8 research outputs found

    Improved FPT algorithms for weighted independent set in bull-free graphs

    Full text link
    Very recently, Thomass\'e, Trotignon and Vuskovic [WG 2014] have given an FPT algorithm for Weighted Independent Set in bull-free graphs parameterized by the weight of the solution, running in time 2O(k5)⋅n92^{O(k^5)} \cdot n^9. In this article we improve this running time to 2O(k2)⋅n72^{O(k^2)} \cdot n^7. As a byproduct, we also improve the previous Turing-kernel for this problem from O(k5)O(k^5) to O(k2)O(k^2). Furthermore, for the subclass of bull-free graphs without holes of length at most 2p−12p-1 for p≥3p \geq 3, we speed up the running time to 2O(k⋅k1p−1)⋅n72^{O(k \cdot k^{\frac{1}{p-1}})} \cdot n^7. As pp grows, this running time is asymptotically tight in terms of kk, since we prove that for each integer p≥3p \geq 3, Weighted Independent Set cannot be solved in time 2o(k)⋅nO(1)2^{o(k)} \cdot n^{O(1)} in the class of {bull,C4,…,C2p−1}\{bull,C_4,\ldots,C_{2p-1}\}-free graphs unless the ETH fails.Comment: 15 page

    A polynomial Turing-kernel for weighted independent set in bull-free graphs

    Get PDF
    The maximum stable set problem is NP-hard, even when restricted to triangle-free graphs. In particular, one cannot expect a polynomial time algorithm deciding if a bull-free graph has a stable set of size k, when k is part of the instance. Our main result in this paper is to show the existence of an FPT algorithm when we parameterize the problem by the solution size k. A polynomial kernel is unlikely to exist for this problem. We show however that our problem has a polynomial size Turingkernel. More precisely, the hard cases are instances of size O(k5). As a byproduct, if we forbid odd holes in addition to the bull, we show the existence of a polynomial time algorithm for the stable set problem. We also prove that the chromatic number of a bull-free graph is bounded by a function of its clique number and the maximum chromatic number of its triangle-free induced subgraphs. All our results rely on a decomposition theorem for bull-free graphs due to Chudnovsky which is modified here, allowing us to provide extreme decompositions, adapted to our computational purpose
    corecore