326 research outputs found

    FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors

    Full text link
    Face Super-Resolution (SR) is a domain-specific super-resolution problem. The specific facial prior knowledge could be leveraged for better super-resolving face images. We present a novel deep end-to-end trainable Face Super-Resolution Network (FSRNet), which makes full use of the geometry prior, i.e., facial landmark heatmaps and parsing maps, to super-resolve very low-resolution (LR) face images without well-aligned requirement. Specifically, we first construct a coarse SR network to recover a coarse high-resolution (HR) image. Then, the coarse HR image is sent to two branches: a fine SR encoder and a prior information estimation network, which extracts the image features, and estimates landmark heatmaps/parsing maps respectively. Both image features and prior information are sent to a fine SR decoder to recover the HR image. To further generate realistic faces, we propose the Face Super-Resolution Generative Adversarial Network (FSRGAN) to incorporate the adversarial loss into FSRNet. Moreover, we introduce two related tasks, face alignment and parsing, as the new evaluation metrics for face SR, which address the inconsistency of classic metrics w.r.t. visual perception. Extensive benchmark experiments show that FSRNet and FSRGAN significantly outperforms state of the arts for very LR face SR, both quantitatively and qualitatively. Code will be made available upon publication.Comment: Chen and Tai contributed equally to this pape

    The Menpo benchmark for multi-pose 2D and 3D facial landmark localisation and tracking

    Get PDF
    In this article, we present the Menpo 2D and Menpo 3D benchmarks, two new datasets for multi-pose 2D and 3D facial landmark localisation and tracking. In contrast to the previous benchmarks such as 300W and 300VW, the proposed benchmarks contain facial images in both semi-frontal and profile pose. We introduce an elaborate semi-automatic methodology for providing high-quality annotations for both the Menpo 2D and Menpo 3D benchmarks. In Menpo 2D benchmark, different visible landmark configurations are designed for semi-frontal and profile faces, thus making the 2D face alignment full-pose. In Menpo 3D benchmark, a united landmark configuration is designed for both semi-frontal and profile faces based on the correspondence with a 3D face model, thus making face alignment not only full-pose but also corresponding to the real-world 3D space. Based on the considerable number of annotated images, we organised Menpo 2D Challenge and Menpo 3D Challenge for face alignment under large pose variations in conjunction with CVPR 2017 and ICCV 2017, respectively. The results of these challenges demonstrate that recent deep learning architectures, when trained with the abundant data, lead to excellent results. We also provide a very simple, yet effective solution, named Cascade Multi-view Hourglass Model, to 2D and 3D face alignment. In our method, we take advantage of all 2D and 3D facial landmark annotations in a joint way. We not only capitalise on the correspondences between the semi-frontal and profile 2D facial landmarks but also employ joint supervision from both 2D and 3D facial landmarks. Finally, we discuss future directions on the topic of face alignment

    The Menpo benchmark for multi-pose 2D and 3D facial landmark localisation and tracking

    Get PDF
    In this article, we present the Menpo 2D and Menpo 3D benchmarks, two new datasets for multi-pose 2D and 3D facial landmark localisation and tracking. In contrast to the previous benchmarks such as 300W and 300VW, the proposed benchmarks contain facial images in both semi-frontal and profile pose. We introduce an elaborate semi-automatic methodology for providing high-quality annotations for both the Menpo 2D and Menpo 3D benchmarks. In Menpo 2D benchmark, different visible landmark configurations are designed for semi-frontal and profile faces, thus making the 2D face alignment full-pose. In Menpo 3D benchmark, a united landmark configuration is designed for both semi-frontal and profile faces based on the correspondence with a 3D face model, thus making face alignment not only full-pose but also corresponding to the real-world 3D space. Based on the considerable number of annotated images, we organised Menpo 2D Challenge and Menpo 3D Challenge for face alignment under large pose variations in conjunction with CVPR 2017 and ICCV 2017, respectively. The results of these challenges demonstrate that recent deep learning architectures, when trained with the abundant data, lead to excellent results. We also provide a very simple, yet effective solution, named Cascade Multi-view Hourglass Model, to 2D and 3D face alignment. In our method, we take advantage of all 2D and 3D facial landmark annotations in a joint way. We not only capitalise on the correspondences between the semi-frontal and profile 2D facial landmarks but also employ joint supervision from both 2D and 3D facial landmarks. Finally, we discuss future directions on the topic of face alignment
    • …
    corecore