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Abstract

Compositional data are a specific type of
multivariate data, in which individual vari-
ables represent relative contributions to a
whole, typically expressed as 1 or 100%.
Driven by a lot of potential applications in
many domains, this paper presents various
supervised algorithms for learning composi-
tional data from other data sources, leading
to a novel multi-label learning setting that
bears strong similarities with multivariate re-
gression, multi-label classification and multi-
class classification. Building further upon
our previous work on this topic, we com-
pare in this paper several ensemble meth-
ods that take into account specific proper-
ties about compositional data. We analyze
three different types of kernel base learners
for bivariate compositions, respectively based
on maximum likelihood estimation, least-
squares minimization and a label transfor-
mation. We also investigate two approaches
for aggregating the bivariate predictions of
these base learners into multivariate compo-
sitions, respectively based on a pairwise and
a tree-based decomposition technique. The
comparison of the algorithms is supported by
empirical results on synthetic data and a real-
world application in bioinformatics.

1. Introduction

Compositional data can be observed in many domains,
like chemistry, geology, bioinformatics, to name just a
few. As a simple introductory example of such data,
let us consider the ingredients of lemonade. In a drink,
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several ingredients can occur, and some of these ingre-
dients will have a higher contribution than others; a
lemonade will mainly consist of water and lemon juice,
but it will also contain minor percentages of sugar and
minerals. Important here is that all ingredients sum
up to a certain amount, in this case 100%, so that ev-
ery ingredient is represented as a part of the whole.
Instead of measuring only the presence or absence of
ingredients as binary variables, we could also be inter-
ested in the degree of presence of ingredients in such
an application.

Indeed, this is the main characteristic behind composi-
tional data: more formally, every single variable in this
source of multivariate data represents a relative con-
tribution to a whole, usually expressed as a unit 1 or
100%. Moreover, compositional variables are assumed
to be positive. So, they are constrained variables, and
they are also dependent variables in a statistical sense:
knowledge about the values of some of the variables
changes the likelihood of observing particular values
for the remaining unobserved variables.

This article introduces supervised algorithms for learn-
ing compositional data, as a specific type of multi-label
learning. Such a learning problem is of course closely
related to multivariate regression, see e.g. (Breiman
and Friedman, 1997), which is often called multi-
output regression in the machine learning community,
but learning compositional data also bears similarities
with multi-label classification and multi-class classifi-
cation. The connection with multi-label classification
follows from the need for modeling statistical depen-
dence of output variables, a need that characterizes as
well recent developments in multi-label classification,
see e.g. (Cheng and Hüllermeier, 2009; Dembczyński
et al., 2010). Moreover, if one discretizes the labels
by putting a threshold on real label values, the set-
ting simplifies to a multi-label learning problem. The
connection with multi-class classification on the other
hand follows from the fact that compositional data can
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Figure 1. An example of a problem setting with two hypo-
thetical features on the horizontal and vertical axis, illus-
trating the difference between crisp multi-class classifica-
tion and learning partial class memberships. On the left,
the symbols represent the crisp class labels in traditional
multi-class classification, while on the right side, labels are
represented by partial class memberships, as one unit of
membership divided over all classes.

be interpreted as partial class memberships or prior
class probabilities, since class memberships or class
probabilities possess the property of summing up to
1. The difference between learning compositional data
and multi-class classification is graphically explained
in Figure 1.

Compositional data have been studied quite exten-
sively in applied statistics, see e.g. (Aitchison, 1982;
Billheimer et al., 2001; Pawlowski-Glahn and Egozcue,
2006), but research on this topic is almost non-existent
in the machine learning literature, despite a large
amount of potential applications in various disciplines.
The few related methods presented in machine learn-
ing typically refer to the problem setting as learning
partial or mixed class memberships, due to the above-
mentioned connection with multi-class classification.
These methods are predominantly unsupervised, such
as clustering algorithms where data instances can si-
multaneously exhibit a degree of membership to sev-
eral clusters. The concept of partial class membership
has for example been incorporated in mixed models
(Gormley and Murphy, 2008), probabilistic graphical
models (Airoldi et al., 2008) and Bayesian clustering
techniques (Heller et al., 2008).

A limited number of related studies can also be found
in fuzzy systems; compositional data are in this field
known as fuzzy partitions or Ruspini partitions (Rus-
pini, 1969). Using the terminology partial, mixed or
fuzzy memberships, applications of analyzing compo-
sitional data can be found in domains like text cate-
gorization (Erosheva et al., 2004), agriculture (Nisar-
Ahamad et al., 2000), and bioinformatics (Marttinen
et al., 2009).

We adopted a similar terminology in recent work

(Waegeman and De Baets, 2009) and (Waegeman
et al., submitted), where we introduced supervised al-
gorithms for learning compositional data, using maxi-
mum likelihood estimation of logistic models. This ar-
ticle builds further upon these results, by investigating
alternative algorithms and providing additional empir-
ical results. We start in Section 2 with a formal de-
scription of the problem setting and a discussion of the
aspects that make this setting different compared to
more conventional learning paradigms. Subsequently,
Section 3 discusses various basic methods for learning
compositional data. These methods, which infer and
postprocess the label vectors in a pairwise manner, are
used as base learners in ensemble methods. Two dif-
ferent ensemble methods are proposed in Section 4.
Finally, in Section 5 results are presented on synthetic
data and a real-world application, demonstrating the
usefulness of our approach.

2. Formal problem description

Let us start by introducing some notations. In a gen-
eral multi-label learning problem, the goal is to learn
a mapping from an input space X to a vectorial out-
put space Y of dimension K. To this end, each object
is represented by a D-dimensional feature representa-
tion x ∈ X and a vector of labels y ∈ Y. We have
Y = {0, 1}K in multi-label classification and Y = RK

in multivariate regression or multi-output regression.
For learning K-dimensional compositional data, the
vector of labels is a vector within the K-dimensional
simplex Y:

Y =
{
y = (y1, . . . , yK) ∈ RK | yi ≥ 0, ∀ i ∈ {1, . . . ,K};

K∑
i=1

yi = 1
}
. (1)

So, every data object will be linked with a K-
dimensional real-valued vector that will be called its
label vector. Each label vector has one unit of mem-
bership divided over the K classes. As a result, each
element of the label vector is positive and the sum of
all elements of the vector equals one.

A training dataset T of N i.i.d. observations can then
be denoted as a set of couples {(x1,y1), . . . , (xN ,yN )}.
We will only focus on supervised learning, implying
that both x and y are used to construct a predictive
model. The i-th instance in a training set T will be
denoted

(xi,yi) =
(

(xi,1, . . . , xi,D), (yi,1, . . . , yi,K)
)
.

The predictive model that we aim to fit to the data
will be represented as f : X → Y, in which f(x) =
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(f1(x), . . . , fK(x)). Since it is assumed that label vec-
tors lie in the simplex, the following additional con-
straint must be imposed on the model for all x ∈ X:

fk(x) ≥ 0, ∀ k ∈ {1, . . . ,K} , (2)
K∑

k=1

fk(x) = 1 . (3)

In a classical supervised machine learning setting, one
aims to find a mapping or model f : X → Y that
minimizes the expected value of some regularized loss
function, i.e.

f̂(x) = min
f∈H
L(f ,T) + λJ(f) , (4)

with L the loss function on the training dataset, H
a hypothesis space of models, J a penalty term for
the complexity of the model and λ a regularization
parameter. We will further only consider instance-wise
decomposable loss functions that can be written as

L(f ,T) =
N∑

i=1

L(f(xi), yi) , (5)

with L the loss between the label and the model predic-
tion of a single instance. When learning compositional
data, one can simply adopt existing loss functions that
are used for multivariate regression. We will consider
the mean squared error between true and predicted
label vectors in this study:

LMSE(f(x),y) =
K∑

k=1

(fk(x)− yk)2 .

Similarly, one can argue to evaluate predicted compo-
sitional data using the mean absolute error instead of
the mean squared error, resulting in a more realistic
performance evaluation for heavily unbalanced label
vectors.

3. Base learners for compositional data

In this section three basic approaches for learning com-
positional data are presented. The first approach per-
forms a transformation of the label vector from the
simplex to an unconstrained space, in which standard
regression algorithms can be used to predict every
component of the label vector independently. The sec-
ond approach adopts kernel logistic regression models
for compositional data, using maximum likelihood es-
timation techniques. The third approach further ex-
tends the second approach, using an alternative loss
function.

3.1. Label transformation

The simplex constraints (1) that characterize compo-
sitional data imply that standard statistical tools can-
not be applied on compositional data. From a learn-
ing perspective, one cannot use standard multivariate
regression (also called multi-output regression) meth-
ods to predict compositional data. However, as sug-
gested by Aitchison (1986), one can always transform
the data to an Euclidean space where standard opera-
tions are valid. A common transformation is given by
the following mapping:

U : Y 7→ RK−1

y →
(

log
y1
yK

, . . . , log
yK−1

yK

)
.

However, such a transformation cannot take zeroes in
the original vectors into account. This should be con-
sidered as an important drawback, because zeroes fre-
quently occur in applications of compositional data.

After transforming the label vectors to an Euclidean
space of dimension K−1, existing multivariate regres-
sion algorithms can be applied. During the test phase,
predicted label vectors have to be transformed again
to the simplex, using the inverse operator U−1. In
the experiments in Section 5, kernel ridge regression
will be applied as multivariate regression method, so
that nonlinear relationships between features and label
vectors can be modeled. Recall that kernel ridge re-
gression will estimate the parameters of K − 1 scoring
functions, generally represented as

gk(x) = wk · φ(x) + θk , (6)

with φ a feature mapping to a possibly high-
dimensional feature space and w1, ...,wK−1 vectors of
parameters that must be estimated based on training
data. These vectors of parameters are usually different
for every component of the label vector.

The representer theorem states that for a general class
of models and loss functions the solution of optimiza-
tion problem (4) can be written as a linear combina-
tion of the training vectors. In particular, kernel ridge
regression and the other kernel methods presented be-
low exhibit such characteristics, so that the kernelized
scoring functions can be written as

gk(x) =
N∑

i=1

αikK(xi,x) + θk , (7)

with αk = (α1k, . . . , αNk) the model parameters for
the k-th label vector component. The regularization
term in the loss function becomes

K∑
k=1

||wk||2 =
K∑

k=1

αT
k Kαk ,
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with K the Gram matrix for the training points, i.e.,
Ki,j = K(xi,xj).

3.2. Kernel logistic regression

As an alternative approach that avoids label transfor-
mations, we propose to adopt a logistic type of model
to represent label vectors in a one-versus-all way:

fk(x) =
exp(gk(x))∑K
l=1 exp(gl(x))

, (8)

in which g1, ..., gK : X → R are scoring functions that
assign values from the set of real numbers to data in-
stances, similar to (6). These scoring functions are just
linear models in traditional logistic regression models
and kernel expansions of type (7) in kernel logistic re-
gression.

A kernel logistic regression model is typically opti-
mized by means of maximum likelihood estimation.
As a specific form of (4), the regularized multinomial
likelihood is given by:

L(w1, ...,wK) =
N∏

i=1

K∏
k=1

(
fk(xi)

)yik + λ

K∑
k=1

||wk||2 ,

with λ a regularization parameter. Remark that we
allow that y ∈ Y instead of y ∈ {0, 1}K , unlike tradi-
tional logistic regression. Equivalently to maximizing
the likelihood, one can minimize the regularized neg-
ative log-likelihood. The minimum is usually found
with a simple gradient descent algorithm in the two-
class case, but one arrives at a constrained optimiza-
tion problem in the multi-class case, as constraint (2)
must hold. To this end, variants of the sequential mini-
mal optimization algorithm, found in implementations
of support vector machines, have been proposed for the
multi-class case (Keerthi et al., 2005).

3.3. Least-squares minimization

Remark that a logistic model of type (8) does not
assume any probabilistic interpretation at all, which
is a benefit, since label vectors should not be seen
as class probabilities. Yet, when the likelihood is
maximized, still a probabilistic interpretation must be
adopted. This could be considered as a limitation of
the previous method. As an alternative, the parame-
ters of model (8) can be estimated by optimization of
an (L2-)regularized least-squares criterion. Since this
criterion directly optimizes the performance measure
(LMSE), this can be seen as an advantage. However,
this option leads to a more difficult nonlinear optimiza-
tion problem.

Figure 2. A visualization of the loss functions for the la-
bel transformation (LT), kernel logistic regression (KLR)
and least-squares (LS) methods. The left and right figure
give the loss when the true label vectors are (0.5, 0.5) and
(0.1, 0.9), respectively.

The models fit by the methods discussed above are
very similar to (8). The main difference lies in the cri-
terion that is optimized in order to obtain estimates
of the parameter vectors w1, ...,wK . To gain insight
into the differences between these methods, we will
now consider the case where K = 2. Figure 2 shows
the loss functions for the label transformation (LT),
kernel logistic regression (KLR) and least-squares (LS)
methods. This figure illustrates the clear difference be-
tween the loss functions of LT, KLR and LS. Opposed
to LS, both LT and KLR have unbounded loss func-
tions that become strongly asymmetric as the value of
the labels tend to 0 or 1. Moreover, the LT loss func-
tions becomes very sharp at the boundaries of [0, 1].
This property makes the fitting procedure of the LT
method sensitive to noise. Consequently, we could ar-
gue that KLR and LS result in more robust loss func-
tions, which could result in more stable models.

4. Ensemble methods for combining
base learners

In the previous section, three simple but computation-
ally efficient base learners were presented. The first
two of these base learners naturally generalize to sit-
uations where K > 2, but for the least-squares ap-
proach this is more difficult. However, in recent work
(Waegeman et al., submitted), we showed that the per-
formance of a model of type (8) can improve by using
pairwise decomposition and voting techniques. In this
paper these ideas are further extended for other base
learners. Moreover, we also present a second ensemble
method that overcomes the computational burden of
pairwise decomposition methods.
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4.1. Pairwise decomposition

Similar to the traditional one-versus-one ensemble for
multi-class classification, we consider K(K−1)/2 base
classifiers for learning compositional data of dimension
K. As such, K(K−1)/2 new datasets are constructed
as follows:

Tkl = {(xi, y
kl
i ) | (xi,yi) ∈ T ∧ ykl

i =
yik

yik + yil
} , (9)

with 1 ≤ k < l ≤ K. Thus, by applying Eq. (9),
a set of two-dimensional compositions is obtained for
every instance, where ykl

i can be interpreted too as
compositional data. More specifically, it represents
the value of the k-th label when the restriction is made
that only the k-th and l-th label can be different from
zero. The value of the l-th label can then be com-
puted as ylk

i = 1 − ykl
i . We will use the notation

fkl : X → [0, 1] to denote the individual base learn-
ers, for which the outcome represents the prediction of
the k-th component of the label vector. The predicted
value for the l-th component can simply be computed
as flk(x) = 1− fkl(x).

Once the parameters of all pairwise models have been
estimated, the pairwise predictions must be further
postprocessed to obtain predictions that make sense.
More specifically, the predicted pairwise predictions
fkl(x) must be transformed to a model of type f(x) =
(f1(x), ..., fK(x)), as considered in the previous sec-
tion. Similar as Eq. (9) for the true label vectors, the
Bradley-Terry model allows to establish a natural link
for all 1 ≤ k < l ≤ K:

µkl(x) =
fk(x)

fk(x) + fl(x)
, (10)

where µkl denotes a theoretically assumed prediction
with the base classifier trained on Tkl. Unfortunately,
as all base classifiers conduct a relatively independent
optimization procedure, one will in practice notice that
fkl(x) 6= µkl(x). If one replaces µkl(x) by fkl(x) in
Eq. (10), then the resulting system of equations cannot
be solved. Solving for fk(x) is much more complicated
than solving for µkl(x), since K(K−1)/2 variables ap-
pear on the left side and only K variables appear on
the right side. In total K(K− 1)/2 equations must be
satisfied, so that the system of equations counts more
equations than free variables. A very similar situation
occurs in probabilistic multi-class classification, when
pairwise class probabilities have to be coupled to ob-
tain posterior class probabilities per class. From this
perspective, Wu et al. (2004) recently proposed two
new algorithms for solving systems like fkl(x) = µkl(x)
and compared their algorithms experimentally with
previous approaches. As most of these methods do not

make any probabilistic assumptions at all, it sounds
reasonable to adopt them as well in our framework.

Various algorithms for combining the pairwise mod-
els fkl into K-dimensional compositions have recently
been empirically compared in (Waegeman et al., sub-
mitted) for learning compositional data, with kernel
logistic regression as base learner. Since the focus of
this article is a bit different, we will only report re-
sults for one of the approaches of (Wu et al., 2004),
which turned out to be one of the best choices in our
recent work. This method solves the following system
for every x:

fk(x) =
(fk(x) + fl(x)

K − 1

)
fkl(x)

subject to
K∑

k=1

fk(x) = 1, fk(x) ≥ 0, ∀k .

The solution of this system can be written as the
unique global minimum of the following convex op-
timization problem:

min
f

K∑
k=1

( ∑
l:l 6=k

flk(x)fk(x)−
∑
l:l 6=k

fkl(x)fl(x)
)2

subject to
K∑

k=1

fk(x) = 1, fk(x) ≥ 0, ∀k .

Wu et al. (2004) show that the minimum can be found
very efficiently with a simple iterative algorithm.

4.2. Tree-based aggregation

Contrary to multi-class classification, the above pair-
wise coupling approach cannot compete with one-
versus-all type of models in terms of computational
efficiency, since we need all training examples for ev-
ery base classifier. Its main advantage should be
rather found in an improved predictive performance,
as shown in the experiments. In multi-class classifi-
cation, only the training examples from the k-th and
l-th class provide useful information for training model
fkl, so that the base classifiers are trained using only a
small part of the entire dataset. In contrast, all train-
ing examples do matter for fitting base classifiers in
our setting, even if both label vector components yik

and yil are zero. However, Eq. (9) cannot be used in
such situations. We will therefore simply consider 0.5
as pairwise memberships when both yik and yil equal
zero.

As a computationally more efficient alternative to pair-
wise decomposition, we also test a second ensemble
method that structures base classifiers as a tree. Since
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compositional data represent relative contributions to
a whole, it feels natural to order compositions in a hi-
erarchical way. In this hierarchy, the root node repre-
sents the whole, and paths from the root to the leaves
indicate successive splits of the whole into smaller
parts. So, the two children of the root split the unit 1
into two compositions that sum up to one. These two
contributions are then in subsequent children further
split into smaller compositions, satisfying the property
that the nodes of every level in the tree sum up 1. As
such, the values in the leaves represents the original
compositions.

Using a hierarchical structure for compositional data,
we train a base classifier in all internal nodes. This re-
quires K − 1 base classifiers in total, delivering a sub-
stantial gain compared to pairwise decomposition in
terms of computational complexity. In terms of predic-
tive performance, one might theoretically expect that
pairwise decomposition outperforms this tree-based
approach, as the latter does not conduct any averag-
ing strategy. One could of course improve predictive
performance by averaging over many at random con-
structed trees, but this is beyond the purpose of this
study. In the experiments we will only construct a sin-
gle tree. The decision about the splits at every level
in the tree is taken at random.

5. Experiments

The two ensemble methods and three base learners
are in this section tested on synthetic data and a real-
world case study in bioinformatics. Synthetic data al-
lows to control some parameters in the data generation
process, so that the different behaviour of the vari-
ous algorithms can be better explained, while the real-
world case study mainly aims to illustrate the practi-
cal need for supervised learning of compositional data.
The base learners were implemented in the statisti-
cal package R. In particular, the parameters for the
least squares learner were optimized with the BFGS
algorithm (Broyden, 1970) which is a quasi-newton
method. Furthermore, the Python libraries of Wu
et al. (2004) were adopted for converting the outputs
of the base learners to compositions. All experiments
were carried out on a computer cluster in order to
speed up computations and to allow a sufficient num-
ber of repetitions for observing statistically significant
differences between algorithms.

5.1. Experiments on synthetic data

LMSE is chosen as the performance measure in the ex-
periments on synthetic data. In this setting, each data
point consists of a feature vector x ∈ R2 and a la-

bel vector y ∈ Y with K = 4. The feature vectors
are obtained through sampling from a bivariate Gaus-
sian distribution with parameters µ1 = 15, µ2 = 15,
σ1 = 3, σ2 = 5 and ρ = 0. The label vectors are gen-
erated through sampling from a Dirichlet distribution
with parameter vector α(x) ∈ R4

+ which depends on
the inputs as follows:

αi(x) = 100× Φ(x;µ1,i, µ2,i, σ1,i, σ2,i, ρi)∑4
j=1 Φ(x;µ1,j , µ2,j , σ1,j , σ2,j , ρj)

,

for i = 1, . . . , 4, where Φ(.;µ1,i, µ2,i, σ1,i, σ2,i, ρi) rep-
resents the density of a bivariate Gaussian. In this set-
ting, the parameters were chosen as follows µ1,1 = 10,
µ2,1 = 10, σ1,1 = 5, σ2,1 = 5, µ1,2 = 20, µ2,2 = 10,
σ1,2 = 5, σ2,2 = 5, µ1,3 = 15, µ2,3 = 10+5

√
3, σ1,3 = 3,

σ2,3 = 3.5, µ1,4 = 20, µ2,4 = 30, σ1,4 = 8, σ2,4 = 7
and ρi = 0. Remark that the non-uniformity of the
standard deviations leads to a nonlinear Bayes-optimal
model.

This scheme was used to create training and validation
sets, each containing 20 instances. An independent
test set containing 500 instances was created as well.
To assess the statistical significance of differences in
performance, this process was repeated 30 times.

In total, 7 learning strategies were applied to these
datasets: 6 decomposition methods and MKLR, the
direct kernel logistic regression approach for K > 2.
The 6 decomposition methods differ in the decomposi-
tion technique (pairwise (PW) or tree-based (TREE))
and the base learners (LT, KLR and LS). To ensure
enough flexibility for each method we opted to use an
RBF-kernel for each learner. The hyper-parameters
were optimized by means of cross-validation.

Figure 3 shows the results for each method in terms
of the root mean squared error (RMSE) on the test
sets. The results indicate that the influence of the
base classifier is limited for the tree-based decomposi-
tion procedure. Furthermore, the influence of the type
of decomposition technique was limited for the least-
squares and the label transformation methods. The
fact that KLR combined with the pairwise decompo-
sition technique clearly outperforms all other methods
is somewhat unexpected, but an interesting result.

5.2. An application in bioinformatics

The lack of publicly available benchmark datasets for
learning compositional data implies that the proposed
methods cannot be empirically compared on a com-
pendium of datasets. In addition to synthetic data,
we apply our algorithms to real-world data from the
bioinformatics domain in order to illustrate the need
for learning compositional data. More specifically, in
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Figure 3. Performance results for each of the 7 learning
strategies on the synthetic datasets. Boxplots of the RM-
SEs obtained through 30 repetitions of the data generation
process.

microbiology, fatty acid methyl ester (FAME) profiles
and 16S rRNA sequences offer two different descrip-
tions of bacterial species. In the microbial literature,
both sources of information are established as very
useful characteristics for the discrimination of differ-
ent bacterial species. For this reason, it makes sense
to look for statistical relationships between both data
sources. We will employ the methods presented above
to find such relationships, in which FAME profiles
serve as labels and 16S rRNA sequences as features.
As discussed in (Marttinen et al., 2009), FAME pro-
files satisfy constraint (1), so they can be interpreted
as partial class memberships for in total 71 classes
(K = 71). We used the dataset of (Slabbinck et al.,
2009), containing FAME profiles from 74 different bac-
terial species.

In addition to the FAME profiles, we collected for all
74 bacterial species one quality-controlled 16S rRNA
sequence of their type strain. These sequences serve as
features in our experiment. Since we are dealing with
kernel methods, we subsequently computed a similar-
ity or kernel matrix for the collected sequences, us-
ing the Dnadist program of the bioinformatics package
PHYLIP (Felsenstein, 2004). This program calculates
the similarity between two DNA sequences as the frac-
tion of identical nucleotides.

A 4-fold cross validation was performed to asses the
performance of the different learning strategies on
this dataset. The regularization parameter, which is
present in each optimization procedure, was chosen by
means of a nested cross-validation loop. It should be
noted that the compositional vectors contain a lot of
zero values. To be able to use the LT procedure, a
small constant was added to these values. The RMSE

Method RMSE
Tree-LS 0.0245
Tree-LT 0.0266

Tree-KLR 0.0251
PW-LS 0.0275
PW-LT 0.0315

PW-KLR 0.0263
MKLR 0.0241

Table 1. Performance results for all learning strategies, in
terms of the RMSE after 4-fold cross validation, on the
FAME dataset.

Figure 4. Left: heatmap of the 74 average FAME profiles
that were used as compositional data (K = 71). Each row
corresponds to the average FAME profile for one species.
Right: heatmap of the 74 predicted average FAME profiles
with MKLR.

of all methods is given in Table 1. For this dataset,
tree-based decomposition clearly outperforms the pair-
wise decomposition methods, which is definitely a sur-
prising result. The performance of the PW-LT strat-
egy is notably worse than all others, which contradicts
the findings in the synthetic datasets. This contrast
might be explained by the type of noise present in the
data. As stated above, the LT strategy is susceptible
to the presence of noise at the boundary of [0, 1]K .
In the synthetic data the noise was introduced with
a Dirichlet distribution that adds less noise to points
situated at the boundary of the simplex. In the FAME
dataset, this might not be the case. Finally, it can be
seen that MKLR performs best in this setting, closely
followed by the best tree-based method. Figure 4 vi-
sualizes the predictions for MKLR.

6. Discussion

In this paper we introduced the problem of learning
compositional data, a novel multi-label learning prob-
lem that occurs in many real-world applications. To
support this claim, a case study in bioinformatics was
discussed. We proposed three methods and two aggre-
gation techniques for learning compositional data and
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we evaluated these methods on the case study dataset
and synthetic data. The results indicate that both,
decomposition techniques and MKLR can be used to
learn from compositional data. Surprisingly, we found
that tree-based methods were able to compete with
pairwise decomposition techniques, not only in terms
of computational complexity but also in terms of pre-
dictive power. We hope that this paper can motivate
other researchers as well to start developing new algo-
rithms in the challenging domain of learning composi-
tional data.
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