3,422 research outputs found

    Conservative self-force correction to the innermost stable circular orbit: comparison with multiple post-Newtonian-based methods

    Get PDF
    [abridged] Barack & Sago have recently computed the shift of the innermost stable circular orbit (ISCO) due to the conservative self-force that arises from the finite-mass of an orbiting test-particle. This is one of the first concrete results of the self-force program, and provides an exact point of comparison with approximate post-Newtonian (PN) computations of the ISCO. Here this exact ISCO shift is compared with nearly all known PN-based methods. These include both "nonresummed" and "resummed" approaches (the latter reproduce the test-particle limit by construction). The best agreement with the exact result is found from effective-one-body (EOB) calculations that are fit to numerical relativity simulations. However, if one considers uncalibrated methods based only on the currently known 3PN-order conservative dynamics, the best agreement is found from the gauge-invariant ISCO condition of Blanchet and Iyer (2003). This method reproduces the exact test-particle limit without any resummation. A comparison of PN methods with the equal-mass ISCO is also performed. The results of this study suggest that the EOB approach---while exactly incorporating the conservative test-particle dynamics---does not (in the absence of calibration) incorporate conservative self-force effects more accurately than standard PN methods. I also consider how the conservative self-force ISCO shift, combined with numerical relativity computations of the ISCO, can be used to constrain our knowledge of (1) the EOB effective metric, (2) phenomenological inspiral-merger-ringdown templates, and (3) 4PN and 5PN order terms in the PN orbital energy. These constraints could help in constructing better gravitational-wave templates. Lastly, I suggest a new method to calibrate unknown PN-terms in inspiral templates using numerical-relativity calculations.Comment: 27 pages, 2 figures, 2 tables. v2: some changes to Sec. VI in response to referee comments; references added; other minor changes to match published versio

    Innermost circular orbit of binary black holes at the third post-Newtonian approximation

    Full text link
    The equations of motion of two point masses have recently been derived at the 3PN approximation of general relativity. From that work we determine the location of the innermost circular orbit or ICO, defined by the minimum of the binary's 3PN energy as a function of the orbital frequency for circular orbits. We find that the post-Newtonian series converges well for equal masses. Spin effects appropriate to corotational black-hole binaries are included. We compare the result with a recent numerical calculation of the ICO in the case of two black holes moving on exactly circular orbits (helical symmetry). The agreement is remarkably good, indicating that the 3PN approximation is adequate to locate the ICO of two black holes with comparable masses. This conclusion is reached with the post-Newtonian expansion expressed in the standard Taylor form, without using resummation techniques such as Pad\'e approximants and/or effective-one-body methods.Comment: 21 pages, to appear in Phys. Rev. D (spin effects appropriate to corotational black-hole binaries are included; discussion on the validity of the approximation is added

    Quench dynamics of the Ising field theory in a magnetic field

    Full text link
    We numerically simulate the time evolution of the Ising field theory after quenches starting from the E8E_8 integrable model using the Truncated Conformal Space Approach. The results are compared with two different analytic predictions based on form factor expansions in the pre-quench and post-quench basis, respectively. Our results clarify the domain of validity of these expansions and suggest directions for further improvement. We show for quenches in the E8E_8 model that the initial state is not of the integrable pair state form. We also construct quench overlap functions and show that their high-energy asymptotics are markedly different from those constructed before in the sinh/sine-Gordon theory, and argue that this is related to properties of the ultraviolet fixed point

    A Monte-Carlo study of the AdS/CFT correspondence: an exploration of quantum gravity effects

    Get PDF
    In this paper we study the AdS/CFT correspondence for N=4 SYM with gauge group U(N), compactified on S^3 in four dimensions using Monte-Carlo techniques. The simulation is based on a particular reduction of degrees of freedom to commuting matrices of constant fields, and in particular, we can write the wave functions of these degrees of freedom exactly. The square of the wave function is equivalent to a probability density for a Boltzman gas of interacting particles in six dimensions. From the simulation we can extract the density particle distribution for each wave function, and this distribution can be interpreted as a special geometric locus in the gravitational dual. Studying the wave functions associated to half-BPS giant gravitons, we are able to show that the matrix model can measure the Planck scale directly. We also show that the output of our simulation seems to match various theoretical expectations in the large N limit and that it captures 1/N effects as statistical fluctuations of the Boltzman gas with the expected scaling. Our results suggest that this is a very promising approach to explore quantum corrections and effects in gravitational physics on AdS spaces.Comment: 40 pages, 7 figures, uses JHEP. v2: references adde
    corecore