77,959 research outputs found

    MARACAS: a real-time multicore VCPU scheduling framework

    Full text link
    This paper describes a multicore scheduling and load-balancing framework called MARACAS, to address shared cache and memory bus contention. It builds upon prior work centered around the concept of virtual CPU (VCPU) scheduling. Threads are associated with VCPUs that have periodically replenished time budgets. VCPUs are guaranteed to receive their periodic budgets even if they are migrated between cores. A load balancing algorithm ensures VCPUs are mapped to cores to fairly distribute surplus CPU cycles, after ensuring VCPU timing guarantees. MARACAS uses surplus cycles to throttle the execution of threads running on specific cores when memory contention exceeds a certain threshold. This enables threads on other cores to make better progress without interference from co-runners. Our scheduling framework features a novel memory-aware scheduling approach that uses performance counters to derive an average memory request latency. We show that latency-based memory throttling is more effective than rate-based memory access control in reducing bus contention. MARACAS also supports cache-aware scheduling and migration using page recoloring to improve performance isolation amongst VCPUs. Experiments show how MARACAS reduces multicore resource contention, leading to improved task progress.http://www.cs.bu.edu/fac/richwest/papers/rtss_2016.pdfAccepted manuscrip

    Hierarchical Scheduling for Real-Time Periodic Tasks in Symmetric Multiprocessing

    Get PDF
    In this paper, we present a new hierarchical scheduling framework for periodic tasks in symmetric multiprocessor (SMP) platforms. Partitioned and global scheduling are the two main approaches used by SMP based systems where global scheduling is recommended for overall performance and partitioned scheduling is recommended for hard real-time performance. Our approach combines both the global and partitioned approaches of traditional SMP-based schedulers to provide hard real-time performance guarantees for critical tasks and improved response times for soft real-time tasks. Implemented as part of VxWorks, the results are confirmed using a real-time benchmark application, where response times were improved for soft real-time tasks while still providing hard real-time performance

    A Survey of Research into Mixed Criticality Systems

    Get PDF
    This survey covers research into mixed criticality systems that has been published since Vestal’s seminal paper in 2007, up until the end of 2016. The survey is organised along the lines of the major research areas within this topic. These include single processor analysis (including fixed priority and EDF scheduling, shared resources and static and synchronous scheduling), multiprocessor analysis, realistic models, and systems issues. The survey also explores the relationship between research into mixed criticality systems and other topics such as hard and soft time constraints, fault tolerant scheduling, hierarchical scheduling, cyber physical systems, probabilistic real-time systems, and industrial safety standards

    Time Protection: the Missing OS Abstraction

    Get PDF
    Timing channels enable data leakage that threatens the security of computer systems, from cloud platforms to smartphones and browsers executing untrusted third-party code. Preventing unauthorised information flow is a core duty of the operating system, however, present OSes are unable to prevent timing channels. We argue that OSes must provide time protection in addition to the established memory protection. We examine the requirements of time protection, present a design and its implementation in the seL4 microkernel, and evaluate its efficacy as well as performance overhead on Arm and x86 processors

    Allogeneic Stem Cells Alter Gene Expression and Improve Healing of Distal Limb Wounds in Horses.

    Get PDF
    Distal extremity wounds are a significant clinical problem in horses and humans and may benefit from mesenchymal stem cell (MSC) therapy. This study evaluated the effects of direct wound treatment with allogeneic stem cells, in terms of gross, histologic, and transcriptional features of healing. Three full-thickness cutaneous wounds were created on each distal forelimb in six healthy horses, for a total of six wounds per horse. Umbilical cord-blood derived equine MSCs were applied to each wound 1 day after wound creation, in one of four forms: (a) normoxic- or (b) hypoxic-preconditioned cells injected into wound margins, or (c) normoxic- or (d) hypoxic-preconditioned cells embedded in an autologous fibrin gel and applied topically to the wound bed. Controls were one blank (saline) injected wound and one blank fibrin gel-treated wound per horse. Data were collected weekly for 6 weeks and included wound surface area, thermography, gene expression, and histologic scoring. Results indicated that MSC treatment by either delivery method was safe and improved histologic outcomes and wound area. Hypoxic-preconditioning did not offer an advantage. MSC treatment by injection resulted in statistically significant increases in transforming growth factor beta and cyclooxygenase-2 expression at week 1. Histologically, significantly more MSC-treated wounds were categorized as pro-healing than pro-inflammatory. Wound area was significantly affected by treatment: MSC-injected wounds were consistently smaller than gel-treated or control wounds. In conclusion, MSC therapy shows promise for distal extremity wounds in horses, particularly when applied by direct injection into the wound margin. Stem Cells Translational Medicine 2018;7:98-108

    Notch signaling regulates metabolic heterogeneity in glioblastoma stem cells

    Get PDF

    Advancing automation and robotics technology for the space station and for the US economy: Submitted to the United States Congress October 1, 1987

    Get PDF
    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the fifth in a series of progress updates and covers the period between 16 May 1987 and 30 September 1987. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the mandate of Congress is that an advanced automation and robotics technology be built to support an evolutionary space station program and serve as a highly visible stimulator affecting the long-term U.S. economy

    Safer clinical systems : interim report, August 2010

    Get PDF
    Safer Clinical Systems is the Health Foundation’s new five year programme of work to test and demonstrate ways to improve healthcare systems and processes, to develop safer systems that improve patient safety. It builds on learning from the Safer Patients Initiative (SPI) and models of system improvement from both healthcare and other industries. Learning from the SPI highlighted the need to take a clinical systems approach to improving safety. SPI highlighted that many hospitals struggle to implement improvement in clinical areas due to inherent problems with support mechanisms. Clinical processes and systems, rather than individuals, are often the contributors to breakdown in patient safety. The Safer Clinical Systems programme aimed to measure the reliability of clinical processes, identify defects within those processes, and identify the systems that result in those defects. Methods to improve system reliability were then to be tested and re-developed in order to reduce the risk of harm being caused to patients. Such system-level awareness should lead to improvements in other patient care pathways. The relationship between system reliability and actual harm is challenging to identify and measure. Specific, well-defined, small-scale processes have been used in other programmes, and system reliability has been shown to have a direct causal relationship with harm (e.g. care bundle compliance in an intensive care unit can reduce the incidence of ventilator-associated pneumonia). However, it has become evident that harm can be caused by a variety of factors over time; when working in broader, more complex and dynamic systems, change in outcome can be difficult to attribute to specific improvements and difficulties are also associated with relating evidence to resulting harm. The overall aim of Phase 1 of the Safer Clinical Systems programme was to demonstrate proof-of-concept that using a systems-based approach could contribute to improved patient safety. In Phase 1, experienced NHS teams from four locations worked together with expert advisers to co-design the Safer Clinical Systems programme
    • …
    corecore