change from those of UFNerf .

Key Recovery with Multiple Round Keys

Consider UFNcrf EK̄ with general K̄ = (k̄0, . . . , k̄r−1) where k̄i is key of round i. The
strategy to recover the key is extremely similar to the ERF variant of Section 3.3.2. The
algebraic form of the second highest coefficient Qi(K) is slightly different, as proved in
Proposition 5. For a UFNcrf , Qi(K) = dr−1(ad−1 + dβi) where βi = (t− 2)bi + f((t− 1)bi +
k0) + k1. Combining the three equations qi(K) = zi works the same way as before. Due to
the different form of βi, the equations change slightly:

(t− 2)bi + f((t− 1)bi + k0) + k1 −
zi
dr

+
ad−1

d
= 0 (3.8)

For 0 6 i, j 6 2, subtraction of above equations results in:

∆(i,j) := f((t− 1)bi + k0)− zi − zj
dr

+
2ad−1

d
= 0 (3.9)

40 3. Low Memory Interpolation Cryptanalysis of UFNs

Time Space Data

GCD Õ
(
(r − t)dr−t

)
O
(
dt−1

)
2dr−t

Root Õ
(
(r − t)dr−t + d

)
O
(
dt−1

)
dr−t + 2

Multiple Keys Õ
(
r2dr−1

)
O(r) O

(
(r − t)dr−t

)
Table 3.3: Complexities of the low memory interpolation cryptanalysis for UFNcrf [p, r, t]
assuming r > t, where Õ(·) is ignoring logarithmic factors as defined in Section 2.1. Note
that branch subtraction is not applicable to UFNcrf .

As in the ERF case, the first two sub keys can be recovered.

k̄0 = k0 − gcd
(
∆(0,1),∆(0,2)

)
(3.10)

k̄1 =
z0

dr−1
− ad−1

d
− (t− 2)bi − f((t− 1)b0 + k̄0) (3.11)

Again, the knowledge of k̄0 and k̄1 allows a partial decryption of any ciphertext. Thus,
“peeling off” two rounds and iteratively applying the described method allows recovery of
the entire key K̄.

Complexity Although the form of Q(k) and β are slightly different from those in UFNerf ,
the steps are fundamentally the same as for the ERF variant. Thus, the complexities are
also as in Section 3.3.2

Summary of Complexities Two scenarios with a total of three key recovery approaches
are outlined for UFNcrf : For the single key scenario, the root finding method and the GCD
approach are used, while we use a slightly altered GCD method for the distinct round key
scenario. A summary of the time, space, and data complexities for all three approaches can
be found in Table 3.3. As before, the interpolation dominates time and data complexity.

Note. The branch subtraction technique is not applicable to UFNcrf .

Recommended Minimum Number of Rounds Based on our analysis, a UFNcrf with
a single round key needs at least r > dlogd pe+ t rounds in order to reach the maximum
possible degree. When using distinct round keys, the minimum number of rounds to achieve
the maximum degree possible is r > dlogd pe+ 1.

Experimental Verification

We performed small scale experiments for UFNcrf to validate the different approaches. The
parameters are the same as for UFNerf in Section 3.3.5, namely p = 99 999 989, r = 17, t = 4,
with round function of degree 3. The degree of the polynomial that is to be interpolated is
313. For the parameters p and t we used, the recommended minimum number of rounds
is 21. Run times of the experiments can be found in Table 3.4. The used code is replicated
in Listings A.1 and A.2.

3.5. Application of the Analysis to GMiMC 41

root GCD

number of roots 2.10 —

algebraic coefficient 0.03 0.05
coefficient value 11 832.86 23 482.13
key recovery 0.49 0.03
total 11 833.38 23 482.21

Table 3.4: Observed average number of roots and running times in milliseconds for key
recovery of UFNcrf [p, 17, 4] using root finding and GCD. The degree of the interpolated
polynomial was 313. (n = 100)

GMiMCerf [p, r, t] GMiMCcrf [p, r, t]

Low Memory Interpolation dlog3 pe+ t dlog3 pe+ t
Additional Branch Subtraction dlog3 pe+ 2t− 2 —
GMiMC (interpolation) [3] dlog3 pe+ 4t− 3 dlog3 pe+ 2t

Table 3.5: Recommended lower limits of r for security level log2 p against different attacks
for univariate GMiMC.

3.5 Application of the Analysis to GMiMC

Our analysis is mainly motivated by the Arithmetization Oriented Cipher (AOC) GMiMC,
introduced in Section 2.2.1. The GMiMC family has two members that are based on
UFN: GMiMCerf and GMiMCcrf . Independent of the variant, univariate and multivariate
GMiMC, i. e. identical round key or distinct round key versions are proposed. The round
function used in all variants is f(x) = x3, i. e. d = 3. Our respective analyses of this
chapter are directly applicable to the different versions.

Our analysis suggests that the minimum number rounds to thwart the attack vectors
proposed herein are rerf > dlog3 pe+ 2t− 2 for GMiMCerf , taking branch subtraction of
Section 3.3.3 into account. For GMiMCcrf , branch subtraction is not applicable, resulting
in rcrf > dlog3 pe+ t. Our recommended minimum number of rounds are based on a more
concrete foundation than originally given, providing detailed attack vectors to justify the
required respective minima. A comparison of minimum recommended number of rounds
between the different scenarios can be found in Table 3.5.

Note. Our analysis does not contradict the recommendations of the authors of GMiMC, who
consider many different attack vectors. Reiterated in Table 3.5 is only the recommended
minimum against interpolation attacks.

3.6 Correcting Block Attacks against UFN-Based Sponges

Motivated by the recently proposed GMiMCHash [3], we consider Sponge constructions
instantiated by UFNs. Both variants ERF and CRF can be used, resulting in a hash
function over Fp, as described in Section 2.3.1. We re-use the root finding technique of
Section 3.3.1 to describe potential attacks on these kinds of hash functions.

42 3. Low Memory Interpolation Cryptanalysis of UFNs

m0

m′0

ra
te

ca
p
a
ci

ty

F1
p

Ft−1
p

0

0
...
0

U
F

N

k = 0

m1

x

U
F

N

k = 0

z

P (x)

Figure 3.4: Sponge attack setup.

We analyze Sponge constructions of the following form. The rate is one field element
of Fp, i. e. r = log2 p, while all other branches of the UFN make up the capacity, i. e.
c = (t− 1) log2 p. The input to the Sponge construction, i. e. the message, is a list of field
elements Fsp for s > 1. The hash size is one field element, i. e. one squeeze is performed. A
visualization of the Sponge construction can be found in Figure 2.6 in Section 2.3.1.

Note. As will become clear in the remainder of this section, our proposed attack vector
crucially relies on the Sponge construction using only one squeeze phase. This assumption,
while by no means universal, is justified by the hash being exactly one field element, as
opposed to a tuple.

3.6.1 Attack Setup

The attack vector described in the following is, in some sense, fundamentally different from
the rest of this chapter, while reusing some ideas and techniques. One of the reasons is
that the key for a UFN when used in a Sponge construction is fixed, while the attacks of
Sections 3.3 and 3.4 recover the unknown key. Generally, the attacks to the three security
goals of a cryptographic hash function described below are all based on the same principle:
We recover the hash value as a polynomial with the last message block as a variable,
subtract the hash value of a different message, then calculate the roots. A figure of this
high-level description can be found in Figure 3.4. Our described attack vector falls in the
category of correcting-last-block attacks [66] outlined in Section 2.3, where the root is the
correcting block.

For hash functions as opposed to block ciphers, no secret values like keys exist.1 This opens
up a new approach to compute the polynomial described above. One option, much in line
with the previous sections, is interpolation between the last message block and the hash
value. Since the full polynomial is required for our attack vector, low memory interpolation
is not sufficient. The second approach to recover the polynomial is symbolic evaluation,
which is not possible in the sections above. Since all parameters of the UFN are known, an
attacker can choose the last message block as indeterminate x, then evaluate the UFN.

1Keyed Hash Function is synonymous with Message Authentication Code [43], a primitive we don’t
consider in this thesis.

3.6. Correcting Block Attacks against UFN-Based Sponges 43

Second Preimages Consider message M = (m0,m1) ∈ F2
p . Let f denote the fixed-key

UFN used to instantiate the Sponge construction. The branch size of f in our attack
setup is p. The number of branches t and rounds r do not change the attack vector but
do influence its computational complexity. Let the rightmost branch of f correspond to
the rate of the Sponge construction. For hash value z of message M , we find a second
preimage in the following way:

1. Choose an arbitrary message block m′0 ∈ Fp with m′0 6= m0. Let (h0, . . . , ht−1) denote
the output branches of f(m′0).

2. Compute the polynomial P (x) corresponding to the rightmost output branch of f
for input (h0, . . . , ht−1 + x). Thus, P (x) is the polynomial corresponding to the hash
value of (m′0, x).

3. Find the roots of P (x)− z.

Any root m′1 of P (x)− z gives a second preimage attack in form of a correcting block. More
concretely, message M ′ = (m′0,m

′
1) is a second preimage of M .

Preimages When the given value is not a message M but a hash value z, above steps
can be executed to mount a preimage attack.

Collisions Finding a collision builds on the same principle with the following slight
alterations.

1. Choose any two message blocks m0,m
′
0 ∈ Fp with m0 6= m′0.

2. Compute the polynomials P (x) representing the hash value of a message of the form
(m0, x) and P ′(x) corresponding to the hash value of the message (m′0, x).

3. Compute the roots of P (x)− P ′(x).

Any root m1 of P (x)− P ′(x) results in a collision. Namely, messages M = (m0,m1) and
M ′ = (m′0,m1) have the same hash value.

Complexity The complexity of finding all roots without multiplicities of a polynomial
of degree D over Fp is in O

(
D log2D log(Dp) log logD

)
. For UFNerf , the degree of poly-

nomial P (x) after r rounds is dr−t. Hence, the complexity of the root finding step is
in

O
(
(r − t)2dr−t log2 d log((r − t) log d)((r − t) log d+ log p)

)
.

For the collision attack, the degree of the polynomial P (x)− P ′(x) is dr−t−1 since the
terms of highest degree are the same in both P (x) and P ′(x). The minimum number of
rounds required to be secure against the proposed attack vector is r > dlogd pe+ t.

For UFNcrf , the degree of polynomial P (x) after r rounds is dr, leading to a recom-
mended minimum number of rounds of r > dlogd pe. Choosing the rate to be the leftmost
branch lowers the degree to dr−t+1, raising the recommended minimum number of rounds
to r > dlogd pe+ t− 1.

44 3. Low Memory Interpolation Cryptanalysis of UFNs

Note. Because the full, unaltered polynomial of the rightmost output branch is required
for the proposed attack vector, the branch subtraction technique of Section 3.3.3 cannot
be applied advantageously.

Note. Adding more squeeze rounds and setting the hash value to the last derived field
element zn, discarding all other elements, does not conceptually protect against our proposed
attack vector.

GMiMCerfHash The minimum number of rounds proposed for any instantiation of
GMiMCerfHash is r = log3 p+ 4t− 3 with d = 3. The proposal does not explicitly justify
the given recommended minimum number of rounds by a security analysis of the hash
function. Our analysis shows that GMiMCerfHash is secure against the proposed attack
vector. Moreover, this algebraic analysis justifies the proposed number of rounds in
GMiMCerfHash.

Note. While the GMiMC proposal does not exclude constructions like GMiMCcrfHash, the
ERF variant is explicitly chosen for efficiency reasons.

3.6.2 Experimental Verification

The results of Section 3.6.1 are validated by running small scale experiments. The Sponge
construction is instantiated with GMiMCerf [p, r, t] with p = 99 999 989, number of rounds
between 24 6 r 6 29, number of branches between 3 6 t 6 6, and fix key k = 0. Two
different sets of experiments are run: Finding (1) second preimages and (2) collisions.
The round constants are randomly chosen and fixed across all experiments. For each
combination of (r, t) in the given intervals, 1 000 experiments are performed. The messages
are re-randomized for every experiment. All the measurements were taken on a machine
with a standard Intel Core i5-6300U CPU and 7.22 GiB of RAM. The experiments are
implemented in python using sagemath. To generate the random values, python’s “random”
module is used. The code for the experiments can be found in Listing A.3.

Second Preimages For the experiments on second preimages, across all 24 000 experi-
ments a total of 8 743 iterations with no second preimage are observed. These experiments
are considered failed. This puts the success probability of finding at least one preimage
to 63.6%. Of secondary interest is the average number of second preimages found given
that the attack is successful, i. e. at least one second preimage is found. Over all the 15 257
successful experiments, an average of 1.58 second preimages are observed.

Collisions For the experiments on collisions, no collision is found in 8 842 of the 24 000
experiments. These are considered failed. The success probability is thus 63.2%. Again of
secondary interest is the average number of collisions found in the successful experiments,
i. e. at least one collision is found. Over all 15 158 successful experiments, an average of
1.58 collisions are observed.

Note. The failure rates of 36.4% and 36.8% respectively are supported by the fact that
for the chosen parameters, about 36.8% of all possible polynomials do not have a root
in Fp [53]. This is further elaborated on below.

3.6. Correcting Block Attacks against UFN-Based Sponges 45

r = 27 r = 28 r = 29

construct poly 0.0003 0.0003 0.0003
root finding 0.0005 0.0005 0.0005
total 0.0009 0.0009 0.0009

(a) t = 3

r = 27 r = 28 r = 29

construct poly 0.0019 0.0019 0.0019
root finding 0.0028 0.0029 0.0032
total 0.0049 0.0049 0.0052

(b) t = 4

r = 27 r = 28 r = 29

construct poly 0.0238 0.0249 0.0237
root finding 0.0279 0.0296 0.0281
total 0.0519 0.0547 0.0520

(c) t = 5

r = 27 r = 28 r = 29

construct poly 0.3144 0.3239 0.3155
root finding 0.3243 0.3288 0.3229
total 0.6407 0.6548 0.6404

(d) t = 6

Table 3.6: Observed average running times in milliseconds for finding second preimages of
GMiMCerfHash. (n = 1 000 per column)

r = 27 r = 28 r = 29

construct poly 0.0007 0.0006 0.0006
root finding 0.0005 0.0005 0.0005
total 0.0013 0.0012 0.0011

(a) t = 3

r = 27 r = 28 r = 29

construct poly 0.0038 0.0038 0.0038
root finding 0.0029 0.0029 0.0028
total 0.0067 0.0067 0.0067

(b) t = 4

r = 27 r = 28 r = 29

construct poly 0.0485 0.0469 0.0478
root finding 0.0292 0.0271 0.0281
total 0.0778 0.0741 0.0760

(c) t = 5

r = 27 r = 28 r = 29

construct poly 0.6359 0.6036 0.6048
root finding 0.3211 0.3020 0.3006
total 0.9571 0.9058 0.9056

(d) t = 6

Table 3.7: Observed average running times in milliseconds for collision finding of
GMiMCerfHash. (n = 1 000 per column)

Run Times In Tables 3.6 and 3.7, the running times for the experiments with 24 6 r 6 29
and 3 6 t 6 6 are reported. The running times for symbolic evaluation of the UFN and for
root finding are reported alongside the total running times.

Success Probabilities In Figure 3.5, we plot the number of second preimages found in
the experiments. Similarly, Figure 3.6 visualizes the number of collisions found. In the
subfigures, different numbers of branches t are depicted. Each subfigure shows, for different
numbers of rounds r on the x-axis, the number of additional preimages or collisions on the
y-axis found over the 1 000 randomized experiments. For example, when regarding t = 3
branches in Figure 3.5a, for the GMiMCHash instance instantiated with GMiMCerf with
r = 28 rounds, there are 193 of the 1 000 experiments in which 2 preimages were found,
and 66 in which 3 preimages were found. A red (striped) bar signifies that no root was
found, while the green (dotted) bars indicate a successful attack.

46 3. Low Memory Interpolation Cryptanalysis of UFNs

(a) t = 3 (b) t = 4

(c) t = 5 (d) t = 6

Figure 3.5: Number of second preimages found in GMiMCHash using GMiMCerf [p, r, t] for
various numbers of rounds. (n = 1 000 per given (r, t))

3.6. Correcting Block Attacks against UFN-Based Sponges 47

(a) t = 3 (b) t = 4

(c) t = 5 (d) t = 6

Figure 3.6: Number of collisions found in GMiMCHash using GMiMCerf [p, r, t] for various
numbers of rounds. (n = 1 000 per given (r, t))

Roots of Random Polynomials over Finite Fields

In order to validate the failure rate of Section 3.6.2, we calculate the probability that a
random polynomial of degree d has no roots in a specific finite field. A formula td for the
number of polynomials of degree d over finite field Fq that have no root is given in lemma 1
in [53] and reproduced in Equation (3.12).

td =
d∑
i=0

(−1)i
(
q

i

)
qd−i (3.12)

The total number of polynomials of degree d over Fq is qd. The experiment’s parameters
are q = 99 999 989 and d = 3i with 24 6 i 6 29. This results in a probability of a random
polynomial not having any root in Fq of td/qd ≈ 36.8% for any i in the given interval,
supporting the experimental results.

Note. Investigating whether the polynomials P (x) of Section 3.6.2 are, in fact, randomly
and uniformly distributed over the set of polynomials of degree deg(P (x)) over Fp is beyond
the scope of this thesis. For the sake of the validation in this section, we conjecture a
distribution “pseudo-random close to uniform” and consider it a close enough approximation.

48 3. Low Memory Interpolation Cryptanalysis of UFNs

4. Conclusion

The goal of this thesis was to apply interpolation attacks with low memory complexity
to Unbalanced Feistel Networks (UFNs), the design principle of recent Arithmetization
Oriented Cipher (AOC) Generalized MiMC (GMiMC). This was motivated by (1) the
recently left open question about the generalization of an analysis to Feistel-MiMC [54] and
(2) the need for more cryptanalysis on AOCs in order to firmly demonstrate their security.

We applied an existing variant of Lagrange interpolation as the central step for key recovery
in multiple scenarios: UFN in variant Expanding Round Function (ERF) in Section 3.3 and
Contracting Round Function (CRF) in Section 3.4, each with both identical and distinct
round keys. For identical round keys, two approaches were considered, namely a GCD
method introduced in prior work [54] and a novel root finding technique. For distinct
round keys, a slightly modified GCD approach was used to recover the key. This positively
answered the open question mentioned above. Complexity improvements by combining
multiple output branches were demonstrated for all scenarios and key recovery approaches
of the ERF variant. Based on these, we gave recommendations on the minimum number of
rounds required to thwart the considered attacks. Small-scale experiments demonstrated
our proposals and supplemented the theoretical run time analysis with measurements.

We applied some of the developed techniques to Sponge constructions with one Squeeze
phase and instantiated with UFNs in Section 3.6. A correcting-last-block attack to find
collisions, second preimages, and preimages was proposed. Small-scale experiments gave
run times for various sets of parameters and granted insight about the attack’s success
probabilities. Parts of this thesis have been submitted for publication [7].

Future Work Some questions are left open for future work: The applicability of low
memory interpolation attacks to other AOCs like the Hades framework or the MARVELlous
suite should be determined. An extension of the analysis to UFNs with general, non-monic
polynomials as round function might be of further theoretical interest, although to the best
of our knowledge, no currently proposed AOC uses such a design paradigm. Algebraically
analyzing Sponge constructions with more than one Squeeze phase is another question we
leave open.

50 4. Conclusion

A. Code

In this appendix the code for this thesis’s different experiments on Unbalanced Feistel
Networks (UFNs) is listed. It is written in python and using the computer algebra system
sagemath [76].

In Appendix A.1, we give general definitions for UFNs. We used the code listed in Ap-
pendix A.2 for the key recovery experiments of Sections 3.3.5 and 3.4. Appendix A.3
contains the code for the correcting-last-block attack on Sponge constructions from Sec-
tion 3.6.

A.1 Unbalanced Feistel Networks

The functions in Listing A.1 provide general definitions of UFNerf and UFNcrf using both
identical and distinct round keys for use in Listings A.2 and A.3.

Listing A.1: Functions for UFNs.

1 # -*- coding: utf-8 -*-
2 import random
3

4 def ufn_erf(roundfunction , cleartext , key, round_constants):
5 ciphertext = cleartext
6 for r in range(len(round_constants)):
7 sigma = roundfunction(ciphertext[0] + (key*(r+1)) + round_constants[r])
8 temp = ciphertext[0]
9 for b in range(len(ciphertext) - 1):

10 ciphertext[b] = ciphertext[b+1] + sigma
11 ciphertext[-1] = temp
12 return ciphertext
13

14 def ufn_erf_multikey(roundfunction , cleartext , multikey, round_constants):
15 ciphertext = cleartext
16 for r in range(len(round_constants)):
17 sigma = roundfunction(ciphertext[0] + multikey[r] + round_constants[r])
18 temp = ciphertext[0]
19 for b in range(len(ciphertext) - 1):
20 ciphertext[b] = ciphertext[b+1] + sigma

52 A. Code

21 ciphertext[-1] = temp
22 return ciphertext
23

24 def ufn_crf(roundfunction , cleartext , key, round_constants):
25 ciphertext = cleartext
26 for r in range(len(round_constants)):
27 sigma = roundfunction(sum(ciphertext[1:]) + (key*(r+1)) +

round_constants[r])
28 ciphertext = ciphertext[1:] + [ciphertext[0] + sigma]
29 return ciphertext
30

31 def ufn_crf_multikey(roundfunction , cleartext , multikey, round_constants):
32 ciphertext = cleartext
33 for r in range(len(round_constants)):
34 sigma = roundfunction(sum(ciphertext[1:]) + multikey[r] +

round_constants[r])
35 ciphertext = ciphertext[1:] + [ciphertext[0] + sigma]
36 return ciphertext
37

38 def randomize_variables(field, num_rounds , num_branches , f_degree):
39 field_size = len(field)
40 round_constants = []
41 branch_constants = []
42 branch_constants_2 = []
43 branch_constants_3 = []
44 f_coefficients = []
45 key = field(random.randint(0, field_size))
46 multikey = []
47 for _ in range(num_rounds):
48 round_constants += [field(random.randint(0, field_size))]
49 multikey += [field(random.randint(0, field_size))]
50 for _ in range(num_branches):
51 branch_constants += [field(random.randint(0, field_size))]
52 branch_constants_2 += [field(random.randint(0, field_size))]
53 branch_constants_3 += [field(random.randint(0, field_size))]
54 for _ in range(f_degree):
55 f_coefficients += [field(random.randint(0, field_size))]
56 f_coefficients += [field(1)]
57 f = lambda x : sum([f_coefficients[i]*x**i for i in range(len(

f_coefficients))])
58 return round_constants , branch_constants , branch_constants_2 ,

branch_constants_3 , f_coefficients , f, key, multikey

A.2 Key Recovery of UFNs

Listing A.2 provides functions to measure run times of the interpolation attacks described
in Sections 3.3.5 and 3.4. Example results can be found in Tables 3.2 and 3.4.

Listing A.2: Code for timing of key recovery attacks on UFNs.

1 # -*- coding: utf-8 -*-
2 import operator, random
3 from time import clock
4 from datetime import datetime
5 from unbalanced_feistel_networks import *
6

7 field_size = 99999989
8 num_rounds = 17

A.2. Key Recovery of UFNs 53

9 num_branches = 4
10 f_degree = 3
11

12 field = GF(field_size)
13

14 b_inverse_row_i = lambda i : [1]*(i) + [-num_branches+2] + [1]*(num_branches -i
-1)

15 b_inverse = matrix(field, [b_inverse_row_i(i) for i in range(num_branches)])/(
num_branches -1)

16

17 round_constants = branch_constants = branch_constants_2 = f_coefficients = f =
key = 0

18

19 def secondsToStr(t):
20 return "%d:%02d:%02d.%03d" % reduce(lambda ll,b : divmod(ll[0],b) + ll[1:],

[(t*1000,) ,1000,60,60])
21

22 def algo_one(degree, primitive_element , oracle):
23 oracle_time = 0
24 z = 0
25 s = -sum([primitive_element**j for j in range(degree+1)])
26 a = reduce(operator.mul, [1-primitive_element**j for j in range(1, degree

+1)], 1)
27 b = 1
28 for i in range(degree+1):
29 t = clock()
30 o = oracle(b)
31 oracle_time += clock() - t
32 z += o * (s+b)/a
33 if i < degree: # i == degree means b == primitive_element**degree

leading to division by 0
34 a *= primitive_element**degree * (b - primitive_element**(-1)) / (b

- primitive_element**degree)
35 b *= primitive_element
36 return z, oracle_time
37

38 def symbolic_second_coeff_erf(symbol, round_function , round_constants ,
branch_constants):

39 assert(len(round_constants) >= len(branch_constants))
40 num_branches = len(branch_constants)
41 sigmas = 0
42 for i in range(num_branches -1):
43 sigmas += round_function(sigmas + (symbol*(i+1)) + round_constants[i] +

branch_constants[i])
44 return sigmas + (symbol*num_branches) + round_constants[num_branches -1]
45

46 def symbolic_second_coeff_crf(symbol, round_function , round_constants ,
branch_constants):

47 beta = round_function(sum(branch_constants[1:]) + symbol + round_constants
[0])

48 beta += sum(branch_constants[2:]) + 2*symbol + round_constants[1] # anti-
Xavier-fix

49 return beta
50

51 def symbolic_second_coeff_erf_multikey(multisymbol , round_function ,
round_constants , branch_constants , cleartext_pos):

52 sigmas = 0
53 for i in range(cleartext_pos):

54 A. Code

54 sigmas += round_function(sigmas + multisymbol[i] + round_constants[i] +
branch_constants[i])

55 return sigmas + multisymbol[cleartext_pos] + round_constants[cleartext_pos]
56

57 def branch_substract_oracle(cleartext , key, round_constants , branch_constants):
58 output_polys = matrix(field, ufn_erf(f, branch_constants[:num_branches -1] +

[cleartext], key, round_constants))
59 return (output_polys * b_inverse)[0][0]
60

61 def branch_substract_oracle_multikey(cleartext , cleartext_pos , multikey,
round_constants , branch_constants):

62 cleartext = branch_constants[:cleartext_pos] + [cleartext] +
branch_constants[cleartext_pos + 1:]

63 output_polys = matrix(field, ufn_erf_multikey(f, cleartext , multikey ,
round_constants))

64 return (output_polys * b_inverse)[0][0]
65

66 def timing_interpolate_root_erf():
67 k = polygen(field, ’k’)
68 assert num_rounds - 2*num_branches + 2 > 0
69 output_degree = f_degree**(num_rounds - 2*num_branches + 2)
70 lowest_branch = lambda x : branch_substract_oracle(x, key, round_constants ,

branch_constants)
71

72 time_symbolic = clock()
73 beta = symbolic_second_coeff_erf(k, f, round_constants , branch_constants)
74 q_k = (output_degree // f_degree) * (f_coefficients[-2] + f_degree*beta)
75 time_symbolic = clock() - time_symbolic
76

77 time_numeric = clock()
78 z, oracle_time = algo_one(output_degree , field.primitive_element(),

lowest_branch)
79 time_numeric = clock() - time_numeric - oracle_time
80

81 time_root = clock()
82 key_candidates = (q_k - z).roots()
83 time_root = clock() - time_root
84

85 time_key_search = clock()
86 # just for performance measuring , I don’t care about the result
87 for (candidate , _) in key_candidates:
88 ufn_erf(f, [0]*num_branches , candidate , round_constants)
89 success = (key in [x[0] for x in key_candidates])
90 time_key_search = clock() - time_key_search
91

92 return success, len(key_candidates), time_symbolic , time_numeric , time_root
, time_key_search

93

94 def timing_interpolate_root_crf():
95 k = polygen(field, ’k’)
96 assert num_rounds - num_branches > 0
97 output_degree = f_degree**(num_rounds - num_branches)
98 lowest_branch = lambda x : ufn_crf(f, [x] + branch_constants[1:], key,

round_constants)[0]
99

100 time_symbolic = clock()
101 beta = symbolic_second_coeff_crf(k, f, round_constants , branch_constants)
102 q_k = (output_degree // f_degree) * (f_coefficients[-2] + f_degree*beta)

A.2. Key Recovery of UFNs 55

103 time_symbolic = clock() - time_symbolic
104

105 time_numeric = clock()
106 z, oracle_time = algo_one(output_degree , field.primitive_element(),

lowest_branch)
107 time_numeric = clock() - time_numeric - oracle_time
108

109 time_root = clock()
110 key_candidates = (q_k - z).roots()
111 time_root = clock() - time_root
112

113 time_key_search = clock()
114 # just for performance measuring , I don’t care about the result
115 for (candidate , _) in key_candidates:
116 ufn_erf(f, [0]*num_branches , candidate , round_constants)
117 success = (key in [x[0] for x in key_candidates])
118 time_key_search = clock() - time_key_search
119

120 return success, len(key_candidates), time_symbolic , time_numeric , time_root
, time_key_search

121

122 def timing_interpolate_gcd_erf():
123 k = polygen(field, ’k’)
124 assert num_rounds - 2*num_branches + 2 > 0
125 output_degree = f_degree**(num_rounds - 2*num_branches + 2)
126 lowest_branch = lambda x : branch_substract_oracle(x, key, round_constants ,

branch_constants)
127 lowest_branch_2 = lambda x : branch_substract_oracle(x, key,

round_constants , branch_constants_2)
128

129 time_symbolic = clock()
130 beta = symbolic_second_coeff_erf(k, f, round_constants , branch_constants)
131 beta_2 = symbolic_second_coeff_erf(k, f, round_constants ,

branch_constants_2)
132 q_k = (output_degree // f_degree) * (f_coefficients[-2] + f_degree*beta)
133 q_k_2 = (output_degree // f_degree) * (f_coefficients[-2] + f_degree*beta_2

)
134 time_symbolic = clock() - time_symbolic
135

136 time_numeric = clock()
137 z, oracle_time = algo_one(output_degree , field.primitive_element(),

lowest_branch)
138 z_2, oracle_time_2 = algo_one(output_degree , field.primitive_element(),

lowest_branch_2)
139 time_numeric = clock() - time_numeric - oracle_time - oracle_time_2
140

141 time_gcd = clock()
142 g = k - gcd(q_k - z, q_k_2 - z_2)
143 time_gcd = clock() - time_gcd
144

145 success = (g == key)
146 return success, time_symbolic , time_numeric , time_gcd
147

148 def timing_interpolate_gcd_crf():
149 k = polygen(field, ’k’)
150 assert num_rounds - num_branches > 0
151 output_degree = f_degree**(num_rounds - num_branches)

56 A. Code

152 lowest_branch = lambda x : ufn_crf(f, [x] + branch_constants[1:], key,
round_constants)[0]

153 lowest_branch_2 = lambda x : ufn_crf(f, [x] + branch_constants_2[1:], key,
round_constants)[0]

154

155 time_symbolic = clock()
156 beta = symbolic_second_coeff_crf(k, f, round_constants , branch_constants)
157 beta_2 = symbolic_second_coeff_crf(k, f, round_constants ,

branch_constants_2)
158 q_k = (output_degree // f_degree) * (f_coefficients[-2] + f_degree*beta)
159 q_k_2 = (output_degree // f_degree) * (f_coefficients[-2] + f_degree*beta_2

)
160 time_symbolic = clock() - time_symbolic
161

162 time_numeric = clock()
163 z, oracle_time = algo_one(output_degree , field.primitive_element(),

lowest_branch)
164 z_2, oracle_time_2 = algo_one(output_degree , field.primitive_element(),

lowest_branch_2)
165 time_numeric = clock() - time_numeric - oracle_time - oracle_time_2
166

167 time_gcd = clock()
168 g = k - gcd(q_k - z, q_k_2 - z_2)
169 time_gcd = clock() - time_gcd
170

171 success = (g == key)
172 return success, time_symbolic , time_numeric , time_gcd
173

174 def timing_interpolate_multikey_erf():
175 assert num_rounds - num_branches > 0
176 recovered_key = []
177 time_symbolic = time_numeric = time_gcd = 0
178 k_0, k_1 = polygen(field, ’k_0, k_1’)
179 last_position = []
180 if num_branches % 2 != 0:
181 last_position = [num_branches -1]
182 for cleartext_pos in list(range(1,num_branches ,2)) + last_position:
183 output_degree = f_degree**(num_rounds - num_branches - cleartext_pos +

1)
184 lowest_branch = lambda x : branch_substract_oracle_multikey(x,

cleartext_pos , multikey , round_constants , branch_constants)
185 lowest_branch_2 = lambda x : branch_substract_oracle_multikey(x,

cleartext_pos , multikey , round_constants , branch_constants_2)
186 lowest_branch_3 = lambda x : branch_substract_oracle_multikey(x,

cleartext_pos , multikey , round_constants , branch_constants_3)
187

188 time = clock()
189 if cleartext_pos in last_position:
190 multisymbol = recovered_key + [k_1]
191 else:
192 multisymbol = recovered_key + [k_0, k_1]
193 beta = symbolic_second_coeff_erf_multikey(multisymbol , f,

round_constants , branch_constants , cleartext_pos)
194 beta_2 = symbolic_second_coeff_erf_multikey(multisymbol , f,

round_constants , branch_constants_2 , cleartext_pos)
195 beta_3 = symbolic_second_coeff_erf_multikey(multisymbol , f,

round_constants , branch_constants_3 , cleartext_pos)
196 time_symbolic += clock() - time

A.2. Key Recovery of UFNs 57

197

198 time = clock()
199 z, oracle_time = algo_one(output_degree , field.primitive_element(),

lowest_branch)
200 z_2, oracle_time_2 = algo_one(output_degree , field.primitive_element(),

lowest_branch_2)
201 z_3, oracle_time_3 = algo_one(output_degree , field.primitive_element(),

lowest_branch_3)
202 z = (z / (output_degree // f_degree) - f_coefficients[-2]) / f_degree #

Remove all known, fixed parts except beta
203 z_2 = (z_2 / (output_degree // f_degree) - f_coefficients[-2]) /

f_degree
204 z_3 = (z_3 / (output_degree // f_degree) - f_coefficients[-2]) /

f_degree
205 time_numeric += clock() - time - oracle_time - oracle_time_2 -

oracle_time_3
206

207 time = clock()
208 subtr_1 = beta - beta_2 - z + z_2
209 subtr_2 = beta - beta_3 - z + z_3
210 key_0 = k_0 - gcd(subtr_1, subtr_2)
211 key_1 = z - beta(k_0 = key_0) + k_1
212 if cleartext_pos in last_position:
213 recovered_key += [key_1]
214 else:
215 recovered_key += [key_0, key_1]
216 time_gcd += clock() - time
217

218 success = (recovered_key == multikey[:num_branches])
219 return success, time_symbolic , time_numeric , time_gcd
220

221 if __name__ == "__main__":
222 num_runs = 100
223 success_root_erf = num_roots_erf = time_symbolic_root_erf =

time_numeric_root_erf = time_root_erf = time_key_search_erf = 0
224 success_root_crf = num_roots_crf = time_symbolic_root_crf =

time_numeric_root_crf = time_root_crf = time_key_search_crf = 0
225 success_gcd_erf = time_symbolic_gcd_erf = time_numeric_gcd_erf =

time_gcd_erf = 0
226 success_gcd_crf = time_symbolic_gcd_crf = time_numeric_gcd_crf =

time_gcd_crf = 0
227 success_mult_erf = time_symbolic_mult_erf = time_numeric_mult_erf =

time_gcd_mult_erf = 0
228

229 for i in range(num_runs):
230 print("{:>.19} - Starting run {}".format(str(datetime.now()), i))
231 round_constants , branch_constants , branch_constants_2 ,

branch_constants_3 , f_coefficients , f, key, multikey = randomize_variables(
field, num_rounds , num_branches , f_degree)

232

233 ret_root_erf = timing_interpolate_root_erf()
234 success_root_erf += ret_root_erf[0]
235 num_roots_erf += ret_root_erf[1]
236 time_symbolic_root_erf += ret_root_erf[2]
237 time_numeric_root_erf += ret_root_erf[3]
238 time_root_erf += ret_root_erf[4]
239 time_key_search_erf += ret_root_erf[5]
240

58 A. Code

241 ret_root_crf = timing_interpolate_root_crf()
242 success_root_crf += ret_root_crf[0]
243 num_roots_crf += ret_root_crf[1]
244 time_symbolic_root_crf += ret_root_crf[2]
245 time_numeric_root_crf += ret_root_crf[3]
246 time_root_crf += ret_root_crf[4]
247 time_key_search_crf += ret_root_crf[5]
248

249 ret_gcd_erf = timing_interpolate_gcd_erf()
250 success_gcd_erf += ret_gcd_erf[0]
251 time_symbolic_gcd_erf += ret_gcd_erf[1]
252 time_numeric_gcd_erf += ret_gcd_erf[2]
253 time_gcd_erf += ret_gcd_erf[3]
254

255 ret_gcd_crf = timing_interpolate_gcd_crf()
256 success_gcd_crf += ret_gcd_crf[0]
257 time_symbolic_gcd_crf += ret_gcd_crf[1]
258 time_numeric_gcd_crf += ret_gcd_crf[2]
259 time_gcd_crf += ret_gcd_crf[3]
260

261 ret_mult_erf = timing_interpolate_multikey_erf()
262 success_mult_erf += ret_mult_erf[0]
263 time_symbolic_mult_erf += ret_mult_erf[1]
264 time_numeric_mult_erf += ret_mult_erf[2]
265 time_gcd_mult_erf += ret_mult_erf[3]
266

267

268 print("Field size: {}".format(field_size))
269 print("Num rounds: {}".format(num_rounds))
270 print("Num branches: {}".format(num_branches))
271 print("Degree round: {}".format(f_degree))
272 print("Average over {} randomized runs".format(num_runs))
273 print("")
274 print("-- ERF Root --")
275 print("Polynomial degree: {}".format(f_degree**(num_rounds - 2*

num_branches + 2)))
276 print("success rate: {}".format(success_root_erf/num_runs))
277 print("avg num roots: {}".format(num_roots_erf/num_runs))
278 print("avg time symbolic coeff: {}".format(time_symbolic_root_erf/num_runs)

)
279 print("avg time numeric coeff: {}".format(time_numeric_root_erf/num_runs))
280 print("avg time root finding: {}".format(time_root_erf/num_runs))
281 print("avg time key search: {}".format(time_key_search_erf/num_runs))
282 print("avg total running time: {}".format((time_symbolic_root_erf +

time_numeric_root_erf + time_root_erf + time_key_search_erf)/num_runs))
283 print("")
284 print("-- CRF Root --")
285 print("Polynomial degree: {}".format(f_degree**(num_rounds -

num_branches)))
286 print("success rate: {}".format(success_root_crf/num_runs))
287 print("avg num roots: {}".format(num_roots_crf/num_runs))
288 print("avg time symbolic coeff: {}".format(time_symbolic_root_crf/num_runs)

)
289 print("avg time numeric coeff: {}".format(time_numeric_root_crf/num_runs))
290 print("avg time root finding: {}".format(time_root_crf/num_runs))
291 print("avg time key search: {}".format(time_key_search_crf/num_runs))
292 print("avg total running time: {}".format((time_symbolic_root_crf +

time_numeric_root_crf + time_root_crf + time_key_search_crf)/num_runs))

A.3. Collisions and Second Preimages for Sponges 59

293 print("")
294 print("-- ERF GCD --")
295 print("Polynomial degree: {}".format(f_degree**(num_rounds - 2*

num_branches + 2)))
296 print("success rate: {}".format(success_gcd_erf/num_runs))
297 print("avg time symbolic coeff: {}".format(time_symbolic_gcd_erf/num_runs))
298 print("avg time numeric coeff: {}".format(time_numeric_gcd_erf/num_runs))
299 print("avg time gcd finding: {}".format(time_gcd_erf/num_runs))
300 print("avg total running time: {}".format((time_symbolic_gcd_erf +

time_numeric_gcd_erf + time_gcd_erf)/num_runs))
301 print("")
302 print("-- CRF GCD --")
303 print("Polynomial degree: {}".format(f_degree**(num_rounds -

num_branches)))
304 print("success rate: {}".format(success_gcd_crf/num_runs))
305 print("avg time symbolic coeff: {}".format(time_symbolic_gcd_crf/num_runs))
306 print("avg time numeric coeff: {}".format(time_numeric_gcd_crf/num_runs))
307 print("avg time gcd finding: {}".format(time_gcd_crf/num_runs))
308 print("avg total running time: {}".format((time_symbolic_gcd_crf +

time_numeric_gcd_crf + time_gcd_crf)/num_runs))
309 print("")
310 print("-- ERF MULTI --")
311 print("Max Polynomial degree: {}".format(f_degree**(num_rounds -

num_branches)))
312 print("success rate: {}".format(success_mult_erf/num_runs))
313 print("avg time symbolic coeff: {}".format(time_symbolic_mult_erf/num_runs)

)
314 print("avg time numeric coeff: {}".format(time_numeric_mult_erf/num_runs))
315 print("avg time gcd finding: {}".format(time_gcd_mult_erf/num_runs))
316 print("avg total running time: {}".format((time_symbolic_mult_erf +

time_numeric_mult_erf + time_gcd_mult_erf)/num_runs))

A.3 Collisions and Second Preimages for Sponges

Functions to generate statistics for collision attacks and second preimage attacks as described
in Section 3.6 can be found in Listing A.3. Example results can be found in Section 3.6.2.

Listing A.3: Code for timing and statistics on collision and second preimage finding.

1 # -*- coding: utf-8 -*-
2 from unbalanced_feistel_networks import *
3 import random
4 from time import clock
5 from datetime import datetime
6 import pylab as plt
7 import numpy as np
8

9 field_size = 99999989
10 num_rounds_min = 24
11 num_rounds_max = 29
12 num_branches_min = 3
13 num_branches_max = 6
14 f_degree = 3 # don’t touch, function is hardcoded as x**3
15 message_length = 2
16 hash_length = 1
17 num_runs = 10**3
18 plot_max_root_count = 6
19 parallelize = 0 # 0 -> second preimage. 1 -> collision.

60 A. Code

20 random.seed(0) # determinism
21

22 def sponge(message, round_function , key, round_constants , status=None):
23 if not status:
24 status = [0]*num_branches
25 hash_output = []
26 # absorb
27 for i in range(len(message)):
28 last_status = list(status) # not needed for sponge, just avoids

reconstruction when interpolating
29 status[0] = status[0] + message[i]
30 status = ufn_erf(round_function , status, key, round_constants)
31 # squeeze
32 for _ in range(hash_length):
33 hash_output += [status[0]]
34 status = ufn_erf(round_function , status, key, round_constants)
35 return hash_output , last_status
36

37 def random_message(message_length):
38 message = []
39 for _ in range(message_length):
40 message += [random.randint(0, field_size)]
41 return message
42

43 def polynomial_reduction(polynomial):
44 if isinstance(polynomial , (int, sage.rings.integer.Integer, sage.rings.

finite_rings.integer_mod.IntegerMod_int)):
45 return polynomial
46 if polynomial.is_constant():
47 return polynomial.constant_coefficient()
48 exp_mod = euler_phi(len(polynomial.base_ring()))
49 var = polynomial.args()
50 new_poly = 0
51 for (exp, coeff) in polynomial.dict().iteritems():
52 if not isinstance(exp, (tuple, sage.rings.polynomial.polydict.ETuple)):
53 exp = (exp,)
54 term = 1
55 for e,v in zip(exp,var):
56 new_e = (e%exp_mod)
57 if new_e == 0 and e >= exp_mod:
58 new_e = exp_mod
59 term *= v**new_e
60 new_poly += coeff*term
61 return new_poly
62

63 def print_basic_stats(data):
64 total_runs = sum(sum(len(rounds) for rounds in branches) for branches in

data)
65 total_roots = sum(sum(sum(rounds) for rounds in branches) for branches in

data)
66 failed_runs = sum(sum(rounds.count(0) for rounds in branches) for branches

in data)
67 sccss_runs = total_runs - failed_runs
68 print("Total runs: {}".format(total_runs))
69 print("Failed runs: {}".format(failed_runs))
70 print("Successful runs: {}".format(sccss_runs))
71 print("Fail prob: {:02.2f}".format(float(100*failed_runs/

total_runs)))

A.3. Collisions and Second Preimages for Sponges 61

72 print("Success prob: {:02.2f}".format(float(100*sccss_runs/total_runs
)))

73 print("Total roots: {}".format(total_roots))
74 print("Avg roots if sccss: {:1.3f}".format(float(total_roots/sccss_runs)))
75

76 def save_distribution_plot(data, num_branches , identifier_string):
77 plt.figure(figsize=(num_rounds_max - num_rounds_min + 1,

plot_max_root_count / 2), dpi=300)
78 plt.rc(’text’, usetex=True)
79 plt.rc(’font’, family=’serif’, size=16)
80 plt.rc(’hatch’, color=’#999999’)
81 # Compile histogram -like
82 all_histo = []
83 for i in range(len(data)):
84 histo = []
85 for j in range(plot_max_root_count):
86 histo += [data[i].count(j)]
87 all_histo += [histo]
88 # Compare neighbouring bars of same y-value to check for overlap
89 biggest_neighbour_sum = 0
90 for i in range(len(all_histo) - 1): # neighboring bar charts
91 for j in range(len(all_histo[i])): # going up the stack
92 biggest_neighbour_sum = max(all_histo[i][j] + all_histo[i+1][j],

biggest_neighbour_sum)
93 min_gap = 0.03*num_runs # minimum horizontal gap between bars
94 max_stretch = biggest_neighbour_sum + min_gap
95 # Plot the histograms
96 for i in range(len(all_histo)):
97 bars_right = plt.barh(range(plot_max_root_count), [x/max_stretch for x

in all_histo[i]], left=i, color=["#e00030"] + ["#30e000"]*(
plot_max_root_count -1), height=0.9, hatch=’.’)

98 bars_left = plt.barh(range(plot_max_root_count), [-x/max_stretch for x
in all_histo[i]], left=i, color=["#e00030"] + ["#30e000"]*(
plot_max_root_count -1), height=0.9, hatch=’.’)

99 bars_right[0].set_hatch(’/’)
100 bars_left[0].set_hatch(’/’)
101 # Add the values of the histograms
102 for i in range(len(all_histo)):
103 for j in range(len(all_histo[i])):
104 if all_histo[i][j] != 0:
105 plt.text(i, j, all_histo[i][j], horizontalalignment=’center’,

verticalalignment=’center’, color=’black’)
106 plt.xticks(list(range(num_rounds_max - num_rounds_min + 1)), [

num_rounds_min + i for i in range(num_rounds_max - num_rounds_min + 2)])
107 plt.xlabel(’number of rounds r’)
108 plt.ylabel(’amount of {}’.format(identifier_string))
109 plt.ylim(ymin = -0.5, ymax = plot_max_root_count - 0.5)
110 plt.savefig(’/tmp/sponge/sponge_{}_plot_r=({}-{})_t={}.png’.format(

identifier_string.replace(" ","_") , num_rounds_min , num_rounds_max ,
num_branches), bbox_inches=’tight’)

111

112 def second_preimage(num_rounds , round_constants , print_progress=False):
113 # Setup
114 field = GF(field_size)
115 key = field(0)
116 x = polygen(field, ’x’)
117 full_degree = min(f_degree ** num_rounds , field_size - 1)
118 round_function = lambda x : x**3 # gmimc specific

62 A. Code

119

120 num_scnd_preimage = []
121 num_no_scnd_preimage_run = 0
122 time_poly_evaluation = 0
123 time_root = 0
124 time_total = clock()
125 for i in range(num_runs):
126 if print_progress and i % 20 == 0:
127 print("{:>.19} - Starting run {}/{}".format(str(datetime.now()), i,

num_runs))
128 message_0 = random_message(message_length)
129 hash_output , _ = sponge(message_0 , round_function , key, round_constants

)
130 hash_output = hash_output[0] # Only works with hash length == 1
131 message_1 = random_message(message_length)
132 _, last_status = sponge(message_1 , round_function , key, round_constants

)
133 # symbolic evaluation
134 time = clock()
135 poly, _ = sponge([x], round_function , key, round_constants , status=

last_status)
136 poly = polynomial_reduction(poly[0])
137 time_poly_evaluation += clock() - time
138 # find second preimages
139 time = clock()
140 all_roots = (poly - hash_output).roots()
141 time_root += clock() - time
142 all_roots = [r[0] for r in all_roots] # disregard multiplicativity
143 # check our solutions
144 num_found_second_preimages = 0
145 for root in all_roots:
146 hash_output_0 , _ = sponge(message_0 , round_function , key,

round_constants)
147 hash_output_1 , _ = sponge(message_1[:-1] + [root], round_function ,

key, round_constants)
148 if hash_output_0 == hash_output_1 and message_0 != message_1[:-1] +

[root]:
149 num_found_second_preimages += 1
150 num_scnd_preimage += [num_found_second_preimages]
151 if num_found_second_preimages <= 0:
152 num_no_scnd_preimage_run += 1
153 time_total = clock() - time_total
154 return num_scnd_preimage , num_no_scnd_preimage_run , time_poly_evaluation ,

time_root , time_total
155

156 def collision(num_rounds , round_constants , print_progress=False):
157 # Setup
158 field = GF(field_size)
159 key = field(0)
160 x = polygen(field, ’x’)
161 full_degree = min(f_degree ** num_rounds , field_size - 1)
162 round_function = lambda x : x**3 # gmimc specific
163

164 num_collisions = []
165 num_no_collision_run = 0
166 time_poly_evaluation = 0
167 time_root = 0
168 time_total = clock()

A.3. Collisions and Second Preimages for Sponges 63

169 for i in range(num_runs):
170 if print_progress and i % 20 == 0:
171 print("{:>.19} - Starting run {}/{}".format(str(datetime.now()), i,

num_runs))
172 # symbolic evaluation
173 message_0 = random_message(message_length)
174 message_1 = random_message(message_length)
175 message_0[-1] = x
176 message_1[-1] = x
177 time = clock()
178 poly_0, _ = sponge(message_0 , round_function , key, round_constants)
179 poly_1, _ = sponge(message_1 , round_function , key, round_constants)
180 poly_0 = polynomial_reduction(poly_0[0]) # Only works with hash length

== 1
181 poly_1 = polynomial_reduction(poly_1[0])
182 time_poly_evaluation += clock() - time
183 # find collisions
184 time = clock()
185 all_roots = (poly_0 - poly_1).roots()
186 time_root += clock() - time
187 all_roots = [r[0] for r in all_roots] # disregard multiplicativity
188 # check our solutions
189 num_found_collisions = 0
190 for root in all_roots:
191 hash_output_0 , _ = sponge(message_0[:-1] + [root], round_function ,

key, round_constants)
192 hash_output_1 , _ = sponge(message_1[:-1] + [root], round_function ,

key, round_constants)
193 if hash_output_0 == hash_output_1 and message_0[:-1] != message_1

[:-1]:
194 num_found_collisions += 1
195 num_collisions += [num_found_collisions]
196 if num_found_collisions <= 0:
197 num_no_collision_run += 1
198 time_total = clock() - time_total
199 return num_collisions , num_no_collision_run , time_poly_evaluation ,

time_root , time_total
200

201 round_constants = []
202 all_data = []
203 for _ in range(num_rounds_max):
204 round_constants += [random.randint(0, field_size)]
205

206 if parallelize == 0:
207 for num_branches in range(num_branches_min , num_branches_max + 1):
208 second_preimage_data = []
209 for num_rounds in range(num_rounds_min , num_rounds_max + 1):
210 num_scnd_preimage , num_no_scnd_preimage_run , time_poly_evaluation ,

time_root , time_total = second_preimage(num_rounds , round_constants[:
num_branches])

211 print("Field size: {}".format(field_size))
212 print("Num rounds: {}".format(num_rounds))
213 print("Num branches: {}".format(num_branches))
214 print("Degree round: {}".format(f_degree))
215 print("Average over {} randomized runs".format(num_runs))
216 print("avg num scnd primg: {}".format(sum(

num_scnd_preimage)/num_runs))

64 A. Code

217 print("runs with no scnd primg: {}".format(
num_no_scnd_preimage_run))

218 if num_no_scnd_preimage_run < num_runs:
219 print("avg num scnd primg (if >=1): {}".format(sum(

num_scnd_preimage)/(num_runs - num_no_scnd_preimage_run)))
220 print("avg time evaluating: {}".format(time_poly_evaluation

/num_runs))
221 print("avg time root finding: {}".format(time_root/num_runs))
222 print("avg total runtime: {}".format(time_total/num_runs)

)
223 print("")
224 second_preimage_data += [num_scnd_preimage]
225 print("Second Preimage Data as backup: (t={})".format(num_branches))
226 print(second_preimage_data)
227 print("")
228 all_data += [second_preimage_data]
229 save_distribution_plot(second_preimage_data , num_branches , ’second

preimages’)
230

231 if parallelize == 1:
232 for num_branches in range(num_branches_min , num_branches_max + 1):
233 collision_data = []
234 for num_rounds in range(num_rounds_min , num_rounds_max + 1):
235 num_collisions , num_no_collision_run , time_poly_evaluation ,

time_root , time_total = collision(num_rounds , round_constants[:num_branches
])

236 print("Field size: {}".format(field_size))
237 print("Num rounds: {}".format(num_rounds))
238 print("Num branches: {}".format(num_branches))
239 print("Degree round: {}".format(f_degree))
240 print("Average over {} randomized runs".format(num_runs))
241 print("avg num collisions: {}".format(sum(num_collisions)/

num_runs))
242 print("runs with no collision: {}".format(num_no_collision_run

))
243 if num_no_collision_run < num_runs:
244 print("avg num collision (if >=1): {}".format(sum(

num_collisions)/(num_runs - num_no_collision_run)))
245 print("avg time evaluating: {}".format(time_poly_evaluation

/num_runs))
246 print("avg time root finding: {}".format(time_root/num_runs))
247 print("avg total runtime: {}".format(time_total/num_runs)

)
248 print("")
249 collision_data += [num_collisions]
250 print("Collision Data as backup: (t={})".format(num_branches))
251 print(collision_data)
252 print("")
253 all_data += [collision_data]
254 save_distribution_plot(collision_data , num_branches , ’collisions’)
255 print_basic_stats(all_data)

Bibliography

[1] Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen.
Mimc: Efficient encryption and cryptographic hashing with minimal multiplicative
complexity. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 191–219. Springer, 2016.

[2] Martin R Albrecht, Carlos Cid, Lorenzo Grassi, Reinhard Khovratovich, Dmitry
an Lüftenegger, Christian Rechberger, and Markus Schofnegger. Algebraic cryptanaly-
sis of stark-friendly designs: Application to marvellous and mimc. IACR Cryptology
ePrint Archive, 2019:419, 2019.

[3] Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, Sebastian Ramacher, Christian
Rechberger, Dragos Rotaru, Arnab Roy, and Markus Schofnegger. Feistel structures
for mpc, and more. In Kazue Sako, Steve Schneider, and Peter Y. A. Ryan, editors,
Computer Security - ESORICS 2019 - 24th European Symposium on Research in
Computer Security, Luxembourg, September 23-27, 2019, Proceedings, Part II, volume
11736 of Lecture Notes in Computer Science, pages 151–171. Springer, 2019.

[4] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and
Michael Zohner. Ciphers for MPC and FHE. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer
Science, pages 430–454. Springer, 2015.

[5] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan Szepi-
eniec. Design of symmetric-key primitives for advanced cryptographic protocols.
Cryptology ePrint Archive, Report 2019/426, 2019. https://eprint.iacr.org/2019/426.

[6] Abdelrahaman Aly, Marcel Keller, Emmanuela Orsini, Dragos Rotaru, Peter Scholl,
Nigel P Smart, and Tim Wood. Scale–mamba v1. 3: Documentation. Technical report,
Technical Report, 2019.

[7] Elena Andreva, Arnab Roy, and Ferdinand Sauer. Interpolation Cryptanalysis of
Unbalanced Feistel Networks with Low Degree Round Functions. Under Submission,
11 2019.

[8] Tomer Ashur and Siemen Dhooghe. Marvellous: a stark-friendly family of cryp-
tographic primitives. Cryptology ePrint Archive, Report 2018/1098, 2018. https:
//eprint.iacr.org/2018/1098.

https://eprint.iacr.org/2019/426
https://eprint.iacr.org/2018/1098
https://eprint.iacr.org/2018/1098

66 Bibliography

[9] Mihir Bellare, Sha Goldwasser, Carsten Lund, and Alexander Russell. E cient proba-
bilistically checkable proofs and applications to approximation. In Proceedings of the
25th Annual ACM Symposium on Theory of Computing, pages 294–304, 1993.

[10] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transpar-
ent, and post-quantum secure computational integrity. Cryptology ePrint Archive,
Report 2018/046, 2018. https://eprint.iacr.org/2018/046.

[11] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. Deep-fri:
Sampling outside the box improves soundness. Cryptology ePrint Archive, Report
2019/336, 2019. https://eprint.iacr.org/2019/336.

[12] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge
functions. In ECRYPT hash workshop, number 9. Citeseer, 2007.

[13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the
indifferentiability of the sponge construction. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 181–197. Springer,
2008.

[14] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak.
In Annual international conference on the theory and applications of cryptographic
techniques, pages 313–314. Springer, 2013.

[15] Eli Biham, Orr Dunkelman, and Nathan Keller. New results on boomerang and
rectangle attacks. In International Workshop on Fast Software Encryption, pages
1–16. Springer, 2002.

[16] Eli Biham and Adi Shamir. Differential cryptanalysis of the data encryption standard.
Springer Science & Business Media, 2012.

[17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back again.
In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference,
ITCS ’12, pages 326–349, New York, NY, USA, 2012. ACM.

[18] Xavier Bonnetain. Collisions on Feistel-MiMC and univariate GMiMC. Cryptology
ePrint Archive, Report 2019/951, 2019. https://eprint.iacr.org/2019/951.

[19] Bruno Buchberger. Bruno buchberger’s phd thesis 1965: An algorithm for finding
the basis elements of the residue class ring of a zero dimensional polynomial ideal.
Journal of symbolic computation, 41(3-4):475–511, 2006.

[20] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In
2018 IEEE Symposium on Security and Privacy (SP), pages 315–334. IEEE, 2018.

[21] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent snarks from dark
compilers. Technical report, Cryptology ePrint Archive, Report 2019/1229, 2019,
https://eprint. iacr. org . . . , 2019.

https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2019/336
https://eprint.iacr.org/2019/951

Bibliography 67

[22] David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally secure
protocols. In Proceedings of the twentieth annual ACM symposium on Theory of
computing, pages 11–19. ACM, 1988.

[23] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene. Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds. In International
Conference on the Theory and Application of Cryptology and Information Security,
pages 3–33. Springer, 2016.

[24] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable secret
sharing and achieving simultaneity in the presence of faults. In 26th Annual Symposium
on Foundations of Computer Science (sfcs 1985), pages 383–395. IEEE, 1985.

[25] Don Coppersmith. Analysis of iso/ccitt document x. 509 annex d. IBM TJ Watson
Center, Yorktown Heights, NY, 10598, 1989.

[26] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the advanced
encryption standard. Springer Science & Business Media, 2013.

[27] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the advanced
encryption standard. Springer Science & Business Media, 2013.

[28] Ivan Damg̊ard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty compu-
tation from somewhat homomorphic encryption. In Annual Cryptology Conference,
pages 643–662. Springer, 2012.

[29] Hüseyin Demirci and Ali Aydın Selçuk. A meet-in-the-middle attack on 8-round aes.
In International Workshop on Fast Software Encryption, pages 116–126. Springer,
2008.

[30] Whitfield Diffie and Martin E Hellman. Special feature exhaustive cryptanalysis of
the nbs data encryption standard. Computer, 10(6):74–84, 1977.

[31] Léo Ducas and Daniele Micciancio. Fhew: bootstrapping homomorphic encryption in
less than a second. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 617–640. Springer, 2015.

[32] Jean-Charles Faugere. A new efficient algorithm for computing gröbner bases (f4).
Journal of pure and applied algebra, 139(1-3):61–88, 1999.

[33] PUB FIPS. 46-3. data encryption standard (des). National Institute of Standards and
Technology, 25(10):1–22, 1999.

[34] Michael J Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search
and oblivious pseudorandom functions. In Theory of Cryptography Conference, pages
303–324. Springer, 2005.

[35] Craig Gentry et al. Fully homomorphic encryption using ideal lattices. In Stoc,
volume 9, pages 169–178, 2009.

[36] Craig Gentry, Shai Halevi, and Nigel P Smart. Fully homomorphic encryption with
polylog overhead. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 465–482. Springer, 2012.

68 Bibliography

[37] Craig Gentry, Shai Halevi, and Nigel P Smart. Homomorphic evaluation of the aes
circuit. In Annual Cryptology Conference, pages 850–867. Springer, 2012.

[38] Marc Girault. Hash-functions using modulo-n operations. In Workshop on the Theory
and Application of of Cryptographic Techniques, pages 217–226. Springer, 1987.

[39] Oded Goldreich. Foundations of cryptography: volume 1, basic tools. Cambridge
university press, 2007.

[40] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. In
Proceedings of the nineteenth annual ACM symposium on Theory of computing, pages
218–229. ACM, 1987.

[41] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. Journal of Cryptology, 7(1):1–32, 1994.

[42] Lorenzo Grassi, Reinhard Lüftenegger, Christian Rechberger, Dragos Rotaru, and
Markus Schofnegger. On a generalization of substitution-permutation networks:
The hades design strategy. Cryptology ePrint Archive, Report 2019/1107, 2019.
https://eprint.iacr.org/2019/1107.

[43] Network Working Group et al. Rfc4949: Internet security glossary, version 2, 2007.

[44] Viet Tung Hoang and Phillip Rogaway. On generalized feistel networks. In Annual
Cryptology Conference, pages 613–630. Springer, 2010.

[45] Thomas Jakobsen and Lars R. Knudsen. The Interpolation Attack on Block Ciphers.
In In Fast Software Encryption, pages 28–40. Springer-Verlag, 1997.

[46] Stanis law Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom function with
applications to adaptive ot and secure computation of set intersection. In Theory of
Cryptography Conference, pages 577–594. Springer, 2009.

[47] Lars R Knudsen and Matthew Robshaw. The block cipher companion. Springer Science
& Business Media, 2011.

[48] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free xor
gates and applications. In International Colloquium on Automata, Languages, and
Programming, pages 486–498. Springer, 2008.

[49] Michael Kraitsberg, Yehuda Lindell, Valery Osheter, Nigel P Smart, and Younes Talibi
Alaoui. Adding distributed decryption and key generation to a ring-lwe based cca
encryption scheme. In Australasian Conference on Information Security and Privacy,
pages 192–210. Springer, 2019.

[50] Xuejia Lai and James L Massey. A proposal for a new block encryption standard.
In Workshop on the Theory and Application of of Cryptographic Techniques, pages
389–404. Springer, 1990.

[51] Xuejia Lai, James L Massey, and Sean Murphy. Markov ciphers and differential
cryptanalysis. In Workshop on the Theory and Application of of Cryptographic
Techniques, pages 17–38. Springer, 1991.

https://eprint.iacr.org/2019/1107

Bibliography 69

[52] Susan K Langford and Martin E Hellman. Differential-linear cryptanalysis. In Annual
International Cryptology Conference, pages 17–25. Springer, 1994.

[53] V. K. Leont’ev. Roots of random polynomials over a finite field. Mathematical Notes,
80(1):300–304, Jul 2006.

[54] Chaoyun Li and Bart Preneel. Improved Interpolation Attacks on Cryptographic
Primitives of Low Algebraic Degree. Cryptology ePrint Archive, Report 2019/812,
2019. https://eprint.iacr.org/2019/812.

[55] Arnab Roy Lorenzo Grassi, Christian Rechberger. Gmimcs new key schedule. personal
communication, 8 2019.

[56] Michael Luby and Charles Rackoff. How to construct pseudorandom permutations
from pseudorandom functions. SIAM Journal on Computing, 17(2):373–386, 1988.

[57] Yiyuan Luo, Xuejia Lai, and Zheng Gong. Pseudorandomness analysis of the (extended)
lai–massey scheme. Information processing letters, 111(2):90–96, 2010.

[58] Mitsuru Matsui. Linear cryptanalysis method for des cipher. In Workshop on the
Theory and Application of of Cryptographic Techniques, pages 386–397. Springer, 1993.

[59] Mitsuru Matsui. The first experimental cryptanalysis of the data encryption standard.
In Annual International Cryptology Conference, pages 1–11. Springer, 1994.

[60] E Hastings Moore. A doubly-infinite system of simple groups. Bulletin of the American
Mathematical Society, 3(3):73–78, 1893.

[61] Kaisa Nyberg. Linear approximation of block ciphers. In Workshop on the Theory
and Application of of Cryptographic Techniques, pages 439–444. Springer, 1994.

[62] Kaisa Nyberg. Generalized feistel networks. In International conference on the theory
and application of cryptology and information security, pages 91–104. Springer, 1996.

[63] Kaisa Nyberg and Lars Ramkilde Knudsen. Provable security against a differential
attack. Journal of Cryptology, 8(1):27–37, 1995.

[64] Jacques Patarin. Security of random feistel schemes with 5 or more rounds. In Annual
International Cryptology Conference, pages 106–122. Springer, 2004.

[65] Benny Pinkas, Thomas Schneider, Nigel P Smart, and Stephen C Williams. Secure
two-party computation is practical. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 250–267. Springer, 2009.

[66] Bart Preneel. Correcting-Block Attack, pages 259–260. Springer US, Boston, MA,
2011.

[67] Ronald Rivest. The md5 message-digest algorithm. 1992.

[68] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function basics: Defini-
tions, implications, and separations for preimage resistance, second-preimage resistance,
and collision resistance. In International Workshop on Fast Software Encryption, pages
371–388. Springer, 2004.

https://eprint.iacr.org/2019/812

70 Bibliography

[69] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from
bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages 459–474. IEEE,
2014.

[70] Bruce Schneier and John Kelsey. Unbalanced feistel networks and block cipher design.
In International Workshop on Fast Software Encryption, pages 121–144. Springer,
1996.

[71] Nigel P Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively
small key and ciphertext sizes. In International Workshop on Public Key Cryptography,
pages 420–443. Springer, 2010.

[72] Starkware. STARK-Friendly Hash Challenge. Website, 8 2019. https://starkware.co/
hash-challenge/.

[73] Marc Stevens, Arjen K Lenstra, and Benne De Weger. Chosen-prefix collisions for md5
and applications. International Journal of Applied Cryptography, 2(ARTICLE):322–
359, 2012.

[74] Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen Lenstra, David Molnar,
Dag Arne Osvik, and Benne De Weger. Short chosen-prefix collisions for md5 and
the creation of a rogue ca certificate. In Annual International Cryptology Conference,
pages 55–69. Springer, 2009.

[75] H.-J. Stoss. The complexity of evaluating interpolation polynomials. Theoretical
Computer Science, 41:319–323, 1985.

[76] The Sage Developers. SageMath, the Sage Mathematics Software System (Version
8.9), 2019. https://www.sagemath.org.

[77] Serge Vaudenay. On the lai-massey scheme. In International Conference on the Theory
and Application of Cryptology and Information Security, pages 8–19. Springer, 1999.

[78] Joachim Von Zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge
university press, 2013.

[79] David Wagner. The boomerang attack. In International Workshop on Fast Software
Encryption, pages 156–170. Springer, 1999.

[80] Andrew C Yao. Protocols for secure computations. In 23rd annual symposium on
foundations of computer science (sfcs 1982), pages 160–164. IEEE, 1982.

[81] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual
Symposium on Foundations of Computer Science (sfcs 1986), pages 162–167. IEEE,
1986.

https://starkware.co/hash-challenge/
https://starkware.co/hash-challenge/

	Contents
	Glossary
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Outline and Contributions

	2 Preliminaries
	2.1 Mathematical Background
	2.2 Block Ciphers
	2.2.1 Unbalanced Generalized Feistel Networks
	2.2.2 Attack Vectors

	2.3 Hash Functions
	2.3.1 The Sponge Construction

	2.4 Block Ciphers and Hash Functions in Secure Computation
	2.4.1 MPC, FHE, and ZK
	2.4.2 Arithmetization Oriented Symmetric Primitives

	2.5 Polynomial Interpolation

	3 Low Memory Interpolation Cryptanalysis of UFNs
	3.1 Analysis of Output Polynomials
	3.1.1 Expanding Round Function Analysis
	3.1.2 Contracting Round Function Analysis

	3.2 Attack Outline
	3.3 Cryptanalysis of UFN-ERF
	3.3.1 Key Recovery with Single Round Key
	3.3.2 Key Recovery with Multiple Round Keys
	3.3.3 Complexity Improvements via Branch Subtraction
	3.3.4 Summary of Complexities
	3.3.5 Experimental Verification

	3.4 Cryptanalysis of UFN-CRF
	3.5 Application of the Analysis to GMiMC
	3.6 Correcting Block Attacks against UFN-Based Sponges
	3.6.1 Attack Setup
	3.6.2 Experimental Verification

	4 Conclusion
	A Code
	A.1 Unbalanced Feistel Networks
	A.2 Key Recovery of UFNs
	A.3 Collisions and Second Preimages for Sponges

	Bibliography

