256 research outputs found

    Complexity adaptation in video encoders for power limited platforms

    Get PDF
    With the emergence of video services on power limited platforms, it is necessary to consider both performance-centric and constraint-centric signal processing techniques. Traditionally, video applications have a bandwidth or computational resources constraint or both. The recent H.264/AVC video compression standard offers significantly improved efficiency and flexibility compared to previous standards, which leads to less emphasis on bandwidth. However, its high computational complexity is a problem for codecs running on power limited plat- forms. Therefore, a technique that integrates both complexity and bandwidth issues in a single framework should be considered. In this thesis we investigate complexity adaptation of a video coder which focuses on managing computational complexity and provides significant complexity savings when applied to recent standards. It consists of three sub functions specially designed for reducing complexity and a framework for using these sub functions; Variable Block Size (VBS) partitioning, fast motion estimation, skip macroblock detection, and complexity adaptation framework. Firstly, the VBS partitioning algorithm based on the Walsh Hadamard Transform (WHT) is presented. The key idea is to segment regions of an image as edges or flat regions based on the fact that prediction errors are mainly affected by edges. Secondly, a fast motion estimation algorithm called Fast Walsh Boundary Search (FWBS) is presented on the VBS partitioned images. Its results outperform other commonly used fast algorithms. Thirdly, a skip macroblock detection algorithm is proposed for use prior to motion estimation by estimating the Discrete Cosine Transform (DCT) coefficients after quantisation. A new orthogonal transform called the S-transform is presented for predicting Integer DCT coefficients from Walsh Hadamard Transform coefficients. Complexity saving is achieved by deciding which macroblocks need to be processed and which can be skipped without processing. Simulation results show that the proposed algorithm achieves significant complexity savings with a negligible loss in rate-distortion performance. Finally, a complexity adaptation framework which combines all three techniques mentioned above is proposed for maximizing the perceptual quality of coded video on a complexity constrained platform

    Current video compression algorithms: Comparisons, optimizations, and improvements

    Full text link
    Compression algorithms have evolved significantly in recent years. Audio, still image, and video can be compressed significantly by taking advantage of the natural redundancies that occur within them. Video compression in particular has made significant advances. MPEG-1 and MPEG-2, two of the major video compression standards, allowed video to be compressed at very low bit rates compared to the original video. The compression ratio for video that is perceptually lossless (losses can\u27t be visually perceived) can even be as high as 40 or 50 to 1 for certain videos. Videos with a small degradation in quality can be compressed at 100 to 1 or more; Although the MPEG standards provided low bit rate compression, even higher quality compression is required for efficient transmission over limited bandwidth networks, wireless networks, and broadcast mediums. Significant gains have been made over the current MPEG-2 standard in a newly developed standard called the Advanced Video Coder, also known as H.264 and MPEG-4 part 10. (Abstract shortened by UMI.)

    Algorithms & implementation of advanced video coding standards

    Get PDF
    Advanced video coding standards have become widely deployed coding techniques used in numerous products, such as broadcast, video conference, mobile television and blu-ray disc, etc. New compression techniques are gradually included in video coding standards so that a 50% compression rate reduction is achievable every five years. However, the trend also has brought many problems, such as, dramatically increased computational complexity, co-existing multiple standards and gradually increased development time. To solve the above problems, this thesis intends to investigate efficient algorithms for the latest video coding standard, H.264/AVC. Two aspects of H.264/AVC standard are inspected in this thesis: (1) Speeding up intra4x4 prediction with parallel architecture. (2) Applying an efficient rate control algorithm based on deviation measure to intra frame. Another aim of this thesis is to work on low-complexity algorithms for MPEG-2 to H.264/AVC transcoder. Three main mapping algorithms and a computational complexity reduction algorithm are focused by this thesis: motion vector mapping, block mapping, field-frame mapping and efficient modes ranking algorithms. Finally, a new video coding framework methodology to reduce development time is examined. This thesis explores the implementation of MPEG-4 simple profile with the RVC framework. A key technique of automatically generating variable length decoder table is solved in this thesis. Moreover, another important video coding standard, DV/DVCPRO, is further modeled by RVC framework. Consequently, besides the available MPEG-4 simple profile and China audio/video standard, a new member is therefore added into the RVC framework family. A part of the research work presented in this thesis is targeted algorithms and implementation of video coding standards. In the wide topic, three main problems are investigated. The results show that the methodologies presented in this thesis are efficient and encourage

    Contributions in image and video coding

    Get PDF
    Orientador: Max Henrique Machado CostaTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: A comunidade de codificação de imagens e vídeo vem também trabalhando em inovações que vão além das tradicionais técnicas de codificação de imagens e vídeo. Este trabalho é um conjunto de contribuições a vários tópicos que têm recebido crescente interesse de pesquisadores na comunidade, nominalmente, codificação escalável, codificação de baixa complexidade para dispositivos móveis, codificação de vídeo de múltiplas vistas e codificação adaptativa em tempo real. A primeira contribuição estuda o desempenho de três transformadas 3-D rápidas por blocos em um codificador de vídeo de baixa complexidade. O codificador recebeu o nome de Fast Embedded Video Codec (FEVC). Novos métodos de implementação e ordens de varredura são propostos para as transformadas. Os coeficiente 3-D são codificados por planos de bits pelos codificadores de entropia, produzindo um fluxo de bits (bitstream) de saída totalmente embutida. Todas as implementações são feitas usando arquitetura com aritmética inteira de 16 bits. Somente adições e deslocamentos de bits são necessários, o que reduz a complexidade computacional. Mesmo com essas restrições, um bom desempenho em termos de taxa de bits versus distorção pôde ser obtido e os tempos de codificação são significativamente menores (em torno de 160 vezes) quando comparados ao padrão H.264/AVC. A segunda contribuição é a otimização de uma recente abordagem proposta para codificação de vídeo de múltiplas vistas em aplicações de video-conferência e outras aplicações do tipo "unicast" similares. O cenário alvo nessa abordagem é fornecer vídeo com percepção real em 3-D e ponto de vista livre a boas taxas de compressão. Para atingir tal objetivo, pesos são atribuídos a cada vista e mapeados em parâmetros de quantização. Neste trabalho, o mapeamento ad-hoc anteriormente proposto entre pesos e parâmetros de quantização é mostrado ser quase-ótimo para uma fonte Gaussiana e um mapeamento ótimo é derivado para fonte típicas de vídeo. A terceira contribuição explora várias estratégias para varredura adaptativa dos coeficientes da transformada no padrão JPEG XR. A ordem de varredura original, global e adaptativa do JPEG XR é comparada com os métodos de varredura localizados e híbridos propostos neste trabalho. Essas novas ordens não requerem mudanças nem nos outros estágios de codificação e decodificação, nem na definição da bitstream A quarta e última contribuição propõe uma transformada por blocos dependente do sinal. As transformadas hierárquicas usualmente exploram a informação residual entre os níveis no estágio da codificação de entropia, mas não no estágio da transformada. A transformada proposta neste trabalho é uma técnica de compactação de energia que também explora as similaridades estruturais entre os níveis de resolução. A idéia central da técnica é incluir na transformada hierárquica um número de funções de base adaptativas derivadas da resolução menor do sinal. Um codificador de imagens completo foi desenvolvido para medir o desempenho da nova transformada e os resultados obtidos são discutidos neste trabalhoAbstract: The image and video coding community has often been working on new advances that go beyond traditional image and video architectures. This work is a set of contributions to various topics that have received increasing attention from researchers in the community, namely, scalable coding, low-complexity coding for portable devices, multiview video coding and run-time adaptive coding. The first contribution studies the performance of three fast block-based 3-D transforms in a low complexity video codec. The codec has received the name Fast Embedded Video Codec (FEVC). New implementation methods and scanning orders are proposed for the transforms. The 3-D coefficients are encoded bit-plane by bit-plane by entropy coders, producing a fully embedded output bitstream. All implementation is performed using 16-bit integer arithmetic. Only additions and bit shifts are necessary, thus lowering computational complexity. Even with these constraints, reasonable rate versus distortion performance can be achieved and the encoding time is significantly smaller (around 160 times) when compared to the H.264/AVC standard. The second contribution is the optimization of a recent approach proposed for multiview video coding in videoconferencing applications or other similar unicast-like applications. The target scenario in this approach is providing realistic 3-D video with free viewpoint video at good compression rates. To achieve such an objective, weights are computed for each view and mapped into quantization parameters. In this work, the previously proposed ad-hoc mapping between weights and quantization parameters is shown to be quasi-optimum for a Gaussian source and an optimum mapping is derived for a typical video source. The third contribution exploits several strategies for adaptive scanning of transform coefficients in the JPEG XR standard. The original global adaptive scanning order applied in JPEG XR is compared with the localized and hybrid scanning methods proposed in this work. These new orders do not require changes in either the other coding and decoding stages or in the bitstream definition. The fourth and last contribution proposes an hierarchical signal dependent block-based transform. Hierarchical transforms usually exploit the residual cross-level information at the entropy coding step, but not at the transform step. The transform proposed in this work is an energy compaction technique that can also exploit these cross-resolution-level structural similarities. The core idea of the technique is to include in the hierarchical transform a number of adaptive basis functions derived from the lower resolution of the signal. A full image codec is developed in order to measure the performance of the new transform and the obtained results are discussed in this workDoutoradoTelecomunicações e TelemáticaDoutor em Engenharia Elétric

    An Efficient Architecture of Forward Transforms and Quantization for H.264/AVC Codecs

    Get PDF
    Thanks to many novel coding tools, H.264/AVC has become the most efficient video compression standard providing much better performance than previous standards. However, this standard comes with an extraordinary computational complexity and a huge memory access requirement, which make the hardware architecture design much more difficult and costly, especially for realtime applications. In the framework of H.264 codec hardware architecture project, this paper presents an efficient architecture of Forward Transform and Quantization (FTQ) for H.264/AVC codecs in mobile applications. To reduce the hardware implementation overhead, the proposed design uses only one unified architecture of 1-D transform engine to perform all required transform processes, including discrete cosine transform and Walsh Hadamard transform. This design also enables to share the common parts among multipliers that have the same multiplicands. The performance of the design is taken into consideration and improved by using a fast architecture of the multiplier in the quantizer, the most critical component in the design. Experimental results show that our architecture can completely finish transform and quantization processes for a 4:2:0 macroblock in 228 clock cycles and the achieved throughput is 445Msamples/s at 250MHz operating frequency while the area overhead is very small, 147755μm2 (approximate 15KGates), with the 130nm TSMC CMOS technology

    Novel VLSI Architecture for Quantization and Variable Length Coding for H-264/AVC Video Compression Standard

    Get PDF
    Integrated multimedia systems process text, graphics, and other discrete media such as digital audio and video streams. In an uncompressed state, graphics, audio and video data, especially moving pictures, require large transmission and storage capacities which can be very expensive. Hence video compression has become a key component of any multimedia system or application. The ITU (International Telecommunications Union) and MPEG (Moving Picture Experts Group) have combined efforts to put together the next generation of video compression standard, the H.264/MPEG-4 PartlO/AVC, which was finalized in 2003. The H.264/AVC uses significantly improved and computationally intensive compression techniques to maximize performance. H.264/AVC compliant encoders achieve the same reproduction quality as encoders that are compliant with the previous standards while requiring 60% or less of the bit rate [2]. This thesis aims at designing two basic blocks of an ASIC capable of performing the H.264 video compression. These two blocks, the Quantizer, and Entropy Encoder implement the Baseline Profile of the H.264/AVC standard. The architecture is implemented in Register Transfer Level HDL and synthesized with Synopsys Design Compiler using TSMC 0.25(xm technology, giving us an estimate of the hardware requirements in real-time implementation. The quantizer block is capable of running at 309MHz and has a total area of 785K gates with a power requirement of 88.59mW. The entropy encoder unit is capable of running at 250 MHz and has a total area of 49K gates with a power requirement of 2.68mW. The high speed that is achieved in this thesis simply indicates that the two blocks Quantizer and Entropy Encoder can be used as IP embedded in the HDTV systems

    HIGH-THROUGHPUT AREA-EFFICIENT INTEGER TRANSFORMS FOR VIDEO CODING

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Fusion of Global and Local Motion Estimation Using Foreground Objects for Distributed Video Coding

    Get PDF
    International audienceThe side information in distributed video coding is estimated using the available decoded frames, and exploited for the decoding and reconstruction of other frames. The quality of the side information has a strong impact on the performance of distributed video coding. Here we propose a new approach that combines both global and local side information to improve coding performance. Since the background pixels in a frame are assigned to global estimation and the foreground objects to local estimation, one needs to estimate foreground objects in the side information using the backward and forward foreground objects, The background pixels are directly taken from the global side information. Specifically, elastic curves and local motion compensation are used to generate the foreground objects masks in the side information. Experimental results show that, as far as the rate-distortion performance is concerned, the proposed approach can achieve a PSNR improvement of up to 1.39 dB for a GOP size of 2, and up to 4.73 dB for larger GOP sizes, with respect to the reference DISCOVER codec. Index Terms A. ABOU-ELAILAH, F. DUFAUX, M. CAGNAZZO, and B. PESQUET-POPESCU are with the Signal and Image Processin
    corecore