375 research outputs found

    Surface radiation budget for climate applications

    Get PDF
    The Surface Radiation Budget (SRB) consists of the upwelling and downwelling radiation fluxes at the surface, separately determined for the broadband shortwave (SW) (0 to 5 micron) and longwave (LW) (greater than 5 microns) spectral regions plus certain key parameters that control these fluxes, specifically, SW albedo, LW emissivity, and surface temperature. The uses and requirements for SRB data, critical assessment of current capabilities for producing these data, and directions for future research are presented

    Prediction of the diurnal cycle using a multimodel superensemble. Part II: Clouds

    Get PDF
    This study addresses the issue of cloud parameterization in general circulation models utilizing a twofold approach. Four versions of the Florida State University (FSU) global spectral model (GSM) were used, including four different cloud parameterization schemes in order to construct ensemble forecasts of cloud covers. Next, a superensemble approach was used to combine these model forecasts based on their past performance. It was shown that it is possible to substantially reduce the 1-5-day forecast errors of phase and amplitude of the diurnal cycle of clouds from the use of a multimodel superensemble. Further, the statistical information generated in the construction of a superensemble was used to develop a unified cloud parameterization scheme for a single model. This new cloud scheme, when implemented in the FSU GSM, carried a higher forecast accuracy compared to those of the individual cloud schemes and their ensemble mean for the diurnal cycle of cloud cover up to day 5 of the forecasts. This results in a 5-10 W m-2 improvement in the root-mean-square error to the upward longwave and shortwave flux at the top of the atmosphere, especially over deep convective regions. It is shown that while the multimodel superensemble is still the best product in forecasting the diurnal cycle of clouds, a unified cloud parameterization scheme, implemented in a single model, also provides higher forecast accuracy compared to the individual cloud models. Moreover, since this unified scheme is an integral part of the model, the forecast accuracy of the single model improves in terms of radiative fluxes and thus has greater impacts on weather and climate time scales. This new cloud scheme will be tested in real-time simulations

    Remote sensing technique- a tool for environmental studies

    Get PDF
    Environment belongs to all and is important to all. As per definition of the Environment Protection Act, environment includes all the physical and biological surroundings and their interactions. The study of environment or rather environmental studies is a multi-disciplinary which needs knowledge interest from physical sciences (physics, chemistry, mathematics), biological sciences (botany, zoology, microbiology, biochemistry), social sciences, economics, sociology, education, geography) etc

    Clouds and the Earth's Radiant Energy System (CERES) algorithm theoretical basis document

    Get PDF
    The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and the Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 1 provides both summarized and detailed overviews of the CERES Release 1 data analysis system. CERES will produce global top-of-the-atmosphere shortwave and longwave radiative fluxes at the top of the atmosphere, at the surface, and within the atmosphere by using the combination of a large variety of measurements and models. The CERES processing system includes radiance observations from CERES scanning radiometers, cloud properties derived from coincident satellite imaging radiometers, temperature and humidity fields from meteorological analysis models, and high-temporal-resolution geostationary satellite radiances to account for unobserved times. CERES will provide a continuation of the ERBE record and the lowest error climatology of consistent cloud properties and radiation fields. CERES will also substantially improve our knowledge of the Earth's surface radiation budget

    Space-Based Remote Sensing of the Earth: A Report to the Congress

    Get PDF
    The commercialization of the LANDSAT Satellites, remote sensing research and development as applied to the Earth and its atmosphere as studied by NASA and NOAA is presented. Major gaps in the knowledge of the Earth and its atmosphere are identified and a series of space based measurement objectives are derived. The near-term space observations programs of the United States and other countries are detailed. The start is presented of the planning process to develop an integrated national program for research and development in Earth remote sensing for the remainder of this century and the many existing and proposed satellite and sensor systems that the program may include are described

    Earth resources: A continuing bibliography with indexes (issue 51)

    Get PDF
    This bibliography lists 382 reports, articles and other documents introduced into the NASA scientific and technical information system between July 1 and September 30, 1986. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Assimilation for Skin SST in the NASA GEOS Atmospheric Data Assimilation System

    Get PDF
    The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modelling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near-surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extend beyond the thermal infrared bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld insitu buoy measurement of near-surface SST. Evaluation of forecast skill scores show neutral to marginal benefit from the modified Ts

    Monitoring soil moisture dynamics and energy fluxes using geostationary satellite data

    Get PDF
    corecore