689 research outputs found

    Modeling and enhanced control of hybrid full bridge–half bridge MMCs for HVDC grid studies

    Get PDF
    Modular multilevel converters (MMCs) are expected to play an important role in future high voltage direct current (HVDC) grids. Moreover, advanced MMC topologies may include various submodule (SM) types. In this sense, the modeling of MMCs is paramount for HVDC grid studies. Detailed models of MMCs are cumbersome for electromagnetic transient (EMT) programs due to the high number of components and large simulation times. For this reason, simplified models that reduce the computation times while reproducing the dynamics of the MMCs are needed. However, up to now, the models already developed do not consider hybrid MMCs, which consist of different types of SMs. In this paper, a procedure to simulate MMCs having different SM topologies is proposed. First, the structure of hybrid MMCs and the modeling method is presented. Next, an enhanced procedure to compute the number of SMs to be inserted that takes into account the different behavior of full-bridge SMs (FB-SMs) and half-bridge submodules (HB-SMs) is proposed in order to improve the steady-state and dynamic response of hybrid MMCs. Finally, the MMC model and its control are validated by means of detailed PSCAD simulations for both steady-state and transients conditions (AC and DC faults)

    Evaluation of reliability modeling tools for advanced fault tolerant systems

    Get PDF
    The Computer Aided Reliability Estimation (CARE III) and Automated Reliability Interactice Estimation System (ARIES 82) reliability tools for application to advanced fault tolerance aerospace systems were evaluated. To determine reliability modeling requirements, the evaluation focused on the Draper Laboratories' Advanced Information Processing System (AIPS) architecture as an example architecture for fault tolerance aerospace systems. Advantages and limitations were identified for each reliability evaluation tool. The CARE III program was designed primarily for analyzing ultrareliable flight control systems. The ARIES 82 program's primary use was to support university research and teaching. Both CARE III and ARIES 82 were not suited for determining the reliability of complex nodal networks of the type used to interconnect processing sites in the AIPS architecture. It was concluded that ARIES was not suitable for modeling advanced fault tolerant systems. It was further concluded that subject to some limitations (the difficulty in modeling systems with unpowered spare modules, systems where equipment maintenance must be considered, systems where failure depends on the sequence in which faults occurred, and systems where multiple faults greater than a double near coincident faults must be considered), CARE III is best suited for evaluating the reliability of advanced tolerant systems for air transport

    Advanced flight control system study

    Get PDF
    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed

    Slip on ridge transform faults : insights from earthquakes and laboratory experiments

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June, 2005The relatively simple tectonic environment of mid-ocean ridge transform fault (RTF) seismicity provides a unique opportunity for investigation of earthquake and faulting processes. We develop a scaling model that is complete in that all the seismic parameters are related to the RTF tectonic parameters. Laboratory work on the frictional stability of olivine aggregates shows that the depth extent of oceanic faulting is thermally controlled and limited by the 600°C isotherm. Slip on RTFs is primarily aseismic, only 15% of the tectonic offset is accommodated by earthquakes. Despite extensive fault areas, few large earthquakes occur on RTFs, and few aftershocks follow the large events. Standard models of seismicity, in which all earthquakes result from the same seismic triggering process, do not describe RTF earthquakes. Instead, large earthquakes appear to be preceded by an extended fault preparation process marked by abundant foreshocks within 1 hour and 15 km of the mainshocks. In our experiments normal force vibrations, such as seismic radiation from nearby earthquakes, can weaken and potentially destabilize steadily creeping faults. Integrating the rheology, geology, and seismicity of RTFs, we develop a synoptic model to better understand the spatial distribution of fault strength and stability and provide insight into slip accommodation on RTFs.Funding from the Deep Ocean Earth Institute Fellowship, MIT Presidential Fellowship, NSF Fellowship, and WHOI Academic Programs Office

    Improved modeling of segmented earthquake rupture informed by enhanced signal analysis of seismic and geodetic observations

    Get PDF
    Earthquake source modeling has emerged from the need to be able to describe and quantifythe mechanism and physical properties of earthquakes. Investigations of earthquake ruptureand fault geometry requires the testing of a large number of such potential sets of earthquakesources models. Earthquakes often rupture across more than one fault segment. If such rupturesegmentation occurs on a significant scale, a simple model may not represent the rupture processwell. This thesis focuses on the data-driven inclusion of earthquake rupture segmentation intoearthquake source modeling. The developed tools and the modeling are based on the jointuse of seismological waveform far-field and geodetic Interferometric Synthetic Aperture Radarnear-field surface displacement maps to characterise earthquake sources robustly with rigorousconsideration of data and modeling errors.A strategy based on information theory is developed to determine the appropriate modelcomplexity to represent the available observations in a data-driven way. This is done inconsideration of the uncertainties in the determined source mechanisms by investigating theinferences of the full Bayesian model ensemble. Application on the datasets of four earthquakesindicated that the inferred source parameters are systematically biased by the choice of modelcomplexity. This might have effects on follow-up analyses, e. g. regional stress field inversionsand seismic hazard assessments.Further, two methods were developed to provide data-driven model-independent constraints toinform a kinematic earthquake source optimization about earthquake source parameter priorestimates. The first method is a time-domain multi-array backprojection of teleseismic datawith empirical traveltime corrections to infer the spatio-temporal evolution of the rupture. Thisenables detection of potential rupture segmentation based on the occurrence of coherent high-frequency sources during the rupture process. The second developed method uses image analysismethods on satellite radar measured surface displacement maps to infer modeling constraints onrupture characteristics (e.g. strike and length) and the number of potential segments. These twomethods provide model-independent constraints on fault location, dimension, orientation andrupture timing. The inferred source parameter constraints are used to constrain an inversion forthe source mechanism of the 2016 Muji Mw 6.6 earthquake, a segmented and bilateral strike-slipearthquake.As a case study to further investigate a depth-segmented fault system and occurrence of co-seismic rupture segmentation in such a system the 2008-2009 Qaidam sequence with co-seismicand post-seismic displacements is investigated. The Qaidam 2008-2009 earthquake sequence innortheast Tibet involved two reverse-thrust earthquakes and a postseismic signal of the 2008earthquake. The 2008 Qaidam earthquake is modeled as a deep shallow dipping earthquakewith no indication of rupture segmentation. The 2009 Qaidam earthquake is modeled on threedistinct south-dipping high-angle thrusts, with a bilateral and segmented rupture process. Agood agreement between co-seismic surface displacement measurements and coherent seismicenergy emission in the backprojection results is determined.Finally, a combined framework is proposed which applies all the developed methods and tools inan informed parallel modeling of several earthquake source model complexities. This frameworkallows for improved routine determination of earthquake source modeling under considerationof rupture segmentation. This thesis provides overall an improvement for earthquake sourceanalyses and the development of modeling standards for robust determination of second-orderearthquake source parameters

    A study of the usefulness of Skylab EREP data for earth resources studies in Australia

    Get PDF
    The author has identified the following significant results. In subhumid, vegetated areas, S190B photography: (1) has a potentially operational role in detecting lineaments in 1:100,000 scale geological mapping and in major civil engineering surveys; (2) is of limited value for regional lithological mapping at 1:500,000 scale; and (3) provided much useful synoptic information and some detailed information of direct value to the mapping of nonmineral natural resources such as vegetation, land soil, and water. In arid, well exposed areas, S190B photography could be used: (1) with a limited amount of field traverses, to produce reliable 1:500,000 scale geological maps of sedimentary sequences; (2) to update superficial geology on 1:250,000 scale maps; and (3) together with the necessary field studies, to prepare landform, soil, and vegetation maps at 1:1,000,000 scale. Skylab photography was found to be more useful than LANDSAT images for small scale mapping of geology and land types, and for the revision of topographic maps at 1:100,000 scale, because of superior spatial resolution and stereoscopic coverage

    Space Station Freedom automation and robotics: An assessment of the potential for increased productivity

    Get PDF
    This report presents the results of a study performed in support of the Space Station Freedom Advanced Development Program, under the sponsorship of the Space Station Engineering (Code MT), Office of Space Flight. The study consisted of the collection, compilation, and analysis of lessons learned, crew time requirements, and other factors influencing the application of advanced automation and robotics, with emphasis on potential improvements in productivity. The lessons learned data collected were based primarily on Skylab, Spacelab, and other Space Shuttle experiences, consisting principally of interviews with current and former crew members and other NASA personnel with relevant experience. The objectives of this report are to present a summary of this data and its analysis, and to present conclusions regarding promising areas for the application of advanced automation and robotics technology to the Space Station Freedom and the potential benefits in terms of increased productivity. In this study, primary emphasis was placed on advanced automation technology because of its fairly extensive utilization within private industry including the aerospace sector. In contrast, other than the Remote Manipulator System (RMS), there has been relatively limited experience with advanced robotics technology applicable to the Space Station. This report should be used as a guide and is not intended to be used as a substitute for official Astronaut Office crew positions on specific issues
    • …
    corecore