11 research outputs found

    Improved guarantees for vertex sparsification in planar graphs

    Get PDF

    Improved guarantees for Vertex Sparsification in planar graphs

    Get PDF
    Graph Sparsification aims at compressing large graphs into smaller ones while (approximately) preserving important characteristics of the input graph. In this work we study Vertex Sparsifiers, i.e., sparsifiers whose goal is to reduce the number of vertices. Given a weighted graph G=(V,E), and a terminal set K with |K|=k, a quality-q vertex cut sparsifier of G is a graph H with K contained in V_H that preserves the value of minimum cuts separating any bipartition of K, up to a factor of q. We show that planar graphs with all the k terminals lying on the same face admit quality-1 vertex cut sparsifier of size O(k^2) that are also planar. Our result extends to vertex flow and distance sparsifiers. It improves the previous best known bound of O(k^2 2^(2k)) for cut and flow sparsifiers by an exponential factor, and matches an Omega(k^2) lower-bound for this class of graphs. We also study vertex reachability sparsifiers for directed graphs. Given a digraph G=(V,E) and a terminal set K, a vertex reachability sparsifier of G is a digraph H=(V_H,E_H), K contained in V_H that preserves all reachability information among terminal pairs. We introduce the notion of reachability-preserving minors, i.e., we require H to be a minor of G. Among others, for general planar digraphs, we construct reachability-preserving minors of size O(k^2 log^2 k). We complement our upper-bound by showing that there exists an infinite family of acyclic planar digraphs such that any reachability-preserving minor must have Omega(k^2) vertices

    Steiner Point Removal with Distortion O(logk)O(\log k)

    Full text link
    In the Steiner point removal (SPR) problem, we are given a weighted graph G=(V,E)G=(V,E) and a set of terminals KVK\subset V of size kk. The objective is to find a minor MM of GG with only the terminals as its vertex set, such that the distance between the terminals will be preserved up to a small multiplicative distortion. Kamma, Krauthgamer and Nguyen [KKN15] used a ball-growing algorithm with exponential distributions to show that the distortion is at most O(log5k)O(\log^5 k). Cheung [Che17] improved the analysis of the same algorithm, bounding the distortion by O(log2k)O(\log^2 k). We improve the analysis of this ball-growing algorithm even further, bounding the distortion by O(logk)O(\log k)

    A regularization perspective on spectral sparsification

    Full text link
    In this thesis, we study how to obtain faster algorithms for spectral graph sparsifi-cation by applying continuous optimization techniques. Spectral sparsification is thetask of reducing the number of edges in a graph while maintaining a spectral ap-proximation to the original graph. Our key conceptual contribution is the connectionbetween spectral sparsification and regret minimization in online matrix games, i.e.,online convex programming over the positive semidefinite cone. While this connec-tion was previously noted [24, 47], we formally reduce graph sparsification to a matrixregret minimization problem, which we solve by applying mirror descent with a non-entropic regularizer. In this way, we not only obtain a new proof of the existenceof linear-sized spectral sparsifiers, originally given by [19], but improve the runningtime from Ω(n4)([19, 54]) to almost quadratic. More generally, our framework canalso be applied for the matrix multi-armed bandit online learning problem to reducethe regret bound to the optimalO(√nT), compared to theO(√nTlog(n) given bythe traditional matrix-entropy regulari

    Network Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs

    Full text link
    We propose polynomial-time algorithms that sparsify planar and bounded-genus graphs while preserving optimal or near-optimal solutions to Steiner problems. Our main contribution is a polynomial-time algorithm that, given an unweighted graph GG embedded on a surface of genus gg and a designated face ff bounded by a simple cycle of length kk, uncovers a set FE(G)F \subseteq E(G) of size polynomial in gg and kk that contains an optimal Steiner tree for any set of terminals that is a subset of the vertices of ff. We apply this general theorem to prove that: * given an unweighted graph GG embedded on a surface of genus gg and a terminal set SV(G)S \subseteq V(G), one can in polynomial time find a set FE(G)F \subseteq E(G) that contains an optimal Steiner tree TT for SS and that has size polynomial in gg and E(T)|E(T)|; * an analogous result holds for an optimal Steiner forest for a set SS of terminal pairs; * given an unweighted planar graph GG and a terminal set SV(G)S \subseteq V(G), one can in polynomial time find a set FE(G)F \subseteq E(G) that contains an optimal (edge) multiway cut CC separating SS and that has size polynomial in C|C|. In the language of parameterized complexity, these results imply the first polynomial kernels for Steiner Tree and Steiner Forest on planar and bounded-genus graphs (parameterized by the size of the tree and forest, respectively) and for (Edge) Multiway Cut on planar graphs (parameterized by the size of the cutset). Additionally, we obtain a weighted variant of our main contribution
    corecore