13,328 research outputs found

    Improved classification for compositional data using the α\alpha-transformation

    Get PDF
    In compositional data analysis an observation is a vector containing non-negative values, only the relative sizes of which are considered to be of interest. Without loss of generality, a compositional vector can be taken to be a vector of proportions that sum to one. Data of this type arise in many areas including geology, archaeology, biology, economics and political science. In this paper we investigate methods for classification of compositional data. Our approach centres on the idea of using the α\alpha-transformation to transform the data and then to classify the transformed data via regularised discriminant analysis and the k-nearest neighbours algorithm. Using the α\alpha-transformation generalises two rival approaches in compositional data analysis, one (when α=1\alpha=1) that treats the data as though they were Euclidean, ignoring the compositional constraint, and another (when α=0\alpha=0) that employs Aitchison's centred log-ratio transformation. A numerical study with several real datasets shows that whether using α=1\alpha=1 or α=0\alpha=0 gives better classification performance depends on the dataset, and moreover that using an intermediate value of α\alpha can sometimes give better performance than using either 1 or 0.Comment: This is a 17-page preprint and has been accepted for publication at the Journal of Classificatio

    Universal, Unsupervised (Rule-Based), Uncovered Sentiment Analysis

    Get PDF
    We present a novel unsupervised approach for multilingual sentiment analysis driven by compositional syntax-based rules. On the one hand, we exploit some of the main advantages of unsupervised algorithms: (1) the interpretability of their output, in contrast with most supervised models, which behave as a black box and (2) their robustness across different corpora and domains. On the other hand, by introducing the concept of compositional operations and exploiting syntactic information in the form of universal dependencies, we tackle one of their main drawbacks: their rigidity on data that are structured differently depending on the language concerned. Experiments show an improvement both over existing unsupervised methods, and over state-of-the-art supervised models when evaluating outside their corpus of origin. Experiments also show how the same compositional operations can be shared across languages. The system is available at http://www.grupolys.org/software/UUUSA/Comment: 19 pages, 5 Tables, 6 Figures. This is the authors version of a work that was accepted for publication in Knowledge-Based System

    Feature-Guided Black-Box Safety Testing of Deep Neural Networks

    Full text link
    Despite the improved accuracy of deep neural networks, the discovery of adversarial examples has raised serious safety concerns. Most existing approaches for crafting adversarial examples necessitate some knowledge (architecture, parameters, etc.) of the network at hand. In this paper, we focus on image classifiers and propose a feature-guided black-box approach to test the safety of deep neural networks that requires no such knowledge. Our algorithm employs object detection techniques such as SIFT (Scale Invariant Feature Transform) to extract features from an image. These features are converted into a mutable saliency distribution, where high probability is assigned to pixels that affect the composition of the image with respect to the human visual system. We formulate the crafting of adversarial examples as a two-player turn-based stochastic game, where the first player's objective is to minimise the distance to an adversarial example by manipulating the features, and the second player can be cooperative, adversarial, or random. We show that, theoretically, the two-player game can con- verge to the optimal strategy, and that the optimal strategy represents a globally minimal adversarial image. For Lipschitz networks, we also identify conditions that provide safety guarantees that no adversarial examples exist. Using Monte Carlo tree search we gradually explore the game state space to search for adversarial examples. Our experiments show that, despite the black-box setting, manipulations guided by a perception-based saliency distribution are competitive with state-of-the-art methods that rely on white-box saliency matrices or sophisticated optimization procedures. Finally, we show how our method can be used to evaluate robustness of neural networks in safety-critical applications such as traffic sign recognition in self-driving cars.Comment: 35 pages, 5 tables, 23 figure
    corecore