3 research outputs found

    Automated machine learning driven stacked ensemble modelling for forest aboveground biomass prediction using multitemporal sentinel-2 data

    Get PDF
    Modelling and large-scale mapping of forest aboveground biomass (AGB) is a complicated, challenging and expensive task. There are considerable variations in forest characteristics that creates functional disparity for different models and needs comprehensive evaluation. Moreover, the human-bias involved in the process of modelling and evaluation affects the generalization of models at larger scales. In this paper, we present an automated machine learning (AutoML) framework for modelling, evaluation and stacking of multiple base models for AGB prediction. We incorporate a hyperparameter optimization procedure for automatic extraction of targeted features from multitemporal Sentinel-2 data that minimizes human-bias in the proposed modelling pipeline. We integrate the two independent frameworks for automatic feature extraction and automatic model ensembling and evaluation. The results suggest that the extracted target-oriented features have excessive contribution of red-edge and short-wave infrared spectrum. The feature importance scale indicates a dominant role of summer based features as compared to other seasons. The automated ensembling and evaluation framework produced a stacked ensemble of base models that outperformed individual base models in accurately predicting forest AGB. The stacked ensemble model delivered the best scores of R2 cv = 0.71 and RMSE = 74.44 Mgha-1 . The other base models delivered R2 cv and RMSE ranging between 0.38–0.66 and 81.27– 109.44 Mg ha-1 respectively. The model evaluation metrics indicated that the stacked ensemble model was more resistant to outliers and achieved a better generalization. Thus, the proposed study demonstrated an effective automated modelling pipeline for predicting AGB by minimizing human-bias and deployable over large and diverse forest area

    AutoML for Log File Analysis (ALFA) in a Production Line System of Systems pointed towards Predictive Maintenance

    Get PDF
    Automated machine learning and predictive maintenance have both become prominent terms in recent years. Combining these two fields of research by conducting log analysis using automated machine learning techniques to fuel predictive maintenance algorithms holds multiple advantages, especially when applied in a production line setting. This approach can be used for multiple applications in the industry, e.g., in semiconductor, automotive, metal, and many other industrial applications to improve the maintenance and production costs and quality. In this paper, we investigate the possibility to create a predictive maintenance framework using only easily available log data based on a neural network framework for predictive maintenance tasks. We outline the advantages of the ALFA (AutoML for Log File Analysis) approach, which are high efficiency in combination with a low entry border for novices, among others. In a production line setting, one would also be able to cope with concept drift and even with data of a new quality in a gradual manner. In the presented production line context, we also show the superior performance of multiple neural networks over a comprehensive neural network in practice. The proposed software architecture allows not only for the automated adaption to concept drift and even data of new quality but also gives access to the current performance of the used neural networks
    corecore